Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.925
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 599(7884): 229-233, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759362

RESUMO

Inspired by living organisms, soft robots are developed from intrinsically compliant materials, enabling continuous motions that mimic animal and vegetal movement1. In soft robots, the canonical hinges and bolts are replaced by elastomers assembled into actuators programmed to change shape following the application of stimuli, for example pneumatic inflation2-5. The morphing information is typically directly embedded within the shape of these actuators, whose assembly is facilitated by recent advances in rapid prototyping techniques6-11. Yet, these manufacturing processes have limitations in scalability, design flexibility and robustness. Here we demonstrate a new all-in-one methodology for the fabrication and the programming of soft machines. Instead of relying on the assembly of individual parts, our approach harnesses interfacial flows in elastomers that progressively cure to robustly produce monolithic pneumatic actuators whose shape can easily be tailored to suit applications ranging from artificial muscles to grippers. We rationalize the fluid mechanics at play in the assembly of our actuators and model their subsequent morphing. We leverage this quantitative knowledge to program these soft machines and produce complex functionalities, for example sequential motion obtained from a monotonic stimulus. We expect that the flexibility, robustness and predictive nature of our methodology will accelerate the proliferation of soft robotics by enabling the assembly of complex actuators, for example long, tortuous or vascular structures, thereby paving the way towards new functionalities stemming from geometric and material nonlinearities.


Assuntos
Robótica/instrumentação , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Polivinil/síntese química , Polivinil/química , Elastômeros de Silicone/síntese química , Elastômeros de Silicone/química , Siloxanas/síntese química , Siloxanas/química
2.
J Am Chem Soc ; 146(18): 12645-12655, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38651821

RESUMO

The increased production of plastics is leading to the accumulation of plastic waste and depletion of limited fossil fuel resources. In this context, we report a strategy to create polymers that can undergo controlled depolymerization by linking renewable feedstocks with siloxane bonds. α,ω-Diesters and α,ω-diols containing siloxane bonds were synthesized from an alkenoic ester derived from castor oil and then polymerized with varied monomers, including related biobased monomers. In addition, cyclic monomers derived from this alkenoic ester and hydrosiloxanes were prepared and cyclized to form a 26-membered macrolactone containing a siloxane unit. Sequential ring-opening polymerization of this macrolactone and lactide afforded an ABA triblock copolymer. This set of polymers containing siloxanes underwent programmed depolymerization into monomers in protic solvents or with hexamethyldisiloxane and an acid catalyst. Monomers afforded by the depolymerization of polyesters containing siloxane linkages were repolymerized to demonstrate circularity in select polymers. Evaluation of the environmental stability of these polymers toward enzymatic degradation showed that they undergo enzymatic hydrolysis by a fungal cutinase from Fusarium solani. Evaluation of soil microbial metabolism of monomers selectively labeled with 13C revealed differential metabolism of the main chain and side chain organic groups by soil microbes.


Assuntos
Fusarium , Polimerização , Siloxanas , Siloxanas/química , Óleos de Plantas/química , Polímeros/química , Estrutura Molecular , Hidrolases de Éster Carboxílico
3.
Soft Matter ; 20(21): 4175-4183, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38506651

RESUMO

Emulsion droplets on the colloidal length scale are a model system of frictionless compliant spheres. Direct imaging studies of the microscopic structure and dynamics of emulsions offer valuable insights into fundamental processes, such as gelation, jamming, and self-assembly. A microscope, however, can only resolve the individual droplets in a densely packed emulsion if the droplets are closely index-matched to their fluid medium. Mitigating perturbations due to gravity additionally requires the droplets to be density-matched to the medium. Creating droplets that are simultaneously index-matched and density-matched has been a long-standing challenge for the soft-matter community. The present study introduces a method for synthesizing monodisperse micrometer-sized siloxane droplets whose density and refractive index can be precisely and independently tuned by adjusting the volume fraction of three silane precursors. A systematic optimization protocol yields fluorescently labeled ternary droplets whose densities and refractive indexes match, to the fourth decimal place, those of aqueous solutions of glycerol or dimethylsiloxane. Because all of the materials in this system are biocompatible, we functionalize the droplets with DNA strands to endow them with programmed inter-droplet interactions. Confocal microscopy then reveals both the three-dimensional structure and the network of droplet-droplet contacts in a class of self-assembled droplet gels, free from gravitational effects. This experimental toolbox creates opportunities for studying the microscopic mechanisms that govern viscoelastic properties and self-assembly in soft materials.


Assuntos
DNA , Emulsões , Emulsões/química , DNA/química , Refratometria , Siloxanas/química
4.
J Toxicol Environ Health B Crit Rev ; 27(3): 106-129, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38375664

RESUMO

Cyclic and linear siloxanes are compounds synthesized from silicon consisting of alternating atoms of silicone and oxygen [Si-O] units with organic side chains. The most common cyclic siloxanes are octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), while the most common linear siloxanes are high molecular weight polydimethylsiloxanes (PDMS) and low molecular weight volatile linear siloxanes known as hexamethyldisiloxane (L2), octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), dodecamethylpentasiloxane (L5). These compounds (1) exhibit low dermal toxicity, (2) are generally inert and non-reactive, and (3) are compatible with a wide range of chemicals offering beneficial chemical properties which include the following: wash-off or transfer resistance from the skin, sun protection factor (SPF) enhancement, emolliency in cleaning products). Because of these properties, these compounds are incorporated into multiple consumer products for use on the skin, such as cosmetics and health-care products, with over 300,000 tons annually sold into the personal care and consumer products sector. Because of their widespread use in consumer products and potential for human dermal exposure, a comprehensive understanding of the dermal absorption and overall fate of siloxanes following dermal exposure is important. This review summarizes available data associated with the dermal absorption/penetration as well as fate of the most commonly used siloxane substances.


Assuntos
Cosméticos , Siloxanas , Humanos , Siloxanas/toxicidade , Siloxanas/química , Pele , Silicones , Dimetilpolisiloxanos
5.
Environ Sci Technol ; 58(23): 10252-10261, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38811014

RESUMO

With octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) being considered for evaluation under the UN Stockholm Convention on Persistent Organic Pollutants, which specifically acknowledges risks of biomagnification of persistent organic pollutants in traditional foods, a study into the mechanism of the biomagnification process of D4 and D5 in Rainbow trout was conducted by combining the absorption-distribution-metabolism-excretion for bioaccumulation (ADME-B) approach to determine intestinal and somatic biotransformation rates and radiochemical analyses to identify metabolite formation. High rates of intestinal biotransformation of D4 and D5 (i.e., 2.1 (0.70 SE) and 0.88 (0.67 SE) day-1, respectively) and metabolite formation [i.e., 52.0 (17 SD)% of D4 and 56.5% (8.2 SD)% of D5 were metabolized] were observed that caused low dietary uptake efficiencies of D4 and D5 in fish of 15.5 (2.9 SE)% and 21.0 (6.5 SE)% and biomagnification factors of 0.44 (0.08 SE) for D4 and 0.78 (0.24 SE) kg-lipid·kg-lipid-1 for D5. Bioaccumulation profiles indicated little effect of growth dilution on the bioaccumulation of D4 and D5 in fish and were substantially different from those of PCB153. The study highlights the importance of intestinal biotransformation in negating biomagnification of substances in organisms and explains differences between laboratory tests and field observations of bioaccumulation of D4 and D5.


Assuntos
Biotransformação , Oncorhynchus mykiss , Siloxanas , Animais , Oncorhynchus mykiss/metabolismo , Siloxanas/metabolismo , Poluentes Químicos da Água/metabolismo , Bioacumulação , Dieta
6.
Environ Sci Technol ; 58(20): 8835-8845, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38722766

RESUMO

Volatile methyl siloxanes (VMS) are a group of organosilicon compounds of interest because of their potential health effects, their ability to form secondary organic aerosols, and their use as tracer compounds. VMS are emitted in the gas-phase from using consumer and personal care products, including deodorants, lotions, and hair conditioners. Because of this emission route, airborne concentrations are expected to increase with population density, although there are few studies in large urban centers. Here, we report summertime concentrations and daily variations of VMS congeners measured in New York City. Median concentrations of the 6 studied congeners, D3 (20 ng m-3), D4 (57 ng m-3), D5 (230 ng m-3), D6 (11 ng m-3), L5 (2.5 ng m-3), and L7 (1.3 ng m-3) are among the highest reported outdoor concentrations in the literature to date. Average congener ratios of D5:D4 and D5:D6 were consistent with previously reported emissions ratios, suggesting that concentrations were dominated by local emissions. Measured concentrations agree with previously published results from a Community Multiscale Air Quality model and support commonly accepted emissions rates for D4, D5, and D6 of 32.8, 135, and 6.1 mg per capita per day. Concentrations of D4, D5, D6, L5, and L7 and total VMS were significantly lower during the day than during the night, consistent with daytime oxidation reactivity. Concentrations of D3 did not show the same diurnal trend but exhibited a strong directional dependence, suggesting that it may be emitted by industrial point sources in the area rather than personal care product use. Concentrations of all congeners had large temporal variations but showed relatively weak relationships with wind speed, temperature, and mixing height.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Siloxanas , Cidade de Nova Iorque , Siloxanas/análise , Poluentes Atmosféricos/análise , Indústrias , Humanos , Volatilização , Estações do Ano , Cosméticos/análise , Compostos Orgânicos Voláteis/análise
7.
Macromol Rapid Commun ; 45(1): e2300058, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36913597

RESUMO

Up to now, researches on the mobility-stretchability of semiconducting polymers are extensively investigated, but little attention was  paid to their morphology and field-effect transistor characteristics under compressive strains, which is equally crucial in wearable electronic applications. In this work, a contact film transfer method is applied to evaluate the mobility-compressibility properties of conjugated polymers. A series of isoindigo-bithiophene conjugated polymers with symmetric carbosilane side chains (P(SiSi)), siloxane-terminated alkyl side chains (P(SiOSiO)), and combined asymmetric side chains (P(SiOSi)) are investigated. Accordingly, a compressed elastomer slab is used to transfer and compress the polymer films by releasing prestrain, and the morphology and mobility evolutions of these polymers are tracked. It is found that P(SiOSi) outperforms the other symmetric polymers including P(Si─Si) and P(SiO─SiO), having the ability to dissipate strain with its shortened lamellar spacing and orthogonal chain alignment. Notably, the mechanical durability of P(SiOSi) is also enhanced after consecutive compress-release cycles. In addition, the contact film transfer technique is demonstrated to be applicable to investigate the compressibility of different semiconducting polymers. These results demonstrate a comprehensive approach to understand the mobility-compressibility properties of semiconducting polymers under tensile and compressive strains.


Assuntos
Elastômeros , Polímeros , Polímeros/química , Siloxanas
8.
Ecotoxicol Environ Saf ; 269: 115817, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103470

RESUMO

Siloxanes, widely used in various consumer and industrial products, are emerging concerns of contaminants. Despite this, limited studies have been conducted on contamination and time trends on siloxanes in coastal environments. In the present study, four cyclic and 15 linear siloxanes were measured in sediments collected from an artificial saltwater lake in Korea during 2001-2016 to investigate contamination, time trends, and ecotoxicological concerns. Cyclic siloxanes were detected in all sediment samples, whereas linear siloxanes were not frequently detected. The highest siloxane concentrations were observed in creeks passing through various industrial complexes, indicating that industrial activities predominantly contributed to siloxane contamination in coastal environments. Decamethylcyclopentasiloxane (D5) and dodecylcyclohexasiloxane (D6) were predominant siloxanes in sediments over the last two decades. Siloxane concentrations significantly increased in creek sediments from 2008 to 2016, whereas those in inshore and offshore regions significantly decreased due to a strong dilution effect by the operation of tidal power plant. This suggests that consumption patterns and coastal development activities are crucial factors determining the contamination and time trends in the sedimentary siloxanes. The sedimentary concentrations of octamethylcyclotetrasiloxane (D4) and D5 exceeded several thresholds, raising the potentials for ecological risks to aquatic organisms.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Lagos , Siloxanas/análise , Indústrias , República da Coreia , Poluentes Químicos da Água/análise
9.
Luminescence ; 39(3): e4723, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516725

RESUMO

The investigation of thermoluminescence (TL) glow curves in liquid crystalline side chain N-phenyl-substituted phenyl polysiloxane hydroxamic acids (PHAs) has yielded significant insights. These polymers demonstrated TL behavior when exposed to ß-radiation between 0 and 220°C, indicating inherent luminescent properties when irradiated. Notably, a dose-dependent relationship was observed in reported derivatized polymers; this study elucidates the diverse TL characteristics exhibited by various liquid crystalline side chain N-phenyl-substituted phenyl PHAs when exposed to ß-radiation. Understanding these dose-dependent and dose-independent behaviors enhances the knowledge of their luminescent properties and potential applications in radiation detection.


Assuntos
Luminescência , Siloxanas , Dosimetria Termoluminescente
10.
Chem Pharm Bull (Tokyo) ; 72(5): 487-497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38777760

RESUMO

Herein, we report the functionalization of polyhedral oligosilsesquioxanes (POSS) and related siloxanes with arynes. Using o-triazenylarylboronic acids as aryne precursors and silica gel as the activator, the transformation of siloxane bearing various arynophilic moieties on the side chains was achieved with high yields without touching the siloxane core. This method was applied to the conjugation of POSS and pharmaceutical cores using an aryne derived from the synthetic intermediate of cabozantinib. Furthermore, orthogonal dual functionalization of POSS was realized by combining the aryne reaction with Huisgen cyclization.


Assuntos
Alcinos , Ácidos Borônicos , Siloxanas , Alcinos/química , Ácidos Borônicos/química , Ciclização , Estrutura Molecular , Compostos de Organossilício/química , Compostos de Organossilício/síntese química , Siloxanas/química , Triazinas/química
11.
Clin Oral Investig ; 28(4): 208, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467942

RESUMO

OBJECTIVES: The aim of this study was to compare the 2-year clinical performance of a bulk-fill composite resin and a nano-hybrid-filled composite resin in 6-12-year-old children in a split-mouth design. MATERIALS AND METHODS: This randomized, split-mouth, and double-blind study was conducted on 89 patients aged 6-12 years with caries on bilateral mandibular first molars. In a split-mouth design, restorations of mandibular permanent molars were completed with nano-hybrid organically modified ceramic (ORMOCER)-based bulk-fill composite resin Admira Fusion x-tra (Voco GmbH, Cuxhaven, Germany) and nano-hybrid composite Grandio (Voco, Cuxhaven, Germany). Futurabond U single dose (Voco, Cuxhaven, Germany) was used with selective enamel etching. The clinical success of the restorations was evaluated using USPHS and FDI criteria at 6, 12, and 24-month follow-up controls. RESULTS: In the 2-year follow-up, all restorations were clinically acceptable. Grandio was significantly worse than Admira Fusion x-tra in terms of surface luster and superficial change (p < 0.05). Surface staining and color match scores increased in Admira Fusion x-tra compared with Grandio significantly (p < 0.05). CONCLUSIONS: Although both materials showed acceptable clinical performance over 2 years, a significant difference was observed between the surface luster, surface staining, marginal adaptation, and staining of the nano-hybrid composite placed with the incremental technique and the bulk-fill ORMOCER-based composite resin. CLINICAL RELEVANCE: As an alternative to nano-hybrid composite resins, using bulk-fill restorative materials, which can be indicated in the proper case, may contribute to shortening treatment procedures and increasing patient and physician comfort, leading to clinical success.


Assuntos
Cárie Dentária , Restauração Dentária Permanente , Metacrilatos , Siloxanas , Criança , Humanos , Cerâmicas Modificadas Organicamente , Método Duplo-Cego , Restauração Dentária Permanente/métodos , Resinas Compostas/uso terapêutico , Materiais Dentários , Boca , Cárie Dentária/tratamento farmacológico
12.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928506

RESUMO

In the presented study, the effectiveness of a siloxane polyether (HOL7) coating on glass against microbiological colonization was assessed using microalgae as a key component of widespread aerial biofilms. The siloxane polyether was successfully synthesized by a hydrosilylation reaction in the presence of Karstedt's catalyst. The product structure was confirmed by NMR spectroscopy and GPC analysis. In addition, the thermal stability of HOL7 was studied by thermogravimetric measurement. Subsequently, the surfaces of glass plates were modified with the obtained organosilicon derivative. In the next step, a microalgal experiment was conducted. A mixture of four strains of algal taxa isolated from building materials was used for the experiment-Chlorodium saccharophilum PNK010, Klebsormidium flaccidum PNK013, Pseudostichococcus monallantoides PNK037, and Trebouxia aggregata PNK080. The choice of these algae followed from their wide occurrence in terrestrial environments. Application of an organofunctional siloxane compound on the glass reduced, more or less effectively, the photosynthetic activity of algal cells, depending on the concentration of the compound. Since the structure of the compound was not based on biocide-active agents, its effectiveness was associated with a reduction in water content in the cells.


Assuntos
Microalgas , Siloxanas , Siloxanas/química , Microalgas/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Éteres/química , Éteres/farmacologia , Vidro/química , Fotossíntese
13.
BMC Oral Health ; 24(1): 54, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195442

RESUMO

BACKGROUND: The effectiveness of newly developed elastomeric polymer hybrid siloxane (PVES), which combines the properties of polyethylene (PE) and polyvinyl siloxane (PVS) elastomers, has been a subject of interest in recent studies. This study aimed to assess the physical properties of hybrid PVES materials by analyzing existing data from recent studies on this topic. METHODS: A systematic literature search was conducted to retrieve peer-reviewed articles published up to February 5, 2023. The population, intervention, comparison, and pertinent outcomes were specified under the PICO framework. The primary data analysis was performed in Microsoft Excel, while statistical analysis used Meta-Essentials. RESULTS: Of the 1152 articles assessed, 14 met the inclusion criteria. The meta-analysis of the selected studies indicated that polyether (PE) and polyvinyl siloxane (PVS) were highly correlated (two-tailed p-values of 0.000 and 0.001, respectively) with the improved tensile strength of vinyl polyether siloxane (PVES) with a significantly positive effect size. Similarly, the hydrophilic characteristics of PVES were significantly improved compared to those of PE and PVS. PE was a significant contributor to the hydrophilic characteristics of PVES, with a two-tailed p-value of 0.000. The effect size was highly positive for hydrophilicity but showed high heterogeneity. It was also observed that the dimensional accuracy of PVES was comparable to those of PE and PVS, with no statistically significant differences among the three materials. CONCLUSIONS: PVES showed promising features, with improved tensile strength and hydrophilic characteristics compared to those of PE and PVS.


Assuntos
Polietileno , Siloxanas , Humanos , Elastômeros , Pais
14.
BMC Oral Health ; 24(1): 579, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762747

RESUMO

BACKGROUND: Vinyl polyether silicone (VPES) is a novel impression biomaterial made of a combination of vinyl polysiloxane (VPS) and polyether (PE). Thus, it is significant to assess its properties and behaviour under varied disinfectant test conditions. This study aimed to assess the dimensional stability of novel VPES impression material after immersion in standard disinfectants for different time intervals. METHODS: Elastomeric impression material used -medium body regular set (Monophase) [Exa'lence GC America]. A total of 84 Specimens were fabricated using stainless steel die and ring (ADA specification 19). These samples were distributed into a control group (n=12) and a test group (n=72). The test group was divided into 3 groups, based on the type of disinfectant used - Group-A- 2% Glutaraldehyde, Group-B- 0. 5% Sodium hypochlorite and Group-C- 2% Chlorhexidine each test group was further divided into 2 subgroups (n=12/subgroup) based on time intervals for which each sample was immersed in the disinfectants - subgroup-1- 10 mins and Subgroup 2- 30 mins. After the impression material was set, it was removed from the ring and then it was washed in water for 15 seconds. Control group measurements were made immediately on a stereomicroscope and other samples were immersed in the three disinfection solutions for 10 mins and 30 mins to check the dimensional stability by measuring the distance between the lines generated by the stainless steel die on the samples using a stereomicroscope at x40 magnification. RESULTS: The distance measured in the control group was 4397.2078 µm and 4396.1571 µm; for the test group Group-A- 2% Glutaraldehyde was 4396.4075 µm and 4394.5992 µm; Group-B- 0. 5% Sodium hypochlorite was 4394.5453 µm and 4389.4711 µm Group-C- 2% Chlorhexidine was 4395.2953 µm and 4387.1703 µm respectively for 10 mins and 30 mins. Percentage dimensional change was in the range of 0.02 - 0.25 for all the groups for 10 mins and 30 mins. CONCLUSIONS: 2 % Glutaraldehyde is the most suitable disinfectant for VPES elastomeric impression material in terms of dimensional stability and shows minimum dimensional changes as compared to that of 2% Chlorhexidine and 0.5% Sodium hypochlorite.


Assuntos
Materiais para Moldagem Odontológica , Glutaral , Teste de Materiais , Polivinil , Siloxanas , Materiais para Moldagem Odontológica/química , Polivinil/química , Siloxanas/química , Fatores de Tempo , Glutaral/química , Desinfetantes de Equipamento Odontológico/química , Hipoclorito de Sódio/química , Desinfetantes/química , Clorexidina/química , Propriedades de Superfície , Humanos
15.
Anal Chem ; 95(38): 14484-14493, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37713336

RESUMO

Intracellular Cu-induced regulated cell death, characterized by the aggregation of lipidizing mitochondrial enzymes, is called cuproptosis. Mitochondria play a vital role in the metabolic regulation of cell injury and stressful immune responses. The pH levels and sulfur dioxide (SO2) content in mitochondria have important indicative roles in the regulation of cuproptosis. However, fluorescent probes that simultaneously detect changes in pH and SO2 in mitochondria during cuprotosis have not been reported. To fill this blank, in this study, we dexterously used functional polysiloxane as a fluorescent platform to propose a molecular logic gate probe P0-pH-SO2 for detecting changes in intramitochondrial pH and SO2 content through a dual-channel mode. In addition, we defined a new function to reflect the cellular state of the elesclomol-induced cuproptosis process based on the input and output of the relevant logic relationship. This new fluorescent molecular logic gate probe P0-pH-SO2 can be rapidly activated by mitochondrial sulfites to induce green fluorescence, while the red fluorescence is quenched with the proton in the mitochondria. Overall, this study developed a novel logic-gated molecular probe that provided a versatile strategy for monitoring the role played by intramitochondrial sulfites and H+ in cuproptosis. This work will open the way to broaden the applications of molecular logic gates and fluorescent polysiloxanes.


Assuntos
Apoptose , Mitocôndrias , Siloxanas , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Sondas Moleculares , Prótons , Sulfitos , Cobre
16.
Anal Chem ; 95(15): 6303-6311, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37014207

RESUMO

Ferroptosis is an iron-dependent process that regulates cell death and is essential for maintaining normal cell and tissue survival. The explosion of reactive oxygen species characterizes ferroptosis in a significant way. Peroxynitrite (ONOO-) is one of the endogenous reactive oxygen species. Abnormal ONOO- concentrations cause damage to subcellular organelles and further interfere with organelle interactions. However, the proper conduct of organelle interactions is critical for cellular signaling and the maintenance of cellular homeostasis. Therefore, investigating the effect of ONOO- on organelle interactions during ferroptosis is a highly attractive topic. To date, it has been challenging to visualize the full range of ONOO- fluctuations in mitochondria and lysosomes during ferroptosis. In this paper, we constructed a switchable targeting polysiloxane platform. During the selective modification of NH2 groups located in the side chain, the polysiloxane platform successfully constructed fluorescent probes targeting lysosomes and mitochondria (Si-Lyso-ONOO, Si-Mito-ONOO), respectively. Real-time detection of ONOO- in lysosomes and mitochondria during ferroptosis was successfully achieved. Remarkably, the occurrence of autophagy during late ferroptosis and the interaction between mitochondria and lysosomes was observed via the differentiated responsive strategy. We expect that this switchable targeting polysiloxane functional platform will broaden the application of polymeric materials in bioimaging and provide a powerful tool for further deeper understanding of the ferroptosis process.


Assuntos
Ferroptose , Siloxanas , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Lisossomos/química , Corantes Fluorescentes/química , Ácido Peroxinitroso/análise
17.
Biomacromolecules ; 24(3): 1184-1193, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36808988

RESUMO

Polyurethane materials will come into contact with different solvents in daily life, and at the same time, they will be subject to different degrees of collision, wear and tear. Failure to take corresponding preventative or reparative measures will result in a waste of resources and an increase in costs. To this end, we prepared a novel polysiloxane with isobornyl acrylate and thiol groups as side groups, which was further used in the preparation of poly(thiourethane-urethane) materials. Thiourethane bonds generated by the click reaction of thiol groups with isocyanates endow poly(thiourethane-urethane) materials with the ability to heal and reprocess. Isobornyl acrylate with a large sterically hindered rigid ring promotes segment migration, accelerating the exchange of thiourethane bonds, which is beneficial to the recycling of materials. These results not only promote the development of terpene derivative-based polysiloxanes but also show the great potential of thiourethane as a dynamic covalent bond in the field of polymer reprocessing and healing.


Assuntos
Acrilatos , Siloxanas , Poliuretanos/química , Compostos de Sulfidrila
18.
Biomacromolecules ; 24(4): 1888-1900, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36988226

RESUMO

The design of tunable luminescent biomaterials with large Stokes shifts is usually pursued by a twisted intramolecular charge transfer (TICT) effect with switchable emission colors in response to various external stimuli. However, such a strategy is usually realized in conjugated molecules containing benzene or its derivatives and consequently suffers from poor biocompatibility. In this work, a hyperbranched polysiloxane (HBPSi)-based non-conjugated fluorescent polymer with TICT and aggregation-induced emission (AIE) features is developed, and its luminescent properties, fluorescence mechanism, and potential applications are investigated. Initially, the non-conjugated HBPSi exhibits remarkable AIE characteristics due to the formation of through-space conjugation. With the introduction of the sulfur atom, a non-conjugated D-A type AIE material, HBPSi-Cys, that exhibits a dual-state emission with a large Stokes shift of 213 nm, is obtained. The correlation of the lower-energy emission band with solvent polarity suggests the existence of the TICT state. TICT and AIE characteristics direct different properties of HBPSi-Cys, with TICT regulating solvatochromic emission wavelengths and AIE manipulating the emission intensity with a compensation effect. Density functional theory calculations reveal that the non-conjugated D-A structure in HBPSi-Cys was formed across the silicon bridge, with auxochromic sulfhydryl groups and adjacent amide groups as acceptor units and amine and hydroxyl groups as donor units. Additionally, the AIE-active HBPSi could be utilized as a fluorescent probe for the analysis of metal ions. After grafting the AS1411 aptamer to HBPSi-Cys as the recognition motif, HBPSi-Apt possesses excellent targeted bioimaging, drug loading, pH/GSH dual-responsive drug release, and visualized drug delivery performance. This work provides a new way to design functional AIE polymers with tunable optical properties, and the synthesized HBPSi-Cys shows great potential as a smart fluorescent biomaterial.


Assuntos
Polímeros , Silício , Polímeros/química , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos , Corantes Fluorescentes/química , Siloxanas
19.
J Org Chem ; 88(13): 8583-8599, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264546

RESUMO

The synthesis of a storage-stable organosilicon modifier with a dioxaborolane-protecting group is described. Its high reactivity and selective anti-Markovnikov addition in hydrosilylation reactions to afford siloxanes of various structures are shown. The possibility of deprotection of both the initial modifier and its siloxane derivatives under mild conditions using water in yields up to 96% is demonstrated. The existence of an equilibrium between the organosilicon derivatives of phenylboronic acids and their cyclic six-membered boroxines was confirmed by 1H NMR spectroscopy and X-ray diffraction analysis data. The use of siloxane derivatives of phenylboronic acids in Suzuki-Miyaura and Chan-Lam cross-coupling reactions was studied. All synthesized compounds were characterized by NMR (1H, 11B, 13C, and 29Si), IR spectroscopy, and high-resolution mass spectrometry.


Assuntos
Siloxanas , Água , Siloxanas/química , Espectroscopia de Ressonância Magnética , Água/química , Ácidos Borônicos/química
20.
Environ Sci Technol ; 57(48): 19999-20009, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37971371

RESUMO

Cyclic volatile methyl siloxanes (cVMS) are ubiquitous in hair care products (HCPs). cVMS emissions from HCPs are of concern, given the potential adverse impact of siloxanes on the environment and human health. To characterize cVMS emissions and exposures during the use of HCPs, realistic hair care experiments were conducted in a residential building. Siloxane-based HCPs were tested using common hair styling techniques, including straightening, curling, waving, and oiling. VOC concentrations were measured via proton-transfer-reaction time-of-flight mass spectrometry. HCP use drove rapid changes in the chemical composition of the indoor atmosphere. cVMS dominated VOC emissions from HCP use, and decamethylcyclopentasiloxane (D5) contributed the most to cVMS emissions. cVMS emission factors (EFs) during hair care routines ranged from 110-1500 mg/person and were influenced by HCP type, styling tools, operation temperatures, and hair length. The high temperature of styling tools and the high surface area of hair enhanced VOC emissions. Increasing the hair straightener temperature from room temperature to 210 °C increased cVMS EFs by 50-310%. Elevated indoor cVMS concentrations can result in substantial indoor-to-outdoor transport of cVMS via ventilation (0.4-6 tons D5/year in the U.S.); thus, hair care routines may augment the abundance of cVMS in the outdoor atmosphere.


Assuntos
Preparações para Cabelo , Compostos Orgânicos Voláteis , Humanos , Siloxanas/análise , Espectrometria de Massas , Atmosfera , Preparações para Cabelo/análise , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA