Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(29): e2409605121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985768

RESUMO

Members of the synaptophysin and synaptogyrin family are vesicle proteins with four transmembrane domains. In spite of their abundance in synaptic vesicle (SV) membranes, their role remains elusive and only mild defects at the cellular and organismal level are observed in mice lacking one or more family members. Here, we show that coexpression with synapsin in fibroblasts of each of the four brain-enriched members of this family-synaptophysin, synaptoporin, synaptogyrin 1, and synaptogyrin 3-is sufficient to generate clusters of small vesicles in the same size range of SVs. Moreover, mice lacking all these four proteins have larger SVs. We conclude that synaptophysin and synaptogyrin family proteins play an overlapping function in the biogenesis of SVs and in determining their small size.


Assuntos
Vesículas Sinápticas , Sinaptogirinas , Sinaptofisina , Animais , Sinaptofisina/metabolismo , Sinaptofisina/genética , Vesículas Sinápticas/metabolismo , Camundongos , Sinaptogirinas/metabolismo , Sinaptogirinas/genética , Sinapsinas/metabolismo , Sinapsinas/genética , Camundongos Knockout , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ratos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética
2.
PLoS Genet ; 19(11): e1011029, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011217

RESUMO

Mammalian evolution has been influenced by viruses for millions of years, leaving signatures of adaptive evolution within genes encoding for viral interacting proteins. Synaptogyrin-2 (SYNGR2) is a transmembrane protein implicated in promoting bacterial and viral infections. A genome-wide association study of pigs experimentally infected with porcine circovirus type 2b (PCV2b) uncovered a missense mutation (SYNGR2 p.Arg63Cys) associated with viral load. In this study, CRISPR/Cas9-mediated gene editing of the porcine kidney 15 (PK15, wtSYNGR2+p.63Arg) cell line generated clones homozygous for the favorable SYNGR2 p.63Cys allele (emSYNGR2+p.63Cys). Infection of edited clones resulted in decreased PCV2 replication compared to wildtype PK15 (P<0.05), with consistent effects across genetically distinct PCV2b and PCV2d isolates. Sequence analyses of wild and domestic pigs (n>700) revealed the favorable SYNGR2 p.63Cys allele is unique to domestic pigs and more predominant in European than Asian breeds. A haplotype defined by the SYNGR2 p.63Cys allele was likely derived from an ancestral haplotype nearly fixed within European (0.977) but absent from Asian wild boar. We hypothesize that the SYNGR2 p.63Cys allele arose post-domestication in ancestral European swine. Decreased genetic diversity in homozygotes for the SYNGR2 p.63Cys allele compared to SYNGR2 p.63Arg, corroborates a rapid increase in frequency of SYGNR2 p.63Cys via positive selection. Signatures of adaptive evolution across mammalian species were also identified within SYNGR2 intraluminal loop domains, coinciding with the location of SYNGR2 p.Arg63Cys. Therefore, SYNGR2 may reflect a novel component of the host-virus evolutionary arms race across mammals with SYNGR2 p.Arg63Cys representing a species-specific example of putative adaptive evolution.


Assuntos
Circovirus , Doenças dos Suínos , Suínos/genética , Animais , Circovirus/genética , Sinaptogirinas/genética , Estudo de Associação Genômica Ampla , Doenças dos Suínos/genética , Genótipo , Sus scrofa/genética
3.
BMC Bioinformatics ; 24(1): 192, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170221

RESUMO

BACKGROUND: Synaptogyrin-2 (SYNGR2), as a member of synaptogyrin gene family, is overexpressed in several types of cancer. However, the role of SYNGR2 in pan-cancer is largely unexplored. METHODS: From the TCGA and GEO databases, we obtained bulk transcriptomes, and clinical information. We examined the expression patterns, prognostic values, and diagnostic value of SYNGR2 in pan-cancer, and investigated the relationship of SYNGR2 expression with tumor mutation burden (TMB), microsatellite instability (MSI), immune infiltration, and immune checkpoint (ICP) genes. The gene set enrichment analysis (GSEA) software was used to perform pathway analysis. Besides, we built a nomogram of liver hepatocellular carcinoma patients (LIHC) and validated its prediction accuracy. RESULTS: SYNGR2 was highly expressed in most cancers. The high expression of SYNGR2 significantly reduced the overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI) in multiple types of cancer. Also, receiver operating characteristic (ROC) curve analysis demonstrated that SYNGR2 showed high accuracy in distinguishing cancerous tissues from normal ones. Moreover, SYNGR2 expression was correlated with TMB, MSI, immune scores, and immune cell infiltrations. We also analyzed the association of SYNGR2 with immunotherapy response in LIHC. Finally, a nomogram including SYNGR2 and pathologic T, N, M stage was built and exhibited good predictive power for the OS, DSS, and PFI of LIHC patients. CONCLUSION: Overall, SYNGR2 is a critical oncogene in various tumors. SYNGR2 participates in the carcinogenic progression, and may contribute to the immune infiltration in tumor microenvironment. Our study suggests that SYNGR2 can serve as a predictor related to prognosis in pan-cancer, especially LIHC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sinaptogirinas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Instabilidade de Microssatélites , Oncogenes , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
4.
J Neurosci ; 41(16): 3563-3578, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33664131

RESUMO

Synaptophysin (syp) is a major integral membrane protein of secretory vesicles. Previous work has demonstrated functions for syp in synaptic vesicle cycling, endocytosis, and synaptic plasticity, but the role of syp in the process of membrane fusion during Ca2+-triggered exocytosis remains poorly understood. Furthermore, although syp resides on both large dense-core and small synaptic vesicles, its role in dense-core vesicle function has received less attention compared with synaptic vesicle function. To explore the role of syp in membrane fusion and dense-core vesicle function, we used amperometry to measure catecholamine release from single vesicles in male and female mouse chromaffin cells with altered levels of syp and the related tetraspanner protein synaptogyrin (syg). Knocking out syp slightly reduced the frequency of vesicle fusion events below wild-type (WT) levels, but knocking out both syp and syg reduced the frequency 2-fold. Knocking out both proteins stabilized initial fusion pores, promoted fusion pore closure (kiss-and-run), and reduced late-stage fusion pore expansion. Introduction of a syp construct lacking its C-terminal dynamin-binding domain in syp knock-outs (KOs) increased the duration and fraction of kiss-and-run events, increased total catecholamine release per event, and reduced late-stage fusion pore expansion. These results demonstrated that syp and syg regulate dense-core vesicle function at multiple stages to initiate fusion, control the choice of mode between full-fusion and kiss-and-run, and influence the dynamics of both initial and late-stage fusion pores. The transmembrane domain (TMD) influences small initial fusion pores, and the C-terminal domain influences large late-stage fusion pores, possibly through an interaction with dynamin.SIGNIFICANCE STATEMENT The secretory vesicle protein synaptophysin (syp) is known to function in synaptic vesicle cycling, but its roles in dense-core vesicle functions, and in controlling membrane fusion during Ca2+-triggered exocytosis remain unclear. The present study used amperometry recording of catecholamine release from endocrine cells to assess the impact of syp and related proteins on membrane fusion. A detailed analysis of amperometric spikes arising from the exocytosis of single vesicles showed that these proteins influence fusion pores at multiple stages and control the choice between kiss-and-run and full-fusion. Experiments with a syp construct lacking its C terminus indicated that the transmembrane domain (TMD) influences the initial fusion pore, while the C-terminal domain influences later stages after fusion pore expansion.


Assuntos
Células Cromafins/fisiologia , Exocitose/fisiologia , Sinaptofisina/fisiologia , Animais , Animais Recém-Nascidos , Catecolaminas/metabolismo , Dinaminas/metabolismo , Dinaminas/fisiologia , Fenômenos Eletrofisiológicos , Exocitose/genética , Feminino , Fusão de Membrana , Camundongos , Camundongos Knockout , Gravidez , Cultura Primária de Células , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Sinaptogirinas/genética , Sinaptogirinas/fisiologia , Sinaptofisina/genética
5.
Hum Mol Genet ; 29(16): 2647-2661, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32686835

RESUMO

Amyotrophic lateral sclerosis (ALS) is an incurable neurological disease with progressive loss of motor neuron (MN) function in the brain and spinal cord. Mutations in TARDBP, encoding the RNA-binding protein TDP-43, are one cause of ALS, and TDP-43 mislocalization in MNs is a key pathological feature of >95% of ALS cases. While numerous studies support altered RNA regulation by TDP-43 as a major cause of disease, specific changes within MNs that trigger disease onset remain unclear. Here, we combined translating ribosome affinity purification (TRAP) with RNA sequencing to identify molecular changes in spinal MNs of TDP-43-driven ALS at motor symptom onset. By comparing the MN translatome of hTDP-43A315T mice to littermate controls and to mice expressing wild type hTDP-43, we identified hundreds of mRNAs that were selectively up- or downregulated in MNs. We validated the deregulated candidates Tex26, Syngr4, and Plekhb1 mRNAs in an independent TRAP experiment. Moreover, by quantitative immunostaining of spinal cord MNs, we found corresponding protein level changes for SYNGR4 and PLEKHB1. We also observed these changes in spinal MNs of an independent ALS mouse model caused by a different patient mutant allele of TDP-43, suggesting that they are general features of TDP-43-driven ALS. Thus, we identified SYNGR4 and PLEKHB1 to be deregulated in MNs at motor symptom onset in TDP-43-driven ALS models. This spatial and temporal pattern suggests that these proteins could be functionally important for driving the transition to the symptomatic phase of the disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Membrana/genética , Sinaptogirinas/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Biossíntese de Proteínas/genética , RNA-Seq , Medula Espinal/metabolismo , Medula Espinal/patologia
6.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35409005

RESUMO

Synaptogyrin-3 (SYNGR3) is a synaptic vesicular membrane protein. Amongst four homologues (SYNGR1 to 4), SYNGR1 and 3 are especially abundant in the brain. SYNGR3 interacts with the dopamine transporter (DAT) to facilitate dopamine (DA) uptake and synaptic DA turnover in dopaminergic transmission. Perturbed SYNGR3 expression is observed in Parkinson's disease (PD). The regulatory elements which affect SYNGR3 expression are unknown. Nuclear-receptor-related-1 protein (NURR1) can regulate dopaminergic neuronal differentiation and maintenance via binding to NGFI-B response elements (NBRE). We explored whether NURR1 can regulate SYNGR3 expression using an in silico analysis of the 5'-flanking region of the human SYNGR3 gene, reporter gene activity and an electrophoretic mobility shift assay (EMSA) of potential cis-acting sites. In silico analysis of two genomic DNA segments (1870 bp 5'-flanking region and 1870 + 159 bp of first exon) revealed one X Core Promoter Element 1 (XCPE1), two SP1, and three potential non-canonical NBRE response elements (ncNBRE) but no CAAT or TATA box. The longer segment exhibited gene promoter activity in luciferase reporter assays. Site-directed mutagenesis of XCPE1 decreased promoter activity in human neuroblastoma SH-SY5Y (↓43.2%) and human embryonic kidney HEK293 cells (↓39.7%). EMSA demonstrated NURR1 binding to these three ncNBRE. Site-directed mutagenesis of these ncNBRE reduced promoter activity by 11-17% in SH-SY5Y (neuronal) but not in HEK293 (non-neuronal) cells. C-DIM12 (Nurr1 activator) increased SYNGR3 protein expression in SH-SY5Y cells and its promoter activity using a real-time luciferase assay. As perturbed vesicular function is a feature of major neurodegenerative diseases, inducing SYNGR3 expression by NURR1 activators may be a potential therapeutic target to attenuate synaptic dysfunction in PD.


Assuntos
Vesículas Sinápticas , Fatores de Transcrição , Regulação da Expressão Gênica , Células HEK293 , Humanos , Luciferases/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptogirinas/genética , Sinaptogirinas/metabolismo , Fatores de Transcrição/metabolismo
7.
PLoS Genet ; 14(10): e1007750, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30379811

RESUMO

Porcine circovirus 2 (PCV2) is a circular single-stranded DNA virus responsible for a group of diseases collectively known as PCV2 Associated Diseases (PCVAD). Variation in the incidence and severity of PCVAD exists between pigs suggesting a host genetic component involved in pathogenesis. A large-scale genome-wide association study of experimentally infected pigs (n = 974), provided evidence of a host genetic role in PCV2 viremia, immune response and growth during challenge. Host genotype explained 64% of the phenotypic variation for overall viral load, with two major Quantitative Trait Loci (QTL) identified on chromosome 7 (SSC7) near the swine leukocyte antigen complex class II locus and on the proximal end of chromosome 12 (SSC12). The SNP having the strongest association, ALGA0110477 (SSC12), explained 9.3% of the genetic and 6.2% of the phenotypic variance for viral load. Dissection of the SSC12 QTL based on gene annotation, genomic and RNA-sequencing, suggested that a missense mutation in the SYNGR2 (SYNGR2 p.Arg63Cys) gene is potentially responsible for the variation in viremia. This polymorphism, located within a protein domain conserved across mammals, results in an amino acid variant SYNGR2 p.63Cys only observed in swine. PCV2 titer in PK15 cells decreased when the expression of SYNGR2 was silenced by specific-siRNA, indicating a role of SYNGR2 in viral replication. Additionally, a PK15 edited clone generated by CRISPR-Cas9, carrying a partial deletion of the second exon that harbors a key domain and the SYNGR2 p.Arg63Cys, was associated with a lower viral titer compared to wildtype PK15 cells (>24 hpi) and supernatant (>48hpi)(P < 0.05). Identification of a non-conservative substitution in this key domain of SYNGR2 suggests that the SYNGR2 p.Arg63Cys variant may underlie the observed genetic effect on viral load.


Assuntos
Circovirus/genética , Sinaptogirinas/genética , Sinaptogirinas/metabolismo , Animais , Circovirus/patogenicidade , Replicação do DNA , Estudo de Associação Genômica Ampla , Suínos/genética , Sinaptogirinas/fisiologia , Carga Viral/genética , Viremia/genética , Replicação Viral/genética
8.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747601

RESUMO

The cytolethal distending toxin B subunit (CdtB) induces significant cytotoxicity and inflammation in many cell types that are involved in the pathogenesis of postinfectious irritable bowel syndrome (PI-IBS). However, the underlying mechanisms remain unclear. This study tested the potential role of Rab small GTPase 5a (Rab5a) in the process. We tested mRNA and protein expression of proinflammatory cytokines (interleukin-1ß [IL-1ß] and IL-6) in THP-1 macrophages by quantitative PCR (qPCR) and enzyme-linked immunosorbent assays (ELISAs), respectively. In the primary colonic epithelial cells, Cdt treatment induced a CdtB-Rab5a-cellugyrin association. Rab5a silencing, by target small hairpin RNAs (shRNAs), largely inhibited CdtB-induced cytotoxicity and apoptosis in colon epithelial cells. CRISPR/Cas9-mediated Rab5a knockout also attenuated CdtB-induced colon epithelial cell death. Conversely, forced overexpression of Rab5a intensified CdtB-induced cytotoxicity. In THP-1 human macrophages, Rab5a shRNA or knockout significantly inhibited CdtB-induced mRNA expression and production of proinflammatory cytokines (IL-1ß and IL-6). Rab5a depletion inhibited activation of nuclear factor-κB (NF-κB) and Jun N-terminal protein kinase (JNK) signaling in CdtB-treated THP-1 macrophages. Rab5a appears essential for CdtB-induced cytotoxicity in colonic epithelial cells and proinflammatory responses in THP-1 macrophages.


Assuntos
Toxinas Bacterianas/toxicidade , Morte Celular/efeitos dos fármacos , Inflamação/imunologia , Proteínas rab5 de Ligação ao GTP/imunologia , Apoptose/efeitos dos fármacos , Toxinas Bacterianas/metabolismo , Células Cultivadas , Citocinas/imunologia , Células Epiteliais , Inativação Gênica , Humanos , Inflamação/patologia , Macrófagos , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sinaptogirinas/metabolismo , Células THP-1 , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
9.
J Biol Chem ; 291(31): 16138-49, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27226560

RESUMO

Synaptogyrin-2 is a non-neuronal member of the synaptogyrin family involved in synaptic vesicle biogenesis and trafficking. Little is known about the function of synaptogyrin-2. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease characterized by high fever, thrombocytopenia, and leukocytopenia with high mortality, caused by a novel tick-borne phlebovirus in the family Bunyaviridae. Our previous studies have shown that the viral nonstructural protein NSs forms inclusion bodies (IBs) that are involved in viral immune evasion, as well as viral RNA replication. In this study, we sought to elucidate the mechanism by which NSs formed the IBs, a lipid droplet-based structure confirmed by NSs co-localization with perilipin A and adipose differentiation-related protein (ADRP). Through a high throughput screening, we identified synaptogyrin-2 to be highly up-regulated in response to SFTS bunyavirus (SFTSV) infection and to be a promoter of viral replication. We demonstrated that synaptogyrin-2 interacted with NSs and was translocated into the IBs, which were reconstructed from lipid droplets into large structures in infection. Viral RNA replication decreased, and infectious virus titers were lowered significantly when synaptogyrin-2 was silenced in specific shRNA-expressing cells, which correlated with the reduced number of the large IBs restructured from regular lipid droplets. We hypothesize that synaptogyrin-2 is essential to promoting the formation of the IBs to become virus factories for viral RNA replication through its interaction with NSs. These findings unveil the function of synaptogyrin-2 as an enhancer in viral infection.


Assuntos
Infecções por Bunyaviridae/metabolismo , Phlebovirus/fisiologia , Sinaptogirinas/metabolismo , Doenças Transmitidas por Carrapatos/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Animais , Infecções por Bunyaviridae/genética , Chlorocebus aethiops , Células HeLa , Humanos , Corpos de Inclusão Viral/genética , Corpos de Inclusão Viral/metabolismo , Corpos de Inclusão Viral/virologia , RNA Viral/biossíntese , RNA Viral/genética , Sinaptogirinas/genética , Doenças Transmitidas por Carrapatos/genética , Células Vero , Proteínas não Estruturais Virais/genética
10.
J Cell Sci ; 128(14): 2423-9, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26071524

RESUMO

Insulin-stimulated delivery of glucose transporters (GLUT4, also known as SLC2A4) from specialized intracellular GLUT4 storage vesicles (GSVs) to the surface of fat and muscle cells is central to whole-body glucose regulation. This translocation and subsequent internalization of GLUT4 back into intracellular stores transits through numerous small membrane-bound compartments (internal GLUT4-containing vesicles; IGVs) including GSVs, but the function of these different compartments is not clear. Cellugyrin (also known as synaptogyrin-2) and sortilin define distinct populations of IGV; sortilin-positive IGVs represent GSVs, but the function of cellugyrin-containing IGVs is unknown. Here, we demonstrate a role for cellugyrin in intracellular sequestration of GLUT4 in HeLa cells and have used a proximity ligation assay to follow changes in pairwise associations between cellugyrin, sortilin, GLUT4 and membrane trafficking machinery following insulin-stimulation of 3T3-L1 adipoctyes. Our data suggest that insulin stimulates traffic from cellugyrin-containing to sortilin-containing membranes, and that cellugyrin-containing IGVs provide an insulin-sensitive reservoir to replenish GSVs following insulin-stimulated exocytosis of GLUT4. Furthermore, our data support the existence of a pathway from cellugyrin-containing membranes to the surface of 3T3-L1 adipocytes that bypasses GSVs under basal conditions, and that insulin diverts traffic away from this into GSVs.


Assuntos
Membrana Celular/metabolismo , Exocitose/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Vesículas Secretórias/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Membrana Celular/genética , Exocitose/genética , Transportador de Glucose Tipo 4/genética , Camundongos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Vesículas Secretórias/genética , Sinaptogirinas/genética , Sinaptogirinas/metabolismo
11.
Synapse ; 71(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28407359

RESUMO

The therapeutic use of statins has been associated to a reduced risk of Parkinson's disease (PD) and may hold neuroprotective potential by counteracting the degeneration of dopaminergic neurons. Transcriptional activation of the sterol regulatory element-binding protein (SREBP) is one of the major downstream signaling pathways triggered by the cholesterol-lowering effect of statins. In a previous study in neuroblastoma cells, we have shown that statins consistently induce the upregulation of presynaptic dopaminergic proteins and changes of their function and these effects were accompanied by downstream activation of SREBP. In this study, we aimed to determine the direct role of SREBP pathway in the modulation of dopaminergic phenotype. We demonstrate that treatment of SH-SY5Y cells with U18666A, an SREBP activator, increases the translocation of SREBPs into the nucleus, increases the expression of SREBP-1, SREBP-2, and of the presynaptic dopaminergic markers such as vesicular monoamine transporter 2, synaptic vesicle glycoprotein 2 A and 2 C, synaptogyrin-3, and tyrosine hydroxylase. The addition of SREBP inhibitor, PF-429242, blocks the increase of U18666A-induced expression of SREBPs and presynaptic markers. Our results, in line with previously reported effects of statins, demonstrate that direct stimulation of SREBP translocation is associated to differentiation toward a dopaminergic-like phenotype and suggest that SREBP-mediated transcriptional activity may lead to the restoration of the presynaptic dopamine markers and may contribute to neuroprotection of dopaminergic neurons. These findings further support the potential protective role of statin in PD and shed light upon SREBP as a potential new target for developing disease-modifying treatment in PD.


Assuntos
Androstenos/farmacologia , Dopaminérgicos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Anticolesterolemiantes/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/fisiologia , Expressão Gênica/efeitos dos fármacos , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/fisiologia , Pirrolidinas/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Elemento Regulador de Esterol/antagonistas & inibidores , Sinaptogirinas/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
12.
Synapse ; 70(3): 71-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26695835

RESUMO

The identification of an effective disease-modifying treatment for the neurodegenerative progression in Parkinson's disease (PD) remains a major challenge. Epidemiological studies have reported that intake of statins, cholesterol lowering drugs, could be associated to a reduced risk of developing PD. In-vivo studies suggest that statins may reduce the severity of dopaminergic neurodegeneration. The trophic potential of statins and their impact on the expression of dopaminergic synaptic markers and dopamine (DA) transport function in SH-SY5Y cells has been investigated. The findings showed that statin treatment induces neurite outgrowth involving a specific effect on the complexity of the neurite branching pattern. Statins increased the levels of presynaptic dopaminergic biomarkers such as vesicular monoamine transporter 2 (VMAT2), synaptic vesicle glycoproteins 2A and 2C (SV2C), and synaptogyrin-3 (SYNGR3). Gene expression analysis confirmed a rapid statin-induced up-regulation of VMAT2-, SV2C-, and SYNGR3-mRNA levels. Assessment of [(3) H]DA transport in statin-treated cells showed a reduction in DA uptake concomitant to a modification of VMAT2 pharmacological properties. It was also observed that a nuclear translocation of the sterol regulatory element-binding protein 1 (SREBP-1). The results suggested that statins induced phenotypic changes in dopaminergic cells characterized by an increase of growth, complexity of structural synaptic elements, and expression of key presynaptic proteins with functional impact on the DA transport capacity. Statin-induced changes are likely the result of a downstream modulation of SREBP-1 pathway. Overall, these mechanisms may contribute to the neuroprotective or neurorestorative effects observed in the dopaminergic system and strengthen the therapeutic potential of statins for PD.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Inibidores da Captação Adrenérgica/farmacologia , Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Relação Dose-Resposta a Droga , Humanos , Lovastatina/farmacologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , RNA Mensageiro/metabolismo , Reserpina/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Sinaptogirinas/metabolismo , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
13.
Biochem J ; 471(1): 89-99, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26221025

RESUMO

RNAi acts as a host immune response against non-self molecules, including viruses. Viruses evolved to neutralize this response by expressing suppressor proteins. In the present study, we investigated dengue virus non structural protein 3 (dvNS3), for its RNAi-suppressor activity in human cell lines. Dengue virus (DV) NS3 reverts the GFP expression in GFP-silenced cell lines. Pull-down assays of dvNS3 revealed that it interacts with the host factor human heat shock cognate 70 (hHSC70). Down-regulation of hHSC70 resulted in accumulation of dengue viral genomic RNA. Also, the interaction of dvNS3 with hHSC70 perturbs the formation of RISC (RNA-induced silencing complex)-loading complex (RLC), by displacing TRBP (TAR RNA-binding protein) and possibly impairing the downstream activity of miRNAs. Interestingly, some of these miRNAs have earlier been reported to be down-regulated upon DV infection in Huh7 cells. Further studies on the miRNA-mRNA relationship along with mRNA profiling of samples overexpressing dvNS3 revealed up-regulation of TAZ (tafazzin) and SYNGR1 (synaptogyrin 1), known dengue viral host factors (DVHFs). Importantly, overexpression of dvNS3 in human embryonic kidney (HEK) 293T cells resulted in modulation of both mature and precursor miRNAs in human cell lines. Subsequent analysis suggested that dvNS3 induced stage-specific down-regulation of miRNAs. Taken together, these results suggest that dvNS3 affects biogenesis and function of host miRNAs to regulate DVHFs for favouring DV replication.


Assuntos
Vírus da Dengue/metabolismo , Dengue/metabolismo , MicroRNAs/metabolismo , Interferência de RNA , Serina Endopeptidases/metabolismo , Aciltransferases , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Dengue/genética , Dengue/patologia , Vírus da Dengue/genética , Células HEK293 , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , MicroRNAs/genética , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo , Serina Endopeptidases/genética , Sinaptogirinas/biossíntese , Sinaptogirinas/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
14.
J Clin Invest ; 134(4)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175724

RESUMO

The mechanisms behind a lack of efficient fear extinction in some individuals are unclear. Here, by employing a principal components analysis-based approach, we differentiated the mice into extinction-resistant and susceptible groups. We determined that elevated synapsin 2a (Syn2a) in the infralimbic cortex (IL) to basolateral amygdala (BLA) circuit disrupted presynaptic orchestration, leading to an excitatory/inhibitory imbalance in the BLA region and causing extinction resistance. Overexpression or silencing of Syn2a levels in IL neurons replicated or alleviated behavioral, electrophysiological, and biochemical phenotypes in resistant mice. We further identified that the proline-rich domain H in the C-terminus of Syn2a was indispensable for the interaction with synaptogyrin-3 (Syngr3) and demonstrated that disrupting this interaction restored extinction impairments. Molecular docking revealed that ritonavir, an FDA-approved HIV drug, could disrupt Syn2a-Syngr3 binding and rescue fear extinction behavior in Syn2a-elevated mice. In summary, the aberrant elevation of Syn2a expression and its interaction with Syngr3 at the presynaptic site were crucial in fear extinction resistance, suggesting a potential therapeutic avenue for related disorders.


Assuntos
Medo , Córtex Pré-Frontal , Animais , Camundongos , Extinção Psicológica/fisiologia , Medo/fisiologia , Simulação de Acoplamento Molecular , Córtex Pré-Frontal/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Sinaptogirinas/metabolismo
15.
Front Cell Infect Microbiol ; 14: 1334224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698905

RESUMO

Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is capable of intoxicating lymphocytes macrophages, mast cells and epithelial cells. Following Cdt binding to cholesterol, in the region of membrane lipid rafts, the CdtB and CdtC subunits are internalized and traffic to intracellular compartments. These events are dependent upon, cellugyrin, a critical component of synaptic like microvesicles (SLMVCg+). Target cells, such as Jurkat cells, rendered unable to express cellugyrin are resistant to Cdt-induced toxicity. Similar to Cdt, SARS-CoV-2 entry into host cells is initiated by binding to cell surface receptors, ACE-2, also associated with cholesterol-rich lipid rafts; this association leads to fusion and/or endocytosis of viral and host cell membranes and intracellular trafficking. The similarity in internalization pathways for both Cdt and SARS-CoV-2 led us to consider the possibility that cellugyrin was a critical component in both processes. Cellugyrin deficient Calu-3 cells (Calu-3Cg-) were prepared using Lentiviral particles containing shRNA; these cells were resistant to infection by VSV/SARS-CoV-2-spike pseudotype virus and partially resistant to VSV/VSV-G pseudotype virus. Synthetic peptides representing various regions of the cellugyrin protein were prepared and assessed for their ability to bind to Cdt subunits using surface plasmon resonance. Cdt was capable of binding to a region designated the middle outer loop (MOL) which corresponds to a region extending into the cytoplasmic surface of the SLMVCg+. SARS-CoV-2 spike proteins were assessed for their ability to bind to cellugyrin peptides; SARS-CoV-2 full length spike protein preferentially binds to a region within the SLMVCg+ lumen, designated intraluminal loop 1A. SARS-CoV-2-spike protein domain S1, which contains the receptor binding domains, binds to cellugyrin N-terminus which extends out from the cytoplasmic surface of SLMV. Binding specificity was further analyzed using cellugyrin scrambled peptide mutants. We propose that SLMVCg+ represent a component of a common pathway that facilitates pathogen and/or pathogen-derived toxins to gain host cell entry.


Assuntos
Toxinas Bacterianas , SARS-CoV-2 , Sinaptogirinas , Internalização do Vírus , Humanos , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Sinaptogirinas/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Células Jurkat , Aggregatibacter actinomycetemcomitans/metabolismo , Aggregatibacter actinomycetemcomitans/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Endocitose , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Microdomínios da Membrana/metabolismo
16.
J Neurosci ; 32(50): 18054-67, 18067a, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23238721

RESUMO

Sustained neuronal communication relies on the coordinated activity of multiple proteins that regulate synaptic vesicle biogenesis and cycling within the presynaptic terminal. Synaptogyrin and synaptophysin are conserved MARVEL domain-containing transmembrane proteins that are among the most abundant synaptic vesicle constituents, although their role in the synaptic vesicle cycle has remained elusive. To further investigate the function of these proteins, we generated and characterized a synaptogyrin (gyr)-null mutant in Drosophila, whose genome encodes a single synaptogyrin isoform and lacks a synaptophysin homolog. We demonstrate that Drosophila synaptogyrin plays a modulatory role in synaptic vesicle biogenesis at larval neuromuscular junctions. Drosophila lacking synaptogyrin are viable and fertile and have no overt deficits in motor function. However, ultrastructural analysis of gyr larvae revealed increased synaptic vesicle diameter and enhanced variability in the size of synaptic vesicles. In addition, the resolution of endocytic cisternae into synaptic vesicles in response to strong stimulation is defective in gyr mutants. Electrophysiological analysis demonstrated an increase in quantal size and a concomitant decrease in quantal content, suggesting functional consequences for transmission caused by the loss of synaptogyrin. Furthermore, high-frequency stimulation resulted in increased facilitation and a delay in recovery from synaptic depression, indicating that synaptic vesicle exo-endocytosis is abnormally regulated during intense stimulation conditions. These results suggest that synaptogyrin modulates the synaptic vesicle exo-endocytic cycle and is required for the proper biogenesis of synaptic vesicles at nerve terminals.


Assuntos
Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Sinaptogirinas/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Western Blotting , Drosophila , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura , Técnicas de Patch-Clamp , Vesículas Sinápticas/ultraestrutura
17.
Cell Tissue Res ; 353(3): 391-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23636420

RESUMO

Synaptogyrins are conserved components of the exocytic apparatus and function as regulators of Ca(2+)-dependent exocytosis. The synaptogyrin family comprises three isoforms: two neuronal (synaptogyrin-1 and -3) and one ubiquitous (synaptogyrin-2) form. Although the expression patterns of the exocytic proteins synaptotagmin-1, SNAP-25, synaptobrevin-2 and synaptophysin have been elucidated in taste buds, the function and expression pattern of synaptogyrin-1 in rat gustatory tissues have not been determined. Therefore, we examined the expression patterns of synaptogyrin-1 and several cell-specific markers of type II and III cells in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays and immunoblot analysis revealed the expression of synaptogyrin-1 mRNA and its protein in circumvallate papillae. In fungiform, foliate and circumvallate papillae, the antibody against synaptogyrin-1 immunolabeled a subset of taste bud cells and intra- and subgemmal nerve processes. Double-labeling experiments revealed the expression of synaptogyrin-1 in most taste cells immunoreactive for aromatic L-amino acid decarboxylase and the neural cell adhesion molecule. A subset of synaptogyrin-1-immunoreactive taste cells also expressed phospholipase Cß2, gustducin, or sweet taste receptor (T1R2). In addition, most synaptogyrin-1-immunoreactive taste cells expressed synaptobrevin-2. These results suggest that synaptogyrin-1 plays a regulatory role in transmission at the synapses of type III cells and is involved in exocytic function with synaptobrevin-2 in a subset of type II cells in rat taste buds.


Assuntos
Regulação da Expressão Gênica/fisiologia , Receptores Acoplados a Proteínas G/biossíntese , Sinaptogirinas/biossíntese , Papilas Gustativas/metabolismo , Animais , Exocitose/fisiologia , Masculino , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Papilas Gustativas/citologia , Proteína 2 Associada à Membrana da Vesícula/biossíntese
18.
Brain Behav ; 13(2): e2886, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624932

RESUMO

BACKGROUND: Leucine-rich repeat kinase 2 (LRRK2) mutation is a common genetic risk factor of Parkinson's disease (PD). Presynaptic dysfunction is an early pathogenic event associated with dopamine (DA) dysregulation in striatum of the brain. DA uptake activity of DA uptake transporter (DAT) affects synaptic plasticity and motor and non-motor behavior. Synaptogyrin-3 (SYNGR3) is part of the synaptogyrin family, especially abundant in brain. Previous in vitro studies demonstrated interaction between SYNGR3 and DAT. Reduced SYNGR3 expression was observed in human PD brains with unclear reasons. METHODS: Here, we further explored whether inducing SYNGR3 expression can influence (i) cellular DA uptake using differentiated human SH-SY5Y neuronal cells, (ii) striatal synaptosomal DA uptake in a mutant LRRK2R1441G  knockin mouse model of PD, and (iii) innate rodent behavior using the marble burying test. RESULTS: Young LRRK2 mutant mice exhibited significantly lower SYNGR3 levels in striatum compared to age-matched wild-type (WT) controls, resembling level in aged WT mice. SYNGR3 is spatially co-localized with DAT at striatal presynaptic terminals, visualized by immuno-gold transmission electron microscopy and immunohistochemistry. Their protein-protein interaction was confirmed by co-immunoprecipitation. Transient overexpression of SYNGR3 in differentiated SH-SY5Y cells increased cellular DA uptake activity without affecting total DAT levels. Inducing SYNGR3 overexpression by adeno-associated virus-7 (AAV7) injection in vivo into striatum increased ex vivo synaptosomal DA uptake in LRRK2 mutant mice and improved their innate marble burying behavior. CONCLUSION: Brain SYNGR3 expression may be an important determinant to striatal DA homeostasis and synaptic function. Our preliminary behavioral test showed improved innate behavior after SYNGR3 overexpression in LRRK2 mutant mice, advocating further studies to determine the influence of SYNGR3 in the pathophysiology of DA neurons in PD.


Assuntos
Neuroblastoma , Doença de Parkinson , Idoso , Animais , Humanos , Camundongos , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Sinaptogirinas/genética , Sinaptogirinas/metabolismo
19.
Nat Struct Mol Biol ; 30(7): 926-934, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37217654

RESUMO

Synaptic vesicles are small membrane-enclosed organelles that store neurotransmitters at presynaptic terminals. The uniform morphology of synaptic vesicles is important for brain function, because it enables the storage of well-defined amounts of neurotransmitters and thus reliable synaptic transmission. Here, we show that the synaptic vesicle membrane protein synaptogyrin cooperates with the lipid phosphatidylserine to remodel the synaptic vesicle membrane. Using NMR spectroscopy, we determine the high-resolution structure of synaptogyrin and identify specific binding sites for phosphatidylserine. We further show that phosphatidylserine binding changes the transmembrane structure of synaptogyrin and is critical for membrane bending and the formation of small vesicles. Cooperative binding of phosphatidylserine to both a cytoplasmic and intravesicular lysine-arginine cluster in synaptogyrin is required for the formation of small vesicles. Together with other synaptic vesicle proteins, synaptogyrin thus can sculpt the membrane of synaptic vesicles.


Assuntos
Fosfatidilserinas , Vesículas Sinápticas , Sinaptogirinas/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas de Membrana/metabolismo , Transmissão Sináptica
20.
Cancer Res Commun ; 2(9): 987-1004, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36148399

RESUMO

Over 70% of oropharyngeal head and neck squamous cell carcinoma (HNSC) cases in the United States are positive for human papillomavirus (HPV) yet biomarkers for stratifying oropharyngeal head and neck squamous cell carcinoma (HNSC) patient risk are limited. We used immunogenomics to identify differentially expressed genes in immune cells of HPV(+) and HPV(-) squamous carcinomas. Candidate genes were tested in clinical specimens using both quantitative RT-PCR and IHC and validated by IHC using the Carolina Head and Neck Cancer Study (CHANCE) tissue microarray of HNSC cases. We performed multiplex immunofluorescent staining to confirm expression within the immune cells of HPV(+) tumors, receiver operating characteristic (ROC) curve analyses, and assessed survival outcomes. The neuronal gene Synaptogyrin-3 (SYNGR3) is robustly expressed in immune cells of HPV(+) squamous cancers. Multiplex immunostaining and single cell RNA-seq analyses confirmed SYNGR3 expression in T cells, but also unexpectedly in B cells of HPV(+) tumors. ROC curve analyses revealed that combining SYNGR3 and p16 provides more sensitivity and specificity for HPV detection compared to p16 IHC alone. SYNGR3-high HNSC patients have significantly better prognosis with five-year OS and DSS rates of 60% and 71%, respectively. Moreover, combining p16 localization and SYNGR3 expression can further risk stratify HPV(+) patients such that high cytoplasmic, low nuclear p16 do significantly worse (Hazard Ratio, 8.6; P = 0.032) compared to patients with high cytoplasmic, high nuclear p16. SYNGR3 expression in T and B cells is associated with HPV status and enhanced survival outcomes of HNSC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/diagnóstico , Neoplasias de Cabeça e Pescoço/diagnóstico , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Sinaptogirinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA