Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.147
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 161(7): 1700-1700.e1, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26091044

RESUMO

Tissue stem cells require unique niche microenvironments. In the presence of specific combinations of niche factors, mouse and human epithelial tissues from stomach, small intestine, colon, pancreas duct, and liver bile duct efficiently form stereotypic organoids. The platform of epitheloid organoids can also be employed for in vitro generation of digestive tissue from human pluripotent stem cells. Organoids hold great promise for basic and translational research.


Assuntos
Organoides , Células-Tronco/citologia , Técnicas de Cultura de Tecidos , Animais , Sistema Digestório/citologia , Células Epiteliais/citologia , Humanos , Células-Tronco Pluripotentes/citologia , Pesquisa Translacional Biomédica
2.
Nature ; 555(7694): 103-106, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29414942

RESUMO

Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis. Although numerous chemical and biological signals have been identified that regulate stem-cell behaviour, whether stem cells can directly sense mechanical signals in vivo remains unclear. Here we show that mechanical stress regulates stem-cell differentiation in the adult Drosophila midgut through the stretch-activated ion channel Piezo. We find that Piezo is specifically expressed in previously unidentified enteroendocrine precursor cells, which have reduced proliferation ability and are destined to become enteroendocrine cells. Loss of Piezo activity reduces the generation of enteroendocrine cells in the adult midgut. In addition, ectopic expression of Piezo in all stem cells triggers both cell proliferation and enteroendocrine cell differentiation. Both the Piezo mutant and overexpression phenotypes can be rescued by manipulation of cytosolic Ca2+ levels, and increases in cytosolic Ca2+ resemble the Piezo overexpression phenotype, suggesting that Piezo functions through Ca2+ signalling. Further studies suggest that Ca2+ signalling promotes stem-cell proliferation and differentiation through separate pathways. Finally, Piezo is required for both mechanical activation of stem cells in a gut expansion assay and the increase of cytosolic Ca2+ in response to direct mechanical stimulus in a gut compression assay. Thus, our study demonstrates the existence of a specific group of stem cells in the fly midgut that can directly sense mechanical signals through Piezo.


Assuntos
Diferenciação Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Canais Iônicos/metabolismo , Células-Tronco/citologia , Estresse Mecânico , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem da Célula , Proliferação de Células , Citosol/metabolismo , Sistema Digestório/citologia , Sistema Digestório/metabolismo , Proteínas de Drosophila/genética , Células Enteroendócrinas/citologia , Células Enteroendócrinas/metabolismo , Feminino , Canais Iônicos/genética , Mutação
3.
Annu Rev Cell Dev Biol ; 25: 597-628, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19575642

RESUMO

The digestive tracts of many animals are epithelial tubes with specialized compartments to break down food, remove wastes, combat infection, and signal nutrient availability. C. elegans possesses a linear, epithelial gut tube with foregut, midgut, and hindgut sections. The simple anatomy belies the developmental complexity that is involved in forming the gut from a pool of heterogeneous precursor cells. Here, I focus on the processes that specify cell fates and control morphogenesis within the embryonic foregut (pharynx) and the developmental roles of the pharynx after birth. Maternally donated factors in the pregastrula embryo converge on pha-4, a FoxA transcription factor that specifies organ identity for pharyngeal precursors. Positive feedback loops between PHA-4 and other transcription factors ensure commitment to pharyngeal fate. Binding-site affinity of PHA-4 for its target promoters contributes to the progression of the pharyngeal precursors towards differentiation. During morphogenesis, the pharyngeal precursors form an epithelial tube in a process that is independent of cadherins, catenins, and integrins but requires the kinesin zen-4/MKLP1. After birth, the pharynx and/or pha-4 are involved in repelling pathogens and controlling aging.


Assuntos
Caenorhabditis elegans/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Digestório/citologia , Sistema Digestório/embriologia , Embrião não Mamífero/metabolismo , Organogênese , Transativadores/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(3): 1514-1523, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31915294

RESUMO

Studies of the adult Drosophila midgut have led to many insights in our understanding of cell-type diversity, stem cell regeneration, tissue homeostasis, and cell fate decision. Advances in single-cell RNA sequencing provide opportunities to identify new cell types and molecular features. We used single-cell RNA sequencing to characterize the transcriptome of midgut epithelial cells and identified 22 distinct clusters representing intestinal stem cells, enteroblasts, enteroendocrine cells (EEs), and enterocytes. This unbiased approach recovered most of the known intestinal stem cells/enteroblast and EE markers, highlighting the high quality of the dataset, and led to insights on intestinal stem cell biology, cell type-specific organelle features, the roles of new transcription factors in progenitors and regional variation along the gut, 5 additional EE gut hormones, EE hormonal expression diversity, and paracrine function of EEs. To facilitate mining of this rich dataset, we provide a web-based resource for visualization of gene expression in single cells. Altogether, our study provides a comprehensive resource for addressing functions of genes in the midgut epithelium.


Assuntos
Sistema Digestório/metabolismo , Drosophila/metabolismo , Células-Tronco/metabolismo , Transcriptoma , Animais , Sistema Digestório/citologia , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/metabolismo , Enterócitos/metabolismo , Células Enteroendócrinas/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Regulação da Expressão Gênica , Hormônios/metabolismo , Intestinos/citologia , Células-Tronco/citologia , Fatores de Transcrição/metabolismo
5.
Dev Biol ; 474: 37-47, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33571486

RESUMO

Canonical Wnt signaling plays a key role during organ development, homeostasis and regeneration and these processes are conserved between invertebrates and vertebrates. Mutations in Wnt pathway components are commonly found in various types of cancer. Upon activation of canonical Wnt signaling, ß-catenin binds in the nucleus to members of the TCF-LEF family and activates the transcription of target genes. Multiple Wnt target genes, including Lgr5/LGR5 and Axin2/AXIN2, have been identified in mouse models and human cancer cell lines. Here we set out to identify the transcriptional targets of Wnt signaling in five human tissues using organoid technology. Organoids are derived from adult stem cells and recapitulate the functionality as well as the structure of the original tissue. Since the Wnt pathway is critical to maintain the organoids from the human intestine, colon, liver, pancreas and stomach, organoid technology allows us to assess Wnt target gene expression in a human wildtype situation. We performed bulk mRNA sequencing of organoids immediately after inhibition of Wnt pathway and identified 41 genes as commonly regulated genes in these tissues. We also identified large numbers of target genes specific to each tissue. One of the shared target genes is TEAD4, a transcription factor driving expression of YAP/TAZ signaling target genes. In addition to TEAD4, we identified a variety of genes which encode for proteins that are involved in Wnt-independent pathways, implicating the possibility of direct crosstalk between Wnt signaling and other pathways. Collectively, this study identified tissue-specific and common Wnt target gene signatures and provides evidence for a conserved role for these Wnt targets in different tissues.


Assuntos
Sistema Digestório/citologia , Regulação da Expressão Gênica no Desenvolvimento , Organoides/metabolismo , Via de Sinalização Wnt , Adulto , Sistema Digestório/embriologia , Sistema Digestório/metabolismo , Endoderma , Perfilação da Expressão Gênica , Humanos , Especificidade de Órgãos
6.
Histochem Cell Biol ; 157(2): 127-137, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34750664

RESUMO

Acquiring comprehensive knowledge about the uptake of pollutants, impact on tissue integrity and the effects at the molecular level in organisms is of increasing interest due to the environmental exposure to numerous contaminants. The analysis of tissues can be performed by histological examination, which is still time-consuming and restricted to target-specific staining methods. The histological approaches can be complemented with chemical imaging analysis. Chemical imaging of tissue sections is typically performed using a single imaging approach. However, for toxicological testing of environmental pollutants, a multimodal approach combined with improved data acquisition and evaluation is desirable, since it may allow for more rapid tissue characterization and give further information on ecotoxicological effects at the tissue level. Therefore, using the soil model organism Eisenia fetida as a model, we developed a sequential workflow combining Fourier transform infrared spectroscopy (FTIR) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for chemical analysis of the same tissue sections. Data analysis of the FTIR spectra via random decision forest (RDF) classification enabled the rapid identification of target tissues (e.g., digestive tissue), which are relevant from an ecotoxicological point of view. MALDI imaging analysis provided specific lipid species which are sensitive to metabolic changes and environmental stressors. Taken together, our approach provides a fast and reproducible workflow for label-free histochemical tissue analyses in E. fetida, which can be applied to other model organisms as well.


Assuntos
Sistema Digestório/citologia , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Oligoquetos/citologia , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Development ; 145(9)2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29678817

RESUMO

The enteric nervous system (ENS) arises from neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the intestinal wall. Many extracellular matrix (ECM) components are present in the embryonic gut, but their role in regulating ENS development is largely unknown. Here, we identify heparan sulfate proteoglycan proteins, including collagen XVIII (Col18) and agrin, as important regulators of enteric neural crest-derived cell (ENCDC) development. In developing avian hindgut, Col18 is expressed at the ENCDC wavefront, while agrin expression occurs later. Both proteins are normally present around enteric ganglia, but are absent in aganglionic gut. Using chick-mouse intestinal chimeras and enteric neurospheres, we show that vagal- and sacral-derived ENCDCs from both species secrete Col18 and agrin. Whereas glia express Col18 and agrin, enteric neurons only express the latter. Functional studies demonstrate that Col18 is permissive whereas agrin is strongly inhibitory to ENCDC migration, consistent with the timing of their expression during ENS development. We conclude that ENCDCs govern their own migration by actively remodeling their microenvironment through secretion of ECM proteins.


Assuntos
Agrina/metabolismo , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Colágeno/metabolismo , Sistema Digestório , Crista Neural/embriologia , Nicho de Células-Tronco/fisiologia , Agrina/genética , Animais , Proteínas Aviárias/genética , Movimento Celular/fisiologia , Embrião de Galinha , Galinhas/genética , Colágeno/genética , Sistema Digestório/citologia , Sistema Digestório/embriologia , Sistema Digestório/inervação , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Crista Neural/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
8.
PLoS Biol ; 16(10): e3000041, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30339698

RESUMO

Apical-basal polarity is essential for the formation and function of epithelial tissues, whereas loss of polarity is a hallmark of tumours. Studies in Drosophila have identified conserved polarity factors that define the apical (Crumbs, Stardust, Par-6, atypical protein kinase C [aPKC]), junctional (Bazooka [Baz]/Par-3), and basolateral (Scribbled [Scrib], Discs large [Dlg], Lethal [2] giant larvae [Lgl]) domains of epithelial cells. Because these conserved factors mark equivalent domains in diverse types of vertebrate and invertebrate epithelia, it is generally assumed that this system underlies polarity in all epithelia. Here, we show that this is not the case, as none of these canonical factors are required for the polarisation of the endodermal epithelium of the Drosophila adult midgut. Furthermore, like vertebrate epithelia but not other Drosophila epithelia, the midgut epithelium forms occluding junctions above adherens junctions (AJs) and requires the integrin adhesion complex for polarity. Thus, Drosophila contains two types of epithelia that polarise by fundamentally different mechanisms. This diversity of epithelial types may reflect their different developmental origins, junctional arrangement, or whether they polarise in an apical-basal direction or vice versa. Since knock-outs of canonical polarity factors in vertebrates often have little or no effect on epithelial polarity and the Drosophila midgut shares several common features with vertebrate epithelia, this diversity of polarity mechanisms is likely to be conserved in other animals.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Padronização Corporal , Polaridade Celular , Sistema Digestório/citologia , Sistema Digestório/crescimento & desenvolvimento , Sistema Digestório/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Feminino , Genes de Insetos , Junções Intercelulares/metabolismo , Modelos Biológicos
9.
Dev Biol ; 446(1): 34-42, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529057

RESUMO

Cells of the vagal neural crest (NC) form most of the enteric nervous system (ENS) by a colonising wave in the embryonic gut, with high cell proliferation and differentiation. Enteric neuropathies have an ENS deficit and cell replacement has been suggested as therapy. This would be performed post-natally, which raises the question of whether the ENS cell population retains its initial ENS-forming potential with age. We tested this on the avian model in organ culture in vitro (3 days) using recipient aneural chick midgut/hindgut combined with ENS-donor quail midgut or hindgut of ages QE5 to QE10. ENS cells from young donor tissues (≤ QE6) avidly colonised the aneural recipient, but this capacity dropped rapidly 2-3 days after the transit of the ENS cell wavefront. This loss in capability was autonomous to the ENS population since a similar decline was observed in ENS cells isolated by HNK1 FACS. Using QE5, 6, 8 and 10 midgut donors and extending the time of assay to 8 days in chorio-allantoic membrane grafts did not produce 'catch up' colonisation. NC-derived cells were counted in dissociated quail embryo gut and in transverse sections of chick embryo gut using NC, neuron and glial marker antibodies. This showed that the decline in ENS-forming ability correlated with a decrease in proportion of ENS cells lacking both neuronal and glial differentiation markers, but there were still large numbers of such cells even at stages with low colonisation ability. Moreover, ENS cells in small numbers from young donors were far superior in colonisation ability to larger numbers of apparently undifferentiated cells from older donors. This suggests that the decline of ENS-forming ability has both quantitative and qualitative aspects. In this case, ENS cells for cell therapies should aim to replicate the embryonic ENS stage rather than using post-natal ENS stem/progenitor cells.


Assuntos
Sistema Digestório/embriologia , Sistema Nervoso Entérico/embriologia , Intestino Delgado/embriologia , Crista Neural/embriologia , Animais , Diferenciação Celular , Movimento Celular , Células Cultivadas , Embrião de Galinha , Galinhas , Membrana Corioalantoide/transplante , Coturnix , Sistema Digestório/citologia , Sistema Digestório/metabolismo , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/metabolismo , Intestino Delgado/citologia , Intestino Delgado/inervação , Crista Neural/citologia , Crista Neural/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Cultura de Órgãos
10.
Dev Biol ; 446(1): 22-33, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30448439

RESUMO

The enteric nervous system is mostly derived from vagal neural crest (NC) cells adjacent to somites (s)1-7. We used in ovo focal fluorescent vital dyes and focal electroporation of fluorophore-encoding plasmids in quail embryos to investigate NC cell migration to the foregut initially and later throughout the entire gut. NC cells of different somite-level origins were largely separate until reaching the foregut at about QE2.5, when all routes converged. By QE3.5, NC cells of different somite-levels became mixed, although s1-s2 NC cells were mainly confined to rostral foregut. Mid-vagal NC-derived cells (s3 and s4 level) arrived earliest at the foregut, and occurred in greatest number. By QE6.5 ENS was present from foregut to hindgut. Mid-vagal NC-derived cells occurred in greatest numbers from foregut to distal hindgut. NC-derived cells of s2, s5, and s6 levels were fewer and were widely distributed but were never observed in the distal hindgut. Rostro-vagal (s1) and caudo-vagal (s7) levels were few and restricted to the foregut. Single somite levels of quail neural tube/NC from s1 to s8 were combined with chick aneural ChE4.5 midgut and hindgut and the ensemble was grown on the chorio-allantoic membrane for 6 days. This tests ENS-forming competence in the absence of intra-segmental competition between NC cells, of differential influences of segmental paraxial tissues, and of positional advantage. All vagal NC-levels, but not s8 level, furnished enteric plexuses in the recipient gut, but the density of both ENS cells in total and neurons was highest from mid-vagal level donors, as was the length colonised. We conclude that the fate and competence for ENS formation of vagal NC sub-levels is not uniform over the vagal level but is biased to favour mid-vagal levels. Overviewing this and prior studies suggests the vagal region is, as in its traditional sense, a natural unit but with complex sub-divisions.


Assuntos
Sistema Nervoso Entérico/embriologia , Crista Neural/embriologia , Somitos/embriologia , Nervo Vago/embriologia , Animais , Padronização Corporal , Diferenciação Celular , Movimento Celular , Embrião de Galinha , Galinhas , Coturnix , Sistema Digestório/citologia , Sistema Digestório/embriologia , Sistema Digestório/metabolismo , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/metabolismo , Intestinos/citologia , Intestinos/embriologia , Intestinos/inervação , Crista Neural/citologia , Crista Neural/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Somitos/citologia , Somitos/metabolismo , Nervo Vago/citologia , Nervo Vago/metabolismo
11.
Development ; 144(6): 1128-1136, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28174251

RESUMO

Temporal manipulation of the in vitro environment and growth factors can direct differentiation of human pluripotent stem cells into organoids - aggregates with multiple tissue-specific cell types and three-dimensional structure mimicking native organs. A mechanistic understanding of early organoid formation is essential for improving the robustness of these methods, which is necessary prior to use in drug development and regenerative medicine. We investigated intestinal organoid emergence, focusing on measurable parameters of hindgut spheroids, the intermediate step between definitive endoderm and mature organoids. We found that 13% of spheroids were pre-organoids that matured into intestinal organoids. Spheroids varied by several structural parameters: cell number, diameter and morphology. Hypothesizing that diameter and the morphological feature of an inner mass were key parameters for spheroid maturation, we sorted spheroids using an automated micropipette aspiration and release system and monitored the cultures for organoid formation. We discovered that populations of spheroids with a diameter greater than 75 µm and an inner mass are enriched 1.5- and 3.8-fold for pre-organoids, respectively, thus providing rational guidelines towards establishing a robust protocol for high quality intestinal organoids.


Assuntos
Organoides/crescimento & desenvolvimento , Engenharia Tecidual/métodos , Contagem de Células , Tamanho Celular , Células Cultivadas , Sistema Digestório/citologia , Citometria de Fluxo , Humanos , Organoides/citologia , Esferoides Celulares/citologia
12.
J Gastroenterol Hepatol ; 35(5): 744-748, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32215956

RESUMO

The novel coronavirus disease is currently causing a major pandemic. It is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a member of the Betacoronavirus genus that also includes the SARS-CoV and Middle East respiratory syndrome coronavirus. While patients typically present with fever and a respiratory illness, some patients also report gastrointestinal symptoms such as diarrhea, vomiting, and abdominal pain. Studies have identified the SARS-CoV-2 RNA in stool specimens of infected patients, and its viral receptor angiotensin converting enzyme 2 was found to be highly expressed in gastrointestinal epithelial cells. These suggest that SARS-CoV-2 can actively infect and replicate in the gastrointestinal tract. This has important implications to the disease management, transmission, and infection control. In this article, we review the important gastrointestinal aspects of the disease.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus , Doenças do Sistema Digestório/virologia , Sistema Digestório/virologia , Pandemias , Peptidil Dipeptidase A/biossíntese , Pneumonia Viral , Aerossóis/efeitos adversos , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/metabolismo , COVID-19 , Infecções por Coronavirus/complicações , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/transmissão , Sistema Digestório/citologia , Sistema Digestório/metabolismo , Doenças do Sistema Digestório/metabolismo , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Controle de Infecções/métodos , Pneumonia Viral/complicações , Pneumonia Viral/diagnóstico , Pneumonia Viral/metabolismo , Pneumonia Viral/transmissão , RNA Viral/isolamento & purificação , SARS-CoV-2
13.
Ecotoxicol Environ Saf ; 189: 109991, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31780208

RESUMO

The honey bee Apis mellifera is an important pollinator of agricultural crops and natural forests. Honey bee populations have declined over the years, as a result of diseases, pesticides, and management problems. Fungicides are the main pesticides found in pollen grains, which are the major source of protein for bees. The objective of this study was to evaluate the cytotoxic effects of the fungicide iprodione on midgut cells of adult A. mellifera workers. Bees were fed on iprodione (LD50, determined by the manufacturer) for 12 or 24 h, and the midgut was examined using light and transmission electron microscopies. The expression level of the autophagy gene atg1 was assessed in midgut digestive cells. Cells of treated bees had signs of apoptosis: cytoplasmic vacuolization, apical cell protrusions, nuclear fragmentation, and chromatin condensation. Ultrastructural analysis revealed some cells undergoing autophagy and necrosis. Expression of atg1 was similar between treated and control bees, which can be explained by the facts that digestive cells had autolysosomes, whereas ATG-1 is found in the initial phases of autophagy. Iprodione acts by inhibiting the synthesis of glutathione, leading to the generation of reactive oxygen species, which in turn can induce different types of cell death. The results indicate that iprodione must be used with caution because it has side effects on non-target organisms, such as pollinator bees.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Abelhas/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Hidantoínas/toxicidade , Aminoimidazol Carboxamida/toxicidade , Animais , Apoptose/efeitos dos fármacos , Abelhas/citologia , Sistema Digestório/citologia , Sistema Digestório/efeitos dos fármacos , Praguicidas/análise , Pólen/química
14.
Semin Cell Dev Biol ; 66: 3-11, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28065852

RESUMO

The midgut (intestine) of the nematode, C. elegans, is a tube consisting of 20 cells that arises from a single embryonic precursor. Owing to its comparatively simple anatomy and the advantages inherent to the C. elegans system, the gut has been used as a model for organogenesis for more than 25 years. In this review, the salient features of C. elegans gut development are described from the E progenitor through to the 20-cell intestine. The core gene regulatory network that drives specification of the gut, and other genes with roles in organogenesis, lumen morphogenesis and the cell cycle, are also described. Questions for future work are posed.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Sistema Digestório/crescimento & desenvolvimento , Morfogênese/genética , Animais , Sistema Digestório/citologia
15.
Development ; 143(10): 1710-20, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27190037

RESUMO

Wnt/ß-catenin signaling controls intestinal stem cell (ISC) proliferation, and is aberrantly activated in colorectal cancer. Inhibitors of the ADP-ribose polymerase Tankyrase (Tnks) have become lead therapeutic candidates for Wnt-driven cancers, following the recent discovery that Tnks targets Axin, a negative regulator of Wnt signaling, for proteolysis. Initial reports indicated that Tnks is important for Wnt pathway activation in cultured human cell lines. However, the requirement for Tnks in physiological settings has been less clear, as subsequent studies in mice, fish and flies suggested that Tnks was either entirely dispensable for Wnt-dependent processes in vivo, or alternatively, had tissue-specific roles. Here, using null alleles, we demonstrate that the regulation of Axin by the highly conserved Drosophila Tnks homolog is essential for the control of ISC proliferation. Furthermore, in the adult intestine, where activity of the Wingless pathway is graded and peaks at each compartmental boundary, Tnks is dispensable for signaling in regions where pathway activity is high, but essential where pathway activity is relatively low. Finally, as observed previously for Wingless pathway components, Tnks activity in absorptive enterocytes controls the proliferation of neighboring ISCs non-autonomously by regulating JAK/STAT signaling. These findings reveal the requirement for Tnks in the control of ISC proliferation and suggest an essential role in the amplification of Wnt signaling, with relevance for development, homeostasis and cancer.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Células-Tronco Adultas/citologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Homeostase , Intestinos/citologia , Tanquirases/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Proteína Axina/metabolismo , Diferenciação Celular , Proliferação de Células , Sistema Digestório/citologia , Enterócitos/metabolismo , Mutação/genética , Transdução de Sinais , Proteína Wnt1/metabolismo
16.
Cell Tissue Res ; 377(3): 353-367, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31270610

RESUMO

Trichoplax, a member of the phylum Placozoa, is a tiny ciliated marine animal that glides on surfaces feeding on algae and cyanobacteria. It stands out from other animals in that it lacks an internal digestive system and, instead, digests food trapped under its lower surface. Here we review recent work on the phenotypes of its six cell types and their roles in digestion and feeding behavior. Phylogenomic analyses place Placozoa as sister to Eumetazoa, the clade that includes Cnidaria and Bilateria. Comparing the phenotypes of cells in Trichoplax to those of cells in the digestive epithelia of Eumetazoa allows us to make inferences about the cell types and mode of feeding of their ancestors. From our increasingly mechanistic understanding of feeding in Trichoplax, we get a glimpse into how primitive animals may have hunted and consumed food prior to the evolution of neurons, muscles, and internal digestive systems.


Assuntos
Sistema Digestório/citologia , Placozoa/citologia , Animais , Evolução Biológica , Comportamento Alimentar , Filogenia
17.
J Invertebr Pathol ; 161: 29-39, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30615864

RESUMO

Changes in the cell type composition of the digestive gland epithelium constitute a common and recognized biological response to stress in mussels. Usually, these changes are identified as alterations in the relative proportion of basophilic cells, determined in tissue sections stained with hematoxylin-eosin (H&E) and measured in terms of volume density of basophilic cells (VvBAS) after stereological quantification. However, the identification and discrimination of basophilic cells may be a difficult issue, even for a trained operator, especially when, in circumstances of environmental stress, basophilic cells lose their basophilia and the perinuclear area of digestive cells gains basophilia. Thus, the present study was aimed at exploring the best available practices (BAPs) to identify and discriminate basophilic cells on tissue sections of mussel digestive gland. In a first step, a thorough screening of potentially suitable staining methods was carried out; the final selection included several trichrome staining methods and some of their variants, as well as toluidine-based stains. Next, the sample processing (fixation/dehydration steps) was optimized. Toluidine-eosin (T&E) staining after fixation in 4% formaldehyde at 4 °C for 24 h was considered the BAP to identify and discriminate basophilic cells in the digestive gland of mussels. Using the mussel Mytilus galloprovincialis as a target organism, this approach was successfully applied to quantify VvBAS values after automated image analysis and compared with the conventional H&E staining in different field and laboratory tests. It is worth noting that VvBAS values were always higher after T&E staining than after H&E staining, apparently because discrimination of basophilic cells was enhanced. Thus, until more data are available, any comparison with VvBAS values obtained in previous studies using H&E staining must be done cautiously. Finally, the T&E staining was successfully used to discriminate basophilic cells in tissue sections of other marine molluscs of ecotoxicological interest, including Mytilus edulis, Mytilus trossulus, Crassostrea gigas and Littorina littorea.


Assuntos
Bivalves/citologia , Sistema Digestório/citologia , Mytilus/citologia , Coloração e Rotulagem/métodos , Animais , Bivalves/anatomia & histologia , Biomarcadores Ambientais , Gastrópodes/anatomia & histologia , Gastrópodes/citologia , Histocitoquímica , Mytilus/anatomia & histologia
18.
Semin Cell Dev Biol ; 51: 92-105, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26851628

RESUMO

The digestive system comprises numerous cells, tissues and organs that are essential for the proper assimilation of nutrients and energy. Many aspects of digestive organ function are highly conserved among vertebrates, yet the final anatomical configuration of the gut varies widely between species, especially those with different diets. Improved understanding of the complex molecular and cellular events that orchestrate digestive organ development is pertinent to many areas of biology and medicine, including the regeneration or replacement of diseased organs, the etiology of digestive organ birth defects, and the evolution of specialized features of digestive anatomy. In this review, we highlight specific examples of how investigations using Xenopus laevis frog embryos have revealed insight into the molecular and cellular dynamics of digestive organ patterning and morphogenesis that would have been difficult to obtain in other animal models. Additionally, we discuss recent studies of gut development in non-model frog species with unique feeding strategies, such as Lepidobatrachus laevis and Eleutherodactylous coqui, which are beginning to provide glimpses of the evolutionary mechanisms that may generate morphological variation in the digestive tract. The unparalleled experimental versatility of frog embryos make them excellent, integrative models for studying digestive organ development across multiple disciplines.


Assuntos
Sistema Digestório/embriologia , Xenopus laevis/embriologia , Animais , Evolução Biológica , Sinalização do Cálcio , Comunicação Celular , Sistema Digestório/citologia , Endoderma/citologia , Endoderma/embriologia , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Morfogênese , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
19.
Dev Biol ; 431(2): 194-204, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28939335

RESUMO

In insects, the hindgut is a homeostatic region of the digestive tract, divided into pylorus, ileum, and rectum, that reabsorbs water, ions, and small molecules produced during hemolymph filtration. The hindgut anatomy in bee larvae is different from that of adult workers. This study reports the morphological changes and cellular events that occur in the hindgut during the metamorphosis of the honeybee Apis mellifera. We describe the occurrence of autophagosomes and the ultrastructure of the epithelial cells and cuticle, suggesting that cuticular degradation begins in prepupae, with the cuticle being reabsorbed and recycled by autophagosomes in white- and pink-eyed pupae, followed by the deposition of new cuticle in light-brown-eyed pupae. In L5S larvae and prepupae, the hindgut undergoes cell proliferation in the anterior and posterior ends. In the pupae, the pylorus, ileum, and rectum regions are differentiated, and cell proliferation ceases in dark-brown-eyed pupae. Apoptosis occurs in the hindgut from the L5S larval to the pink-eyed pupal stage. In light-brown- and dark-brown-eyed pupae, the ileum epithelium changes from pseudostratified to simple only after the production of the basal lamina, whereas the rectal epithelium is always flattened. In black-eyed pupae, ileum epithelial cells have large vacuoles and subcuticular spaces, while in adult forager workers these cells have long invaginations in the cell apex and many mitochondria, indicating a role in the transport of compounds. Our findings show that hindgut morphogenesis is a dynamic process, with tissue remodeling and cellular events taking place for the formation of different regions of the organ, the reconstruction of a new cuticle, and the remodeling of visceral muscles.


Assuntos
Apoptose , Abelhas/anatomia & histologia , Abelhas/embriologia , Sistema Digestório/citologia , Sistema Digestório/embriologia , Hierarquia Social , Tegumento Comum/anatomia & histologia , Animais , Autofagia , Abelhas/ultraestrutura , Caspase 3/metabolismo , Proliferação de Células , Sistema Digestório/ultraestrutura , Histonas/metabolismo , Larva/citologia , Larva/ultraestrutura , Pupa/citologia , Pupa/ultraestrutura
20.
Development ; 142(24): 4288-98, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26493402

RESUMO

In developing organisms, divergence from the canonical cell division cycle is often necessary to ensure the proper growth, differentiation, and physiological function of a variety of tissues. An important example is endoreplication, in which endocycling cells alternate between G and S phase without intervening mitosis or cytokinesis, resulting in polyploidy. Although significantly different from the canonical cell cycle, endocycles use regulatory pathways that also function in diploid cells, particularly those involved in S phase entry and progression. A key S phase regulator is the Cyclin E-Cdk2 kinase, which must alternate between periods of high (S phase) and low (G phase) activity in order for endocycling cells to achieve repeated rounds of S phase and polyploidy. The mechanisms that drive these oscillations of Cyclin E-Cdk2 activity are not fully understood. Here, we show that the Drosophila Cyclin E-Cdk2 inhibitor Dacapo (Dap) is targeted for destruction during S phase via a PIP degron, contributing to oscillations of Dap protein accumulation during both mitotic cycles and endocycles. Expression of a PIP degron mutant Dap attenuates endocycle progression but does not obviously affect proliferating diploid cells. A mathematical model of the endocycle predicts that the rate of destruction of Dap during S phase modulates the endocycle by regulating the length of G phase. We propose from this model and our in vivo data that endo S phase-coupled destruction of Dap reduces the threshold of Cyclin E-Cdk2 activity necessary to trigger the subsequent G-S transition, thereby influencing endocycle oscillation frequency and the extent of polyploidy.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Endorreduplicação , Proteínas Nucleares/metabolismo , Fase S , Sequência de Aminoácidos , Animais , Sistema Digestório/citologia , Sistema Digestório/embriologia , Proteínas de Drosophila/química , Drosophila melanogaster/embriologia , Células Epidérmicas , Feminino , Mitose , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Nucleares/química , Folículo Ovariano/citologia , Proteólise , Glândulas Salivares/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA