Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 39(16): e103631, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32643828

RESUMO

Priming of synaptic vesicles involves Munc13-catalyzed transition of the Munc18-1/syntaxin-1 complex to the SNARE complex in the presence of SNAP-25 and synaptobrevin-2; Munc13 drives opening of syntaxin-1 via the MUN domain while Munc18-1 primes SNARE assembly via domain 3a. However, the underlying mechanism remains unclear. In this study, we have identified a number of residues in domain 3a of Munc18-1 that are crucial for Munc13 and Munc18-1 actions in SNARE complex assembly and synaptic vesicle priming. Our results showed that two residues (Q301/K308) at the side of domain 3a mediate the interaction between the Munc18-1/syntaxin-1 complex and the MUN domain. This interaction enables the MUN domain to drive the opening of syntaxin-1 linker region, thereby leading to the extension of domain 3a and promoting synaptobrevin-2 binding. In addition, we identified two residues (K332/K333) at the bottom of domain 3a that mediate the interaction between Munc18-1 and the SNARE motif of syntaxin-1. This interaction ensures Munc18-1 to persistently associate with syntaxin-1 during the conformational change of syntaxin-1 from closed to open, which reinforces the role of Munc18-1 in templating SNARE assembly. Taken together, our data suggest a mechanism by which Munc13 activates the Munc18-1/syntaxin-1 complex and enables Munc18-1 to prime SNARE assembly.


Assuntos
Proteínas Munc18 , Proteínas do Tecido Nervoso , Proteínas SNARE , Membranas Sinápticas , Sintaxina 1 , Animais , Células HEK293 , Humanos , Camundongos , Proteínas Munc18/química , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Domínios Proteicos , Ratos , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Membranas Sinápticas/química , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Sintaxina 1/química , Sintaxina 1/genética , Sintaxina 1/metabolismo
2.
BMC Biol ; 21(1): 158, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443000

RESUMO

BACKGROUND: Neurotransmitter release depends on the fusion of synaptic vesicles with the presynaptic membrane and is mainly mediated by SNARE complex assembly. During the transition of Munc18-1/Syntaxin-1 to the SNARE complex, the opening of the Syntaxin-1 linker region catalyzed by Munc13-1 leads to the extension of the domain 3a hinge loop, which enables domain 3a to bind SNARE motifs in Synaptobrevin-2 and Syntaxin-1 and template the SNARE complex assembly. However, the exact mechanism of domain 3a extension remains elusive. RESULTS: Here, we characterized residues on the domain 3a hinge loop that are crucial for the extension of domain 3a by using biophysical and biochemical approaches and electrophysiological recordings. We showed that the mutation of residues T323/M324/R325 disrupted Munc13-1-mediated SNARE complex assembly and membrane fusion starting from Munc18-1/Syntaxin-1 in vitro and caused severe defects in the synaptic exocytosis of mouse cortex neurons in vivo. Moreover, the mutation had no effect on the binding of Synaptobrevin-2 to isolated Munc18-1 or the conformational change of the Syntaxin-1 linker region catalyzed by the Munc13-1 MUN domain. However, the extension of the domain 3a hinge loop in Munc18-1/Syntaxin-1 was completely disrupted by the mutation, leading to the failure of Synaptobrevin-2 binding to Munc18-1/Syntaxin-1. CONCLUSIONS: Together with previous results, our data further support the model that the template function of Munc18-1 in SNARE complex assembly requires the extension of domain 3a, and particular residues in the domain 3a hinge loop are crucial for the autoinhibitory release of domain 3a after the MUN domain opens the Syntaxin-1 linker region.


Assuntos
Proteínas do Tecido Nervoso , Proteína 2 Associada à Membrana da Vesícula , Camundongos , Animais , Proteínas do Tecido Nervoso/genética , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Sintaxina 1/genética , Sintaxina 1/química , Sintaxina 1/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Ligação Proteica
3.
J Am Chem Soc ; 145(19): 10641-10650, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37158674

RESUMO

Synaptic vesicle fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, including synaptobrevin-2 (Syb-2), syntaxin-1 (Syx-1), and SNAP-25. However, it remains controversial whether the formation of thoroughly contacted α-helical bundle from the SNARE motifs to the end of the transmembrane domains (TMDs) is necessary for SNARE-mediated membrane fusion. In this study, we characterized the conformation of Syb-2 in different assembly states using a combination of dipolar- and scalar-based solid-state NMR experiments in lipid bilayers. Our spectral analysis revealed a highly dynamic nature of the Syb-2 TMD with considerable α-helical contents. Chemical shift perturbation and mutational analysis indicated that the coupling between Syb-2 and Syx-1 TMDs mediated by residue Gly-100 of Syb-2 together with high mobility of the C-terminal segment of Syb-2 TMD are required for inner membrane merger. Our results provide new insights into the role of the Syb-2 TMD in driving membrane fusion, which improves the current understanding of the structural mechanism of SNARE complex assembly. This study highlights the significance of membrane environments in elucidating the mechanism of membrane proteins.


Assuntos
Bicamadas Lipídicas , Proteínas SNARE , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Proteínas SNARE/química , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Fusão de Membrana , Sintaxina 1/química
4.
Histochem Cell Biol ; 159(2): 199-208, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36129568

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) make up the core machinery that mediates membrane fusion. SNAREs, syntaxin, synaptosome-associated protein (SNAP), and synaptobrevin form a tight SNARE complex that brings the vesicle and plasma membranes together and is essential for membrane fusion. The cDNAs of SNAP-25, VAMP2, and Syntaxin 1A from Bombyx mori were inserted into a plasmid, transformed into Escherichia coli, and purified. We then produced antibodies against the SNAP-25, VAMP2, and Syntaxin 1A of Bombyx mori of rabbits and rats, which were used for immunohistochemistry. Immunohistochemistry results revealed that the expression of VAMP2 was restricted to neurons in the pars intercerebralis (PI), dorsolateral protocerebrum (DL), and central complex (CX) of the brain. SNAP-25 was restricted to neurons in the PI and the CX of the brain. Syntaxin 1A was restricted to neurons in the PI and DL of the brain. VAMP2 co-localized with SNAP-25 in the CX, and with Syntaxin 1A in the PI and DL. VAMP2, SNAP-25, and Syntaxin 1A are present in the CA. Bombyxin-immunohistochemical reactivities (IRs) of brain and CA overlapped with VAMP2-, SNAP-25, and Syntaxin 1A-IRs. VAMP2 and Syntaxin 1A are present in the prothoracicotropic hormone (PTTH)-secretory neurons of the brain.


Assuntos
Bombyx , Proteínas SNARE , Ratos , Coelhos , Animais , Proteínas SNARE/metabolismo , Bombyx/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo , Corpora Allata/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Encéfalo/metabolismo
5.
J Cell Sci ; 132(23)2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31719162

RESUMO

MUNC18-1 (also known as STXBP1) is an essential protein for docking and fusion of secretory vesicles. Mouse chromaffin cells (MCCs) lacking MUNC18-1 show impaired secretory vesicle docking, but also mistargeting of SNARE protein syntaxin1 and an abnormally dense submembrane F-actin network. Here, we tested the contribution of both these phenomena to docking and secretion defects in MUNC18-1-deficient MCCs. We show that an abnormal F-actin network and syntaxin1 targeting defects are not observed in Snap25- or Syt1-knockout (KO) MCCs, which are also secretion deficient. We identified a MUNC18-1 mutant (V263T in ß-sheet 10) that fully restores syntaxin1 targeting but not F-actin abnormalities in Munc18-1-KO cells. MUNC18-2 and -3 (also known as STXBP2 and STXBP3, respectively), which lack the hydrophobic residue at position 263, also did not restore a normal F-actin network in Munc18-1-KO cells. However, these proteins did restore the normal F-actin network when a hydrophobic residue was introduced at the corresponding position. Munc18-1-KO MCCs expressing MUNC18-1(V263T) showed normal vesicle docking and exocytosis. These results demonstrate that MUNC18-1 regulates the F-actin network independently of syntaxin1 targeting via hydrophobicity in ß-sheet 10. The abnormally dense F-actin network in Munc18-1-deficient cells is not a rate-limiting barrier in secretory vesicle docking or fusion.This article has an associated First Person interview with the first author of the paper.


Assuntos
Actinas/metabolismo , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Sintaxina 1/metabolismo , Actinas/genética , Animais , Western Blotting , Células Cromafins/metabolismo , Eletrofisiologia , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imuno-Histoquímica , Fusão de Membrana/fisiologia , Camundongos , Camundongos Knockout , Proteínas Munc18/genética , Vesículas Secretórias/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sintaxina 1/química
6.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948351

RESUMO

The polybasic juxtamembrane region (5RK) of the plasma membrane neuronal SNARE, syntaxin1A (Syx), was previously shown by us to act as a fusion clamp in PC12 cells, as charge neutralization of 5RK promotes spontaneous and inhibits Ca2+-triggered release. Using a Syx-based FRET probe (CSYS), we demonstrated that 5RK is required for a depolarization-induced Ca+2-dependent opening (close-to-open transition; CDO) of Syx, which involves the vesicular SNARE synaptobrevin2 and occurs concomitantly with Ca2+-triggered release. Here, we investigated the mechanism underlying the CDO requirement for 5RK and identified phosphorylation of Syx at Ser-14 (S14) by casein kinase 2 (CK2) as a crucial molecular determinant. Thus, following biochemical verification that both endogenous Syx and CSYS are constitutively S14 phosphorylated in PC12 cells, dynamic FRET analysis of phospho-null and phospho-mimetic mutants of CSYS and the use of a CK2 inhibitor revealed that the S14 phosphorylation confers the CDO requirement for 5RK. In accord, amperometric analysis of catecholamine release revealed that the phospho-null mutant does not support Ca2+-triggered release. These results identify a functionally important CK2 phosphorylation of Syx that is required for the 5RK-regulation of CDO and for concomitant Ca2+-triggered release. Further, also spontaneous release, conferred by charge neutralization of 5RK, was abolished in the phospho-null mutant.


Assuntos
Cálcio/metabolismo , Caseína Quinase II/metabolismo , Células Neuroendócrinas/metabolismo , Sintaxina 1/metabolismo , Animais , Células Cultivadas , Exocitose , Células Neuroendócrinas/citologia , Células PC12 , Fosforilação , Ratos , Sintaxina 1/química , Xenopus
7.
Proc Natl Acad Sci U S A ; 114(27): E5343-E5351, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28634303

RESUMO

Membrane fusion is essential in a myriad of eukaryotic cell biological processes, including the synaptic transmission. Rabphilin-3A is a membrane trafficking protein involved in the calcium-dependent regulation of secretory vesicle exocytosis in neurons and neuroendocrine cells, but the underlying mechanism remains poorly understood. Here, we report the crystal structures and biochemical analyses of Rabphilin-3A C2B-SNAP25 and C2B-phosphatidylinositol 4,5-bisphosphate (PIP2) complexes, revealing how Rabphilin-3A C2 domains operate in cooperation with PIP2/Ca2+ and SNAP25 to bind the plasma membrane, adopting a conformation compatible to interact with the complete SNARE complex. Comparisons with the synaptotagmin1-SNARE show that both proteins contact the same SNAP25 surface, but Rabphilin-3A uses a unique structural element. Data obtained here suggest a model to explain the Ca2+-dependent fusion process by membrane bending with a myriad of variations depending on the properties of the C2 domain-bearing protein, shedding light to understand the fine-tuning control of the different vesicle fusion events.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas do Tecido Nervoso/química , Proteína 25 Associada a Sinaptossoma/química , Proteínas de Transporte Vesicular/química , Animais , Cálcio/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Exocitose , Ligantes , Mutação , Ligação Proteica , Domínios Proteicos , Ratos , Vesículas Secretórias/metabolismo , Sintaxina 1/química , Proteína 2 Associada à Membrana da Vesícula/química , Rabfilina-3A
8.
Biophys J ; 116(2): 308-318, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30598283

RESUMO

Pore-spanning membranes (PSMs) composed of supported membrane parts as well as freestanding membrane parts are shown to be very versatile to investigate SNARE-mediated fusion on the single-particle level. They provide a planar geometry readily accessible by confocal fluorescence microscopy, which enabled us for the first time, to our knowledge, to investigate the fusion of individual natural secretory granules (i.e., chromaffin granules (CGs)) on the single-particle level by two-color fluorescence microscopy in a time-resolved manner. The t-SNARE acceptor complex ΔN49 was reconstituted into PSMs containing 2 mol % 1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol-4,5-bisphosphate and Atto488-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, and CGs were fluorescently labeled with 2-((1E,3E)-5-((Z)-3,3-dimethyl-1-octadecylindolin-2-ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-1-octadecyl-3H-indol-1-ium perchlorate. We compared the dynamics of docked and hemifused CGs as well as their fusion efficacy and kinetics with the results obtained for synthetic synaptobrevin 2-doped vesicles fusing with PSMs of the same composition. Whereas the synthetic vesicles were fully immobile on supported PSMs, docked as well as hemifused CGs were mobile on both PSM parts, which suggests that this system resembles more closely the natural situation. The fusion process of CGs proceeded through three-dimensional post-lipid-mixing structures, which were readily resolved on the gold-covered pore rims of the PSMs and which are discussed in the context of intermediate states observed in live cells.


Assuntos
Fusão de Membrana , Vesículas Secretórias/química , Sintaxina 1/química , Proteína 2 Associada à Membrana da Vesícula/química , Animais , Células Cromafins/metabolismo , Lipossomos/química , Simulação de Acoplamento Molecular , Domínios Proteicos , Ratos , Vesículas Secretórias/metabolismo , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
9.
J Biol Chem ; 293(47): 18309-18317, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30275014

RESUMO

Sec1/Munc18 (SM) proteins promote intracellular vesicle fusion by binding to N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). A key SNARE-binding mode of SM proteins involves the N-terminal peptide (N-peptide) motif of syntaxin, a SNARE subunit localized to the target membrane. In in vitro membrane fusion assays, inhibition of N-peptide motif binding previously has been shown to abrogate the stimulatory function of Munc18-1, a SM protein involved in synaptic exocytosis in neurons. The physiological role of the N-peptide-binding mode, however, remains unclear. In this work, we addressed this key question using a "clogged" Munc18-1 protein, in which an ectopic copy of the syntaxin N-peptide motif was directly fused to Munc18-1. We found that the ectopic N-peptide motif blocks the N-peptide-binding pocket of Munc18-1, preventing the latter from binding to the native N-peptide motif on syntaxin-1. In a reconstituted system, we observed that clogged Munc18-1 is defective in promoting SNARE zippering. When introduced into induced neuronal cells (iN cells) derived from human pluripotent stem cells, clogged Munc18-1 failed to mediate synaptic exocytosis. As a result, both spontaneous and evoked synaptic transmission was abolished. These genetic findings provide direct evidence for the crucial role of the N-peptide-binding mode of Munc18-1 in synaptic exocytosis. We suggest that clogged SM proteins will also be instrumental in defining the physiological roles of the N-peptide-binding mode in other vesicle-fusion pathways.


Assuntos
Exocitose , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Peptídeos/metabolismo , Sinapses/metabolismo , Motivos de Aminoácidos , Humanos , Proteínas Munc18/genética , Neurônios/química , Neurônios/metabolismo , Peptídeos/química , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Sinapses/química , Sinapses/genética , Transmissão Sináptica , Sintaxina 1/química , Sintaxina 1/genética , Sintaxina 1/metabolismo
10.
J Biol Chem ; 292(29): 12165-12177, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28515322

RESUMO

Gi/o-coupled G protein-coupled receptors can inhibit neurotransmitter release at synapses via multiple mechanisms. In addition to Gßγ-mediated modulation of voltage-gated calcium channels (VGCC), inhibition can also be mediated through the direct interaction of Gßγ subunits with the soluble N-ethylmaleimide attachment protein receptor (SNARE) complex of the vesicle fusion apparatus. Binding studies with soluble SNARE complexes have shown that Gßγ binds to both ternary SNARE complexes, t-SNARE heterodimers, and monomeric SNAREs, competing with synaptotagmin 1(syt1) for binding sites on t-SNARE. However, in secretory cells, Gßγ, SNAREs, and synaptotagmin interact in the lipid environment of a vesicle at the plasma membrane. To approximate this environment, we show that fluorescently labeled Gßγ interacts specifically with lipid-embedded t-SNAREs consisting of full-length syntaxin 1 and SNAP-25B at the membrane, as measured by fluorescence polarization. Fluorescently labeled syt1 undergoes competition with Gßγ for SNARE-binding sites in lipid environments. Mutant Gßγ subunits that were previously shown to be more efficacious at inhibiting Ca2+-triggered exocytotic release than wild-type Gßγ were also shown to bind SNAREs at a higher affinity than wild type in a lipid environment. These mutant Gßγ subunits were unable to inhibit VGCC currents. Specific peptides corresponding to regions on Gß and Gγ shown to be important for the interaction disrupt the interaction in a concentration-dependent manner. In in vitro fusion assays using full-length t- and v-SNAREs embedded in liposomes, Gßγ inhibited Ca2+/synaptotagmin-dependent fusion. Together, these studies demonstrate the importance of these regions for the Gßγ-SNARE interaction and show that the target of Gßγ, downstream of VGCC, is the membrane-embedded SNARE complex.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Bicamadas Lipídicas , Modelos Moleculares , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/metabolismo , Sintaxina 1/metabolismo , Animais , Ligação Competitiva , Sinalização do Cálcio , Bovinos , Linhagem Celular , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/genética , Humanos , Lipossomos , Fusão de Membrana , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteína 25 Associada a Sinaptossoma/química , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sintaxina 1/química
11.
Biochem J ; 474(12): 2039-2049, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28495859

RESUMO

Misfolded α-synuclein (A-syn) is widely recognized as the primal cause of neurodegenerative diseases including Parkinson's disease and dementia with Lewy bodies. The normal cellular function of A-syn has, however, been elusive. There is evidence that A-syn plays multiple roles in the exocytotic pathway in the neuron, but the underlying molecular mechanisms are unclear. A-syn has been known to interact with negatively charged phospholipids and with vesicle SNARE protein VAMP2. Using single-vesicle docking/fusion assays, we find that A-syn promotes SNARE-dependent vesicles docking significantly at 2.5 µM. When phosphatidylserine (PS) is removed from t-SNARE-bearing vesicles, the docking enhancement by A-syn disappears and A-syn instead acts as an inhibitor for docking. In contrast, subtraction of PS from the v-SNARE-carrying vesicles enhances vesicle docking even further. Moreover, when we truncate the C-terminal 45 residues of A-syn that participates in interacting with VAMP2, the promotion of vesicle docking is abrogated. Thus, the results suggest that the A-syn's interaction with v-SNARE through its C-terminal tail and its concurrent interaction with PS in trans through its amphipathic N-terminal domain facilitate SNARE complex formation, whereby A-syn aids SNARE-dependent vesicle docking.


Assuntos
Modelos Biológicos , Fosfatidilserinas/metabolismo , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , alfa-Sinucleína/metabolismo , Substituição de Aminoácidos , Animais , Humanos , Lipossomos , Fusão de Membrana , Micelas , Mutagênese Sítio-Dirigida , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE/química , Proteínas SNARE/genética , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/genética , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sintaxina 1/química , Sintaxina 1/genética , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/genética , alfa-Sinucleína/química , alfa-Sinucleína/genética
12.
Biophys J ; 113(6): 1235-1250, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28456331

RESUMO

Complexin-1 is a SNARE effector protein that decreases spontaneous neurotransmitter release and enhances evoked release. Complexin binds to the fully assembled four-helical neuronal SNARE core complex as revealed in competing molecular models derived from x-ray crystallography. Presently, it is unclear how complexin binding to the postfusion complex accounts for its effects upon spontaneous and evoked release in vivo. Using a combination of spectroscopic and imaging methods, we characterize in molecular detail how complexin binds to the 1:1 plasma membrane t-SNARE complex of syntaxin-1a and SNAP-25 while simultaneously binding the lipid bilayer at both its N- and C-terminal ends. These interactions are cooperative, and binding to the prefusion acceptor t-SNARE complex is stronger than to the postfusion core complex. This complexin interaction reduces the affinity of synaptobrevin-2 for the 1:1 complex, thereby retarding SNARE assembly and vesicle docking in vitro. The results provide the basis for molecular models that account for the observed clamping effect of complexin beginning with the acceptor t-SNARE complex and the subsequent activation of the clamped complex by Ca2+ and synaptotagmin.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Escherichia coli , Bicamadas Lipídicas/química , Lipossomos/química , Lipossomos/metabolismo , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Fosfatidilcolinas/química , Fosfatidilserinas/química , Ligação Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Propriedades de Superfície , Proteína 25 Associada a Sinaptossoma/química , Sintaxina 1/química , Proteína 2 Associada à Membrana da Vesícula/química
13.
J Am Chem Soc ; 139(51): 18440-18443, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29231734

RESUMO

The t-SNARE complex plays a central role in neuronal fusion. Its components, syntaxin-1 and SNAP25, are largely present in individual clusters and partially colocalize at the presumptive fusion site. How these protein clusters modify local lipid composition and membrane morphology is largely unknown. In this work, using coarse-grained molecular dynamics, the transmembrane domains (TMDs) of t-SNARE complexes are shown to form aggregates leading to formation of lipid nanodomains, which are enriched in cholesterol, phosphatidylinositol 4,5-bisphosphate, and gangliosidic lipids. These nano-domains induce membrane curvature that would promote a closer contact between vesicle and plasma membrane.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Animais , Colesterol/metabolismo , Gangliosídeos/metabolismo , Fusão de Membrana , Simulação de Dinâmica Molecular , Células PC12 , Fosfatidilinositol 4,5-Difosfato/metabolismo , Domínios Proteicos , Ratos , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo
14.
EMBO J ; 32(1): 159-71, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23188083

RESUMO

Among SNARE proteins mediating synaptic vesicle fusion, syntaxin-1 uniquely includes an N-terminal peptide ('N-peptide') that binds to Munc18-1, and a large, conserved H(abc)-domain that also binds to Munc18-1. Previous in vitro studies suggested that the syntaxin-1 N-peptide is functionally important, whereas the syntaxin-1 H(abc)-domain is not, but limited information is available about the in vivo functions of these syntaxin-1 domains. Using rescue experiments in cultured syntaxin-deficient neurons, we now show that the N-peptide and the H(abc)-domain of syntaxin-1 perform distinct and independent roles in synaptic vesicle fusion. Specifically, we found that the N-peptide is essential for vesicle fusion as such, whereas the H(abc)-domain regulates this fusion, in part by forming the closed syntaxin-1 conformation. Moreover, we observed that deletion of the H(abc)-domain but not deletion of the N-peptide caused a loss of Munc18-1 which results in a decrease in the readily releasable pool of vesicles at a synapse, suggesting that Munc18 binding to the H(abc)-domain stabilizes Munc18-1. Thus, the N-terminal syntaxin-1 domains mediate different functions in synaptic vesicle fusion, probably via formation of distinct Munc18/SNARE-protein complexes.


Assuntos
Proteínas Munc18/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Sinapses/metabolismo , Sintaxina 1/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Células Cultivadas , Técnicas de Silenciamento de Genes , Fusão de Membrana , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Sinapses/genética , Transmissão Sináptica , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Sintaxina 1/química , Sintaxina 1/genética
15.
Nature ; 479(7374): 552-5, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22020284

RESUMO

Neuronal exocytosis is catalysed by the SNAP receptor protein syntaxin-1A, which is clustered in the plasma membrane at sites where synaptic vesicles undergo exocytosis. However, how syntaxin-1A is sequestered is unknown. Here we show that syntaxin clustering is mediated by electrostatic interactions with the strongly anionic lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Using super-resolution stimulated-emission depletion microscopy on the plasma membranes of PC12 cells, we found that PIP2 is the dominant inner-leaflet lipid in microdomains about 73 nanometres in size. This high accumulation of PIP2 was required for syntaxin-1A sequestering, as destruction of PIP2 by the phosphatase synaptojanin-1 reduced syntaxin-1A clustering. Furthermore, co-reconstitution of PIP2 and the carboxy-terminal part of syntaxin-1A in artificial giant unilamellar vesicles resulted in segregation of PIP2 and syntaxin-1A into distinct domains even when cholesterol was absent. Our results demonstrate that electrostatic protein-lipid interactions can result in the formation of microdomains independently of cholesterol or lipid phases.


Assuntos
Microdomínios da Membrana/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica , Eletricidade Estática , Sintaxina 1/química , Sintaxina 1/metabolismo , Animais , Colesterol , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/metabolismo , Células PC12 , Monoéster Fosfórico Hidrolases/metabolismo , Ratos , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
16.
Int J Mol Sci ; 18(7)2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28753981

RESUMO

Parallel zippering of the SNARE domains of syntaxin 1A/B, SNAP-25, and VAMP/synaptobrevin 2 is widely regarded as supplying the driving force for exocytotic events at nerve terminals and elsewhere. However, in spite of intensive research, no consensus has been reached concerning the molecular mechanism by which these SNARE proteins catalyze membrane fusion. As an alternative to SNARE-based models, a scenario was developed in which synaptotagmin 1 (or, 2) can serve as a template to guide lipid movements that underlie fast, synchronous exocytosis at nerve terminals. This "dyad model" advanced a novel proposal concerning the membrane disposition of the palmitoylated, cysteine-rich region of these synaptotagmins. Unexpectedly, it now emerges that a similar principle can be exploited to reveal how the hydrophobic, carboxyl-terminal domains of syntaxin 1A and synaptobrevin 2 can perturb membrane structure at the interface between a docked synaptic vesicle and the plasma membrane. These "ß-to-α transition" models will be compared and contrasted with other proposals for how macromolecules are thought to intervene to drive membrane fusion.


Assuntos
Membrana Celular/fisiologia , Sintaxina 1/química , Proteína 2 Associada à Membrana da Vesícula/química , Animais , Membrana Celular/química , Exocitose , Interações Hidrofóbicas e Hidrofílicas , Fusão de Membrana , Modelos Moleculares , Estrutura Secundária de Proteína
17.
Langmuir ; 32(12): 3015-23, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26972604

RESUMO

Here we introduce ApoE-based nanolipoprotein particle (NLP)-a soluble, discoidal bilayer mimetic of ∼23 nm in diameter, as fusion partners to study the dynamics of fusion pores induced by SNARE proteins. Using in vitro lipid mixing and content release assays, we report that NLPs reconstituted with synaptic v-SNARE VAMP2 (vNLP) fuse with liposomes containing the cognate t-SNARE (Syntaxin1/SNAP25) partner, with the resulting fusion pore opening directly to the external buffer. Efflux of encapsulated fluorescent dextrans of different sizes show that unlike the smaller nanodiscs, these larger NLPs accommodate the expansion of the fusion pore to at least ∼9 nm, and dithionite quenching of fluorescent lipid introduced in vNLP confirms that the NLP fusion pores are short-lived and eventually reseal. The NLPs also have capacity to accommodate larger number of proteins and using vNLPs with defined number of VAMP2 protein, including physiologically relevant copy numbers, we find that 3-4 copies of VAMP2 (minimum 2 per face) are required to keep a nascent fusion pore open, and the SNARE proteins act cooperatively to dilate the nascent fusion pore.


Assuntos
Apolipoproteínas E/química , Fusão de Membrana , Nanopartículas/química , Cálcio , Colesterol/química , Dextranos , Dimiristoilfosfatidilcolina/química , Ditionita , Corantes Fluorescentes/química , Lipossomos , Tamanho da Partícula , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositóis , Fosfatidilserinas/química , Proteína 25 Associada a Sinaptossoma/química , Sintaxina 1/química , Proteína 2 Associada à Membrana da Vesícula/química
18.
PLoS Comput Biol ; 11(9): e1004407, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26367029

RESUMO

Synaptic vesicle fusion is mediated by SNARE proteins forming in between synaptic vesicle (v-SNARE) and plasma membrane (t-SNARE), one of which is Syntaxin-1A. Although exocytosis mainly occurs at active zones, Syntaxin-1A appears to cover the entire neuronal membrane. By using STED super-resolution light microscopy and image analysis of Drosophila neuro-muscular junctions, we show that Syntaxin-1A clusters are more abundant and have an increased size at active zones. A computational particle-based model of syntaxin cluster formation and dynamics is developed. The model is parametrized to reproduce Syntaxin cluster-size distributions found by STED analysis, and successfully reproduces existing FRAP results. The model shows that the neuronal membrane is adjusted in a way to strike a balance between having most syntaxins stored in large clusters, while still keeping a mobile fraction of syntaxins free or in small clusters that can efficiently search the membrane or be traded between clusters. This balance is subtle and can be shifted toward almost no clustering and almost complete clustering by modifying the syntaxin interaction energy on the order of only 1 kBT. This capability appears to be exploited at active zones. The larger active-zone syntaxin clusters are more stable and provide regions of high docking and fusion capability, whereas the smaller clusters outside may serve as flexible reserve pool or sites of spontaneous ectopic release.


Assuntos
Modelos Biológicos , Sinapses/química , Sinapses/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo , Animais , Biologia Computacional , Drosophila , Processamento de Imagem Assistida por Computador , Larva/química , Larva/metabolismo , Microscopia
19.
Proc Natl Acad Sci U S A ; 110(30): E2812-20, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23821748

RESUMO

Membrane fusion is mediated by complexes formed by SNAP-receptor (SNARE) and Secretory 1 (Sec1)/mammalian uncoordinated-18 (Munc18)-like (SM) proteins, but it is unclear when and how these complexes assemble. Here we describe an improved two-color fluorescence nanoscopy technique that can achieve effective resolutions of up to 7.5-nm full width at half maximum (3.2-nm localization precision), limited only by stochastic photon emission from single molecules. We use this technique to dissect the spatial relationships between the neuronal SM protein Munc18-1 and SNARE proteins syntaxin-1 and SNAP-25 (25 kDa synaptosome-associated protein). Strikingly, we observed nanoscale clusters consisting of syntaxin-1 and SNAP-25 that contained associated Munc18-1. Rescue experiments with syntaxin-1 mutants revealed that Munc18-1 recruitment to the plasma membrane depends on the Munc18-1 binding to the N-terminal peptide of syntaxin-1. Our results suggest that in a primary neuron, SNARE/SM protein complexes containing syntaxin-1, SNAP-25, and Munc18-1 are preassembled in microdomains on the presynaptic plasma membrane. Our superresolution imaging method provides a framework for investigating interactions between the synaptic vesicle fusion machinery and other subcellular systems in situ.


Assuntos
Microscopia de Fluorescência/métodos , Proteínas Munc18/química , Proteínas SNARE/química , Proteína 25 Associada a Sinaptossoma/química , Sintaxina 1/química
20.
Proc Natl Acad Sci U S A ; 110(48): 19384-9, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218570

RESUMO

The assembly of the three neuronal soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) proteins synaptobrevin 2, syntaxin-1A, and SNAP-25 is the key step that leads to exocytotic fusion of synaptic vesicles. In the fully assembled SNARE complex, these three proteins form a coiled-coil four-helix bundle structure by interaction of their respective SNARE motifs. Although biochemical and mutational analyses strongly suggest that the heptad-repeat SNARE motifs zipper into the final structure, little is known about the prefusion state of individual membrane-bound SNAREs and how they change conformation from the unzippered prefusion to the zippered postfusion state in a membrane environment. We have solved the solution NMR structure of micelle-bound syntaxin-1A in its prefusion conformation. In addition to the transmembrane helix, the SNARE motif consists of two well-ordered, membrane-bound helices separated by the "0-layer" residue Gln226. This unexpected structural order of the N- and C-terminal halves of the uncomplexed SNARE motif suggests the formation of partially zippered SNARE complex intermediates, with the 0-layer serving as a proofreading site for correct SNARE assembly. Interferometric fluorescence measurements in lipid bilayers confirm that the open SNARE motif helices of syntaxin interact with lipid bilayers and that association with the other target-membrane SNARE SNAP-25 lifts the SNARE motif off the membrane as a critical prerequisite for SNARE complex assembly and membrane fusion.


Assuntos
Modelos Moleculares , Complexos Multiproteicos/química , Conformação Proteica , Proteínas SNARE/metabolismo , Sintaxina 1/química , Linhagem Celular , Cromatografia em Gel , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli , Humanos , Micelas , Microscopia de Fluorescência , Complexos Multiproteicos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Marcadores de Spin , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA