Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(3): 276-287, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692621

RESUMO

Inflammatory caspases (caspase-1, caspase-4, caspase-5 and caspase-11 (caspase-1/-4/-5/-11)) mediate host defense against microbial infections, processing pro-inflammatory cytokines and triggering pyroptosis. However, precise checkpoints are required to prevent their unsolicited activation. Here we report that serpin family B member 1 (SERPINB1) limited the activity of those caspases by suppressing their caspase-recruitment domain (CARD) oligomerization and enzymatic activation. While the reactive center loop of SERPINB1 inhibits neutrophil serine proteases, its carboxy-terminal CARD-binding motif restrained the activation of pro-caspase-1/-4/-5/-11. Consequently, knockdown or deletion of SERPINB1 prompted spontaneous activation of caspase-1/-4/-5/-11, release of the cytokine IL-1ß and pyroptosis, inducing elevated inflammation after non-hygienic co-housing with pet-store mice and enhanced sensitivity to lipopolysaccharide- or Acinetobacter baumannii-induced endotoxemia. Our results reveal that SERPINB1 acts as a vital gatekeeper of inflammation by restraining neutrophil serine proteases and inflammatory caspases in a genetically and functionally separable manner.


Assuntos
Caspases/imunologia , Mediadores da Inflamação/imunologia , Inflamação/imunologia , Serpinas/imunologia , Animais , Caspases/genética , Caspases/metabolismo , Linhagem Celular , Células Cultivadas , Ativação Enzimática/imunologia , Células HEK293 , Humanos , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/enzimologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Piroptose/efeitos dos fármacos , Piroptose/imunologia , Células RAW 264.7 , Interferência de RNA , Serina Proteases/imunologia , Serina Proteases/metabolismo , Serpinas/genética , Serpinas/metabolismo , Células THP-1 , Células U937
2.
Mol Cell ; 69(4): 539-550.e6, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452635

RESUMO

Microbial or endogenous molecular patterns as well as pathogen functional features can activate innate immune systems. Whereas detection of infection by pattern recognition receptors has been investigated in details, sensing of virulence factors activities remains less characterized. In Drosophila, genetic evidences indicate that the serine protease Persephone belongs to a danger pathway activated by abnormal proteolytic activities to induce Toll signaling. However, neither the activation mechanism of this pathway nor its specificity has been determined. Here, we identify a unique region in the pro-domain of Persephone that functions as bait for exogenous proteases independently of their origin, type, or specificity. Cleavage in this bait region constitutes the first step of a sequential activation and licenses the subsequent maturation of Persephone to the endogenous cysteine cathepsin 26-29-p. Our results establish Persephone itself as an immune receptor able to sense a broad range of microbes through virulence factor activities rather than molecular patterns.


Assuntos
Beauveria/enzimologia , Proteínas de Drosophila/imunologia , Drosophila melanogaster/imunologia , Imunidade Inata/imunologia , Receptores Imunológicos/metabolismo , Serina Endopeptidases/imunologia , Serina Proteases/imunologia , Receptores Toll-Like/imunologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Proteólise , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(38): 23581-23587, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900946

RESUMO

Proteolytic activation of phenoloxidase (PO) and the cytokine Spätzle during immune responses of insects is mediated by a network of hemolymph serine proteases (HPs) and noncatalytic serine protease homologs (SPHs) and inhibited by serpins. However, integration and conservation of the system and its control mechanisms are not fully understood. Here we present biochemical evidence that PO-catalyzed melanin formation, Spätzle-triggered Toll activation, and induced synthesis of antimicrobial peptides are stimulated via hemolymph (serine) protease 5 (HP5) in Manduca sexta Previous studies have demonstrated a protease cascade pathway in which HP14 activates proHP21; HP21 activates proPAP2 and proPAP3, which then activate proPO in the presence of a complex of SPH1 and SPH2. We found that both HP21 and PAP3 activate proHP5 by cleavage at ESDR176*IIGG. HP5 then cleaves proHP6 at a unique site of LDLH112*ILGG. HP6, an ortholog of Drosophila Persephone, activates both proHP8 and proPAP1. HP8 activates proSpätzle-1, whereas PAP1 cleaves and activates proPO. HP5 is inhibited by Manduca sexta serpin-4, serpin-1A, and serpin-1J to regulate its activity. In summary, we have elucidated the physiological roles of HP5, a CLIPB with unique cleavage specificity (cutting after His) that coordinates immune responses in the caterpillar.


Assuntos
Hemolinfa , Proteínas de Insetos , Manduca , Serina Proteases , Animais , Hemolinfa/enzimologia , Hemolinfa/imunologia , Proteínas de Insetos/imunologia , Proteínas de Insetos/metabolismo , Manduca/enzimologia , Manduca/imunologia , Manduca/metabolismo , Serina Proteases/imunologia , Serina Proteases/metabolismo , Transdução de Sinais , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(33): 16314-16319, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31363054

RESUMO

Critical for diverse biological processes, proteases represent one of the largest families of pharmaceutical targets. To inhibit pathogenic proteases with desired selectivity, monoclonal antibodies (mAbs) hold great promise as research tools and therapeutic agents. However, identification of mAbs with inhibitory functions is challenging because current antibody discovery methods rely on binding rather than inhibition. This study developed a highly efficient selection method for protease inhibitory mAbs by coexpressing 3 recombinant proteins in the periplasmic space of Escherichia coli-an antibody clone, a protease of interest, and a ß-lactamase modified by insertion of a protease cleavable peptide sequence. During functional selection, inhibitory antibodies prevent the protease from cleaving the modified ß-lactamase, thereby allowing the cell to survive in the presence of ampicillin. Using this method to select from synthetic human antibody libraries, we isolated panels of mAbs inhibiting 5 targets of 4 main protease classes: matrix metalloproteinases (MMP-14, a predominant target in metastasis; MMP-9, in neuropathic pain), ß-secretase 1 (BACE-1, an aspartic protease in Alzheimer's disease), cathepsin B (a cysteine protease in cancer), and Alp2 (a serine protease in aspergillosis). Notably, 37 of 41 identified binders were inhibitory. Isolated mAb inhibitors exhibited nanomolar potency, exclusive selectivity, excellent proteolytic stability, and desired biological functions. Particularly, anti-Alp2 Fab A4A1 had a binding affinity of 11 nM and inhibition potency of 14 nM, anti-BACE1 IgG B2B2 reduced amyloid beta (Aß40) production by 80% in cellular assays, and IgG L13 inhibited MMP-9 but not MMP-2/-12/-14 and significantly relieved neuropathic pain development in mice.


Assuntos
Anticorpos Monoclonais/imunologia , Peptídeo Hidrolases/genética , Inibidores de Proteases/imunologia , Proteínas Recombinantes/imunologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Sequência de Aminoácidos/genética , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/imunologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/farmacologia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/imunologia , Aspergilose/imunologia , Aspergilose/terapia , Catepsina B/genética , Catepsina B/imunologia , Escherichia coli/genética , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/imunologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/imunologia , Inibidores de Metaloproteinases de Matriz/imunologia , Inibidores de Metaloproteinases de Matriz/metabolismo , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/imunologia , Periplasma/genética , Inibidores de Proteases/farmacologia , Proteólise/efeitos dos fármacos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Serina Proteases/genética , Serina Proteases/imunologia
5.
J Biol Chem ; 295(51): 17624-17631, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33454002

RESUMO

Neutrophils are primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils prevent the spread of pathogens is NETosis, the extrusion of cellular DNA resulting in neutrophil extracellular traps (NETs). The protease neutrophil elastase (NE) has been implicated in the formation of NETs through proteolysis of nuclear proteins leading to chromatin decondensation. In addition to NE, neutrophils contain three other serine proteases that could compensate if the activity of NE was neutralized. However, whether they do play such a role is unknown. Thus, we deployed recently described specific inhibitors against all four of the neutrophil serine proteases (NSPs). Using specific antibodies to the NSPs along with our labeled inhibitors, we show that catalytic activity of these enzymes is not required for the formation of NETs. Moreover, the NSPs that decorate NETs are in an inactive conformation and thus cannot participate in further catalytic events. These results indicate that NSPs play no role in either NETosis or arming NETs with proteolytic activity.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/enzimologia , Serina Proteases/metabolismo , Animais , Anticorpos/química , Anticorpos/imunologia , Candida albicans/fisiologia , DNA/metabolismo , Escherichia coli/fisiologia , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/imunologia , Elastase de Leucócito/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , Neutrófilos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Células RAW 264.7 , Serina Proteases/química , Serina Proteases/imunologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
6.
PLoS Pathog ; 15(11): e1008194, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31765430

RESUMO

Serine protease cascades regulate important insect immune responses namely melanization and Toll pathway activation. An important component of these cascades are clip-domain serine protease homologs (cSPHs), which are non-catalytic, but essential for activating the enzyme prophenoloxidase (PPO) in the melanization response during septic infections. The activation of cSPHs requires their proteolytic cleavage, yet factors that control their activation and the complexity of their interactions within these cascades remain unclear. Here, we report the identification of CLIPA28 as a novel immune-related cSPH in the malaria vector Anopheles gambiae. Functional genetic analysis using RNA interference (RNAi) revealed that CLIPA28 is essential for the melanization of Plasmodium berghei parasites in refractory mosquitoes, and for mosquito resistance to fungal infections. We further show, using combined biochemical and genetic approaches, that CLIPA28 is member of a network of at least four cSPHs, whereby members are activated in a hierarchical manner following septic infections. Depletion of the complement-like protein TEP1 abolished the activation of this network after septic infections, whereas, depletion of the serine protease inhibitor 2 (SRPN2) triggered enhanced network activation, even in naïve mosquitoes, culminating in a dramatic reduction in cSPHs hemolymph levels, which paralleled that of PPO. Our data suggest that cSPHs are engaged in complex and multilayered interactions within serine protease cascades that regulate melanization, and identify TEP1 and SRPN2 as two master regulators of the cSPH network.


Assuntos
Anopheles/imunologia , Imunidade Inata/imunologia , Proteínas de Insetos/imunologia , Malária/imunologia , Melaninas/imunologia , Plasmodium berghei/imunologia , Serina Proteases/imunologia , Animais , Anopheles/metabolismo , Feminino , Proteínas de Insetos/metabolismo , Malária/metabolismo , Malária/parasitologia , Melaninas/metabolismo , Serina Proteases/metabolismo
7.
Vet Res ; 51(1): 125, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32988413

RESUMO

The aim of this study was to investigate the biological characteristics and functions of a Trichinella spiralis serine proteinase (TsSerp) during larval invasion and development in the host. The full-length TsSerp cDNA sequence was cloned and expressed in Escherichia coli BL21. The results of RT-PCR, IFA and western blotting analyses showed that TsSerp was a secretory protein that was highly expressed at the T. spiralis intestinal infective larva and muscle larva stages and primarily located at the cuticle, stichosome and intrauterine embryos of the parasite. rTsSerp promoted the larval invasion of intestinal epithelial cells (IECs) and the enteric mucosa, whereas an anti-rTsSerp antibody impeded larval invasion; the promotion and obstruction roles were dose-dependently related to rTsSerp and the anti-rTsSerp antibodies, respectively. Vaccination of mice with rTsSerp elicited a remarkable humoral immune response (high levels of serum IgG, IgG1/IgG2a, IgE and IgM), and it also triggered both systemic (spleen) and local intestinal mucosal mesenteric lymph node (MLN) cellular immune responses, as demonstrated by a significant elevation in Th1 cytokines (IFN-γ) and Th2 cytokines (IL-4) after the spleen and MLN cells from vaccinated mice were stimulated with rTsSerp. Anti-TsSerp antibodies participated in the killing and destruction of newborn larvae via ADCC. The mice vaccinated with rTsSerp exhibited a 48.7% reduction in intestinal adult worms and a 52.5% reduction in muscle larvae. These results indicated that TsSerp participates in T. spiralis invasion and development in the host and might be considered a potential candidate target antigen to develop oral polyvalent preventive vaccines against Trichinella infection.


Assuntos
Proteínas de Helminto/genética , Imunidade Celular , Imunidade Humoral , Serina Proteases/genética , Trichinella spiralis/genética , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Helminto/química , Proteínas de Helminto/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Alinhamento de Sequência/veterinária , Serina Proteases/química , Serina Proteases/imunologia , Trichinella spiralis/enzimologia
8.
Fish Shellfish Immunol ; 105: 186-194, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32615165

RESUMO

A novel serine protease contains two ShK-domain was found from the Chinese mitten crab Eriocheir sinensis (EsShK-SP). The full-length EsShK-SP cDNA is 1927 bp and contains a 1260-bp open reading frame encoding a protein of 420 amino acids, including a signal peptide, two ShK domain, and Tryp-SPC domain. Quantitative real-time PCR showed that EsShK-SP was expressed mainly in the hemocytes, gills, intestine, and nerve, but weakly in heart, muscle, and hepatopancreas. After infected with Spiroplasma eriocheiris, the expression of EsShK-SP was significantly up-regulated from 1 d to 9 d. The Tryp-SPC domain was ligated with pGEX-4T-1 vector and prokaryotic expressed to obtain recombinant protein rSPC. When rSPC and S. eriocheiris stimulated the hemocytes of E. sinensis, the PO activity was significantly up-regulated. The subcellular localization revealed that recombinant EsShK-SP was mainly located in the cytoplasm of Drosophila S2 cells. Both absolute real-time PCR and confocal laser scanning microscope results showed that over-expression of EsShK-SP in S2 cells could decrease the copy number of S. eriocheiris. Meanwhile, the over-expression of EsShK-SP also increased the PO activity and cell viability of S2 cells. After EsShK-SP RNA interference using dsRNA, the expression levels of proPO and activity of PO decreased significantly from 48 h to 96 h. The knockdown of EsShK-SP by RNAi resulted in the copy number of S. eriocheiris in the EsShK-SP silenced group was significantly increased compared to the control groups during S. eriocheiris infection. Meanwhile, the survival rate of crabs decreased in the EsShK-SP-dsRNA group. The above results indicated that EsShK-SP plays an important immune role during E. sinensis against S. eriocheiris through regulation of the proPO system.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Monofenol Mono-Oxigenase/metabolismo , Serina Proteases/genética , Serina Proteases/imunologia , Spiroplasma/fisiologia , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Braquiúros/enzimologia , Perfilação da Expressão Gênica , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Serina Proteases/química
9.
Immunogenetics ; 71(3): 223-232, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30225612

RESUMO

The lifespan of T cells is determined by continuous interactions of their T cell receptors (TCR) with self-peptide-MHC (self-pMHC) complexes presented by different subsets of antigen-presenting cells (APC). In the thymus, developing thymocytes are positively selected through recognition of self-pMHC presented by cortical thymic epithelial cells (cTEC). They are subsequently negatively selected by medullary thymic epithelial cells (mTEC) or thymic dendritic cells (DC) presenting self-pMHC complexes. In the periphery, the homeostasis of mature T cells is likewise controlled by the interaction of their TCR with self-pMHC complexes presented by lymph node stromal cells while they may be tolerized by DC presenting tissue-derived self-antigens. To perform these tasks, the different subsets of APC are equipped with distinct combination of antigen processing enzymes and consequently present specific repertoire of self-peptides. Here, we discuss one such antigen processing enzyme, the thymus-specific serine protease (TSSP), which is predominantly expressed by thymic stromal cells. In thymic DC and TEC, TSSP edits the repertoire of peptide presented by class II molecules and thus shapes the CD4 T cell repertoire.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Epiteliais/imunologia , Serina Proteases/imunologia , Timo/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Células Epiteliais/metabolismo , Humanos , Serina Proteases/metabolismo , Timo/enzimologia
10.
Biochem Biophys Res Commun ; 513(3): 675-680, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30982580

RESUMO

Streptococcus pneumoniae is a pathogenic bacterium that can cause severe invasive diseases, such as pneumonia, otitis media and meningitis. The pro-inflammatory cytokine, IL-1ß, has been reported to play important role in host defense against S. pneumoniae. The mechanism of IL-1ß maturation and secretion in macrophages has been well studied. However, the precise mechanism of IL-1ß processing within neutrophils upon S. pneumoniae infection remains unclear. In this study, mouse peritoneal neutrophils from C57BL/6 WT and inflammasome components knockout mice were infected by S. pneumoniae in vitro. The results showed that NLRP3 inflammasome is critically involved in neutrophil IL-1ß secretion, while the AIM2 and NLRC4 inflammasomes were dispensable. Moreover, the upstream kinase, JNK, modulates ASC oligomerization and consequent caspase-1 activation and IL-1ß secretion. Additionally, neutrophil serine proteases also participate in IL-1ß secretion by mediating ASC oligomerization and caspase-1 activation. Taken together, these findings indicated that both the NLRP3 inflammasome-related pathway and neutrophil serine protease mediate IL-1ß processing upon S. pneumoniae infection.


Assuntos
Caspase 1/imunologia , Interleucina-1beta/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Infecções Pneumocócicas/imunologia , Serina Proteases/imunologia , Streptococcus pneumoniae/imunologia , Animais , Proteínas Adaptadoras de Sinalização CARD/imunologia , Células Cultivadas , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/virologia , Infecções Pneumocócicas/virologia
11.
Immunity ; 32(1): 41-53, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20152169

RESUMO

Serine protease cascades are involved in blood coagulation and immunity. In arthropods, they regulate melanization, which plays an important role in immune defense and wound healing. However, the mechanisms underlying melanization pathways are not completely characterized. We found that in the mosquito Aedes aegypti, there are two distinct melanization activation pathways carried out by different modules of serine proteases and their specific inhibitors serpins. Immune melanization proteases (IMP-1 and IMP-2) and Serpin-1 mediate hemolymph prophenoloxidase cleavage and immune response against the malaria parasite. Tissue melanization, exemplified by the formation of melanotic tumors, is controlled by tissue melanization protease (CLIPB8), IMP-1, and Serpin-2. In addition, serine proteases CLIPB5 and CLIPB29 are involved in activation of Toll pathway by fungal infection or by infection-independent manner, respectively. Serpin-2 is implicated in the latter activation of Toll pathway. This study revealed the complexity underlying melanization and Toll pathway in mosquitoes.


Assuntos
Aedes/imunologia , Imunidade Inata/imunologia , Melaninas/imunologia , Serina Proteases/imunologia , Receptores Toll-Like/imunologia , Aedes/metabolismo , Animais , Immunoblotting , Melaninas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina Proteases/metabolismo , Serpinas , Receptores Toll-Like/metabolismo , Técnicas do Sistema de Duplo-Híbrido
12.
Fish Shellfish Immunol ; 89: 98-107, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30851452

RESUMO

Clip domain serine proteases (cSPs), a family of multifunctional proteins, play a crucial role in innate immune system. Here, we report the functional characterization of two clip domain serine proteases (PtcSP1 and PtcSP3) from the swimming crab Portunus trituberculatus. The recombinant N-terminal clip domains and the C-terminal SP-like domains of PtcSP1 and PtcSP3 were expressed in Escherichia coli system, and assayed for various biological functions: protease activity, antimicrobial activity, bacterial clearance and microbial-binding activity. The recombinant SP-like domains of PtcSP1 and PtcSP3 exhibited trypsin-like protease activity, while their recombinant clip domains showed strong antibacterial activity and could bind to bacteria and yeast, suggesting the potential roles of PtcSP1 and PtcSP3 in immune defense and pattern recognition. Unlike PtcSP3, PtcSP1 revealed the opsonic activity as shown by a higher bacterial clearance rate of Vibrio alginolyticus coated with the combination of the recombinant clip domain and SP-like domain of PtcSP1 as compared with V. alginolyticus only. Knockdown of PtcSP1 or PtcSP3 by RNA interference resulted in a significant decrease of total phenoloxidase (PO) activity in crab, suggesting that PtcSP1 and PtcSP3 are involved in the proPO system. In addition, suppression of PtcSP1 or PtcSP3 changed the expression of PtALFs and complement-like components. All these findings suggest that PtcSP1 and PtcSP3 are multifunctional immune molecules and perform different protective functions in crab defense.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Serina Proteases/genética , Serina Proteases/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Perfilação da Expressão Gênica , Filogenia , Alinhamento de Sequência , Serina Proteases/química , Vibrio alginolyticus
13.
Fish Shellfish Immunol ; 84: 322-332, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30300737

RESUMO

Serine proteases (SPs) are important in various immune responses, including prophenoloxidase (proPO) activation, antimicrobial peptides (AMPs) synthesis, and hemolymph coagulation in invertebrates. In this study, SP3 and SP5 of mud crab (Scylla paramamosain) were studied. SP3 and SP5 were expressed in all examined tissues (mainly in hemocytes), and are associated with the immune responses of mud crab to Vibrio parahemolyticus and Staphylococcus aureus, as well as interacted with TRAF6, and are involved in the activation of anti-lipopolysaccharide factors (ALFs) probably through the TLR/NF-κB pathway. Depletion of SP3 inhibited the expression of ALF1, ALF2, ALF3, and ALF6, while knockdown of SP5 significantly decreased ALF5, and ALF6. Furthermore, both SP5 and TRAF6 regulated the PO activity in the hemolymph of mud crab. Overexpression assay showed that both SP3 and SP5 could enhance the promoter activities of ALFs in mud crab. Taken together, the results of this study indicate that SP3 and SP5 might play important roles in the immune system of mud crab against pathogen invasion.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Penaeidae/genética , Penaeidae/imunologia , Serina Proteases/genética , Serina Proteases/imunologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Perfilação da Expressão Gênica , Filogenia , Alinhamento de Sequência , Serina Proteases/química , Staphylococcus aureus/fisiologia , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Vibrio parahaemolyticus/fisiologia
14.
Exp Parasitol ; 201: 1-10, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31004570

RESUMO

The aim of this study was to observe the intestinal mucosal/systemic responses triggered by intranasal vaccination using recombinant Trichinella spiralis serine protease (rTsSP) and its capacity to elicit immune protection against larva challenge in a murine model. rTsSP coupled with cholera toxin B subunit (CTB) was used to vaccinate mice via intranasal route. The results revealed that intranasal vaccination with rTsSP plus CTB elicited significantly intestinal local sIgA response and a TsSP-specific systemic antibody response in vaccinated mice. Furthermore, more goblet cells/acidic mucins and IgA-secreting cells were observed in jejunum from vaccinated mice. Anti-rTsSP immune serum strongly recognized the cuticle of various worm stages (muscle larva, intestinal infective larva and adult worm). The level of IFN-γ, IL-4 and IL-10 of rTsSP-vaccinated mice was significantly elevated relative to CTB and PBS control groups. The vaccinated mice exhibited a 71.10% adult reduction at 9 days pi and a 62.10% muscle larva reduction at 42 days pi following larva challenge. Additionally, vaccination with rTsSP also dampened intestinal T. spiralis development and decreased the female fecundity. Our results showed that intranasal vaccination using rTsSP adjuvanted with CTB triggered significantly local sIgA response and systemic concurrent Th1/Th2 response that induced an obvious protection against Trichinella infection.


Assuntos
Serina Proteases/imunologia , Trichinella spiralis/imunologia , Administração Intranasal , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/administração & dosagem , Antígenos de Helmintos/imunologia , Citocinas/análise , Duodeno/química , Duodeno/citologia , Ensaio de Imunoadsorção Enzimática , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Células Caliciformes/química , Soros Imunes/imunologia , Imunoglobulina A/sangue , Imunoglobulina A Secretora/análise , Imunoglobulina A Secretora/metabolismo , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Linfonodos/citologia , Linfonodos/imunologia , Masculino , Mesentério , Camundongos , Camundongos Endogâmicos BALB C , Mucinas/isolamento & purificação , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Serina Proteases/administração & dosagem , Organismos Livres de Patógenos Específicos , Baço/citologia , Baço/imunologia , Trichinella spiralis/enzimologia
15.
Allergy ; 73(3): 569-575, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28940472

RESUMO

BACKGROUND: Protease activity of Per a 10 favours Th2 responses by differential regulation of IL-12p70 and IL-23 cytokine subunits. This study aimed to elucidate the underlying mechanism of differential regulation of IL-12p70 and IL-23. METHODS: PAR-2 activation was blocked in murine model by administering SAM11 before each sensitization. CD11c+ p-STAT3+ cells were measured in lungs by flow cytometry. BMDCs were pretreated with SAM11 or isotype control or stattic and stimulated with Per a 10. p-STAT3 levels were measured using Western blot. Transcript levels of IL-12p35, IL-12/23p40 and IL-23p19 were measured using RT-PCR. Cytokine levels were analysed using ELISA. RESULTS: Protease activity of Per a 10 increased p-STAT3 levels in mouse lungs, which was reduced upon PAR-2 blockage. Percentage of p-STAT3+ CD11c+ cells was higher in Per a 10-administered mice and was reduced upon PAR-2 blockage. IL-12p35 and IL-12p70 levels were higher, and IL-23p19 and IL-23 levels were lower in both SAM11-treated mice and BMDCs indicating a role of PAR-2-mediated signalling. IL-4, TSLP, IL-17A, EPO activity, total cell count and specific IgE and IgG1 levels were lower in SAM11-administered mice. Inhibiting STAT3 activation via stattic also leads to lower levels of IL-23p19 and IL-23 and higher levels of IL-12p35. CONCLUSIONS: Per a 10 leads to PAR-2 activation on BMDCs resulting in downstream activation of STAT3 to regulate the balance between IL-12/IL-23 subunits causing a cytokine milieu rich in IL-23 to favour Th2 polarization.


Assuntos
Hipersensibilidade/imunologia , Serina Proteases/imunologia , Transdução de Sinais/imunologia , Células Th2/imunologia , Alérgenos/imunologia , Animais , Células da Medula Óssea/imunologia , Modelos Animais de Doenças , Camundongos , Periplaneta/imunologia , Receptor PAR-2/imunologia , Fator de Transcrição STAT3/imunologia
16.
Vet Res ; 49(1): 87, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30189894

RESUMO

Trichinellosis is a worldwide important food-borne zoonosis caused mainly by ingesting raw or undercooked pork infected with Trichinella spiralis larvae. The development of vaccine is needed for preventing swine from Trichinella infection to ensure pork safety. Previous studies showed that T. spiralis serine protease 1.2 (TsSP1.2) is a vaccine candidate against Trichinella infection. In this study, the complete TsSP1.2 cDNA sequences were cloned into pcDNA3.1, and the rTsSP1.2 DNA was transformed into attenuated Salmonella typhimurium strain ΔcyaSL1344. Oral vaccination of mice with Salmonella-delivered rTsSP1.2 DNA vaccine induced an obvious intestinal mucosal IgA response and a systemic Th1/Th2 immune response; the vaccinated mice showed a 33.45% reduction of intestinal adult worms and 71.84% reduction of muscle larvae after T. spiralis larval challenge. The protection might be due to the rTsSP1.2-induced production of specific anti-TsSP1.2 sIgA, IgG, IgG1/IgG2a, and secretion of IFN-γ, IL-4 and IL-10, which protected intestinal mucosa from the parasite invasion, inhibited worm development and reduced female fecundity. The results indicate that the attenuated Salmonella-delivered rTsSP1.2 DNA vaccine offers a prospective strategy for the prevention and control of animal Trichinella infection.


Assuntos
Proteínas de Helminto/imunologia , Imunidade nas Mucosas , Serina Proteases/imunologia , Trichinella spiralis/imunologia , Vacinas de DNA/administração & dosagem , Administração Oral , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Microrganismos Geneticamente Modificados/genética , Salmonella typhimurium/genética , Vacinação , Vacinas Atenuadas/administração & dosagem
17.
Vet Res ; 49(1): 59, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30001738

RESUMO

In our previous work, a Trichinella spiralis putative serine protease (TsSP) was identified from ES products of T. spiralis intestinal infective larvae (IIL) and adult worms (AW) by immunoproteomics: it was highly expressed in IIL compared with muscle larvae (ML). In this study, the TsSP biological characteristics in larval invasion and growth were identified and its potential as a vaccine target against Trichinella infection were investigated. Expression of TsSP at various developmental phases (newborn larvae, ML, IIL, and AW) was detected by qPCR, immunofluorescent test and Western blotting. The rTsSP could specifically bind to the intestinal epithelial cell (IEC) membrane and enter into the cytoplasm. Anti-rTsSP serum suppressed the larval invasion of enterocytes in a dose-dependent mode, and killed newborn and ML of T. spiralis, decreased larval infectivity and development in the host by an ADCC-mediated mechanism. Immunization of mice with rTsSP produced a Th2 predominant immune response, and resulted in a 52.70% reduction of adult worms at 5 days post-infection (dpi) and a 52.10% reduction of muscle larvae at 42 dpi. The results revealed there was an interaction between TsSP and the host's IEC; TsSP might be a pivotal protein for the invading, growing and parasiting of this nematode in the host. Vaccination of mice with rTsSP elicited immune protection, and TsSP is a potential target molecule for vaccines against enteral Trichinella infection.


Assuntos
Proteínas de Helminto/imunologia , Imunização/veterinária , Serina Proteases/imunologia , Trichinella spiralis/fisiologia , Triquinelose/veterinária , Animais , Feminino , Proteínas de Helminto/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Serina Proteases/genética , Trichinella spiralis/crescimento & desenvolvimento , Triquinelose/imunologia
18.
Fish Shellfish Immunol ; 72: 210-219, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29108972

RESUMO

Vibrio parahemolyticus (V. parahemolyticus) is a major pathogen for abalone, an important economical shellfish in coastal area of China. There is little known about the abalone innate immune system against pathogen infection. Clip-domain serine proteases (cSPs) are increasingly recognized to play important roles in host immune defense in invertebrates. In this study, we cloned a cSP (Hdh-cSP) from abalone (Haliotis discus hannai). We found out that Hdh-cSP was widely expressed in multiple tissues of abalone, with highest level in the immune-like organ, hepatopancreas. V. parahemolyticus infection induced significantly elevated expression of Hdh-cSP in addition to better-characterized innate immune component genes including Rel/NF-κB, allograft inflammatory factor (ALInFa), macrophage expressed protein (MEP) and caspase-8. Importantly, the silencing of Hdh-cSP reduced the expression of these genes, suggesting that Hdh-cSP was an upstream regulatory factor in V. parahemolyticus infection. Further analysis showed that apoptosis of hemocytes was inhibited when the transcription of Hdh-cSP was knocked down, suggesting that Hdh-cSP participated in cell apoptosis by regulation of caspase 8 expression in V. parahemolyticus infection. Therefore, our study established an important role of cSP in the innate immunity against V. parahemolyticus infection in abalone.


Assuntos
Gastrópodes/genética , Gastrópodes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Serina Proteases/genética , Serina Proteases/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Gastrópodes/química , Gastrópodes/enzimologia , Perfilação da Expressão Gênica , Filogenia , Alinhamento de Sequência , Serina Proteases/química , Vibrio
19.
Fish Shellfish Immunol ; 74: 332-340, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29305333

RESUMO

Clip-domain serine proteinase is an important serine proteinase family involved in many biological processes, which is only found in invertebrates. In the present study, the full-length cDNA of a clip domain serine proteinase (designed as EsCDSP) gene was cloned from Chinese mitten crab Eriocheir sinensis using rapid amplification of cDNA ends (RACE) technique. It was of 1488 bp with an open reading frame (ORF) of 1134 bp encoding a polypeptide of 377 amino acids. There were a signal peptide, a clip domain, and a Tryp_SPc domain in the deduced amino acid sequence of EsCDSP. Highly conserved cysteine residues were identified in the clip domain and Tryp_SPc domain. EsCDSP shared similarities of 40%-61% with CDSPs from Penaeus monodon (ACP19562.1), Scylla paramamosain (CCW43200.1), Drosophila melanogaster (NP_649734.2) and Delia antiqua (AAW57295.1). It was clustered with other CDSPs from crabs in the phylogenetic tree. EsCDSP transcript was highly expressed in hemocytes and it could response to the stimulations of Vibro anguillarum and Pichia pastoris. rEsCDSP could activate proPO system and significantly increase the PO activity of HLS. In addition, rEsCDSP could bond to Aeromonas hydrophila, Vibro anguillarum and Vibro alginolyticus, and reduced the mortality rate causing by pathogen infection. All the results suggested that EsCDSP was an important immune response participator involved in activation of the proPO system of crab.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Serina Proteases/genética , Serina Proteases/imunologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Filogenia , Pichia/fisiologia , Alinhamento de Sequência , Serina Proteases/química , Vibrio/fisiologia
20.
Fish Shellfish Immunol ; 79: 52-64, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29747010

RESUMO

The clip domain serine proteinases (clip-SPs) play vital roles in embryonic development and in various innate immune functions in invertebrates such as antimicrobial activity, cell adhesion, hemolymph clotting, pattern recognition and regulation of the prophenoloxidase system. However, little is known about the role of the clip domain serine proteinase in Scylla paramamosain (designated SpcSP) immunity. In the present study, we cloned a clip-SP from S. paramamosain hemocytes using rapid amplification of cDNA end (RACE) approach. The full-length cDNA of SpcSP was 1823 bp, containing a 5' untranslated region (UTR) of 334 bp, an open reading frame of 1122 bp, and a 3' UTR of 367 bp. The open reading frame encoded a polypeptide of 373 amino acids with a calculated molecular weight of 39.7 kDa and an isoelectric point of 6.64. Structurally, SpcSP has a predicted 21-residue signal peptide and possessed the characteristic features of the clip domain family of serine proteases, namely one clip domain in the amino-terminal with six highly conserved cysteine residues and one enzyme active serine proteinase domain in the carboxyl-terminal with a highly conserved catalytic triad (His156, Asp226, Ser321). Phylogenetic analysis showed that SpcSP was clustered together with PtcSP (clip domain serine proteinase from Portunus trituberculatus). Quantitative real-time PCR (qPCR) analysis showed that the mRNA of SpcSP was constitutively expressed at different levels in all tested tissues in untreated S. paramamosain, with hemocytes and skin expressing the most. The transcriptional level of SpcSP in hemocytes was significantly up-regulated upon challenge with V. parahaemolyticus and LPS, indicating its involvement in antibacterial immune response. Indirect immunofluorescence analysis showed that SpcSP was expressed in the cytoplasm of all three hemocyte cell types (hyaline, semigranular and granular cells). Further, recombinant SpcSP protein exhibited strong binding ability and has antimicrobial activity against both Gram-positive and Gram-negative bacteria as well as fungi. Moreover, knockdown of SpcSP resulted in increased hemolymph clotting time and decreased the mRNA expression of SpproPO mRNA in hemocytes. These findings therefore suggest that SpcSP plays an important role in the antimicrobial defense mechanism of S. paramamosain by regulating the expression of SpproPO and hemolymph clotting in S. paramamosain.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Catecol Oxidase/genética , Precursores Enzimáticos/genética , Regulação da Expressão Gênica/imunologia , Hemolinfa/fisiologia , Serina Proteases/genética , Serina Proteases/imunologia , Sequência de Aminoácidos , Animais , Anti-Infecciosos/metabolismo , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Coagulação Sanguínea , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Braquiúros/enzimologia , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Filogenia , Poli I-C/farmacologia , Interferência de RNA , Distribuição Aleatória , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Serina Proteases/química , Vibrio parahaemolyticus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA