Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 797
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 49(1): 151-163.e5, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29980437

RESUMO

The intestinal barrier is vulnerable to damage by microbiota-induced inflammation that is normally restrained through mechanisms promoting homeostasis. Such disruptions contribute to autoimmune and inflammatory diseases including inflammatory bowel disease. We identified a regulatory loop whereby, in the presence of the normal microbiota, intestinal antigen-presenting cells (APCs) expressing the chemokine receptor CX3CR1 reduced expansion of intestinal microbe-specific T helper 1 (Th1) cells and promoted generation of regulatory T cells responsive to food antigens and the microbiota itself. We identified that disruption of the microbiota resulted in CX3CR1+ APC-dependent inflammatory Th1 cell responses with increased pathology after pathogen infection. Colonization with microbes that can adhere to the epithelium was able to compensate for intestinal microbiota loss, indicating that although microbial interactions with the epithelium can be pathogenic, they can also activate homeostatic regulatory mechanisms. Our results identify a cellular mechanism by which the microbiota limits intestinal inflammation and promotes tissue homeostasis.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Sistema Fagocitário Mononuclear/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Apresentação de Antígeno , Aderência Bacteriana/imunologia , Modelos Animais de Doenças , Feminino , Homeostase , Tolerância Imunológica , Imunidade nas Mucosas , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Células RAW 264.7
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33479167

RESUMO

Dendritic cells (DCs) and monocytes are crucial mediators of innate and adaptive immune responses during viral infection, but misdirected responses by these cells may contribute to immunopathology. Here, we performed high-dimensional flow cytometry-analysis focusing on mononuclear phagocyte (MNP) lineages in SARS-CoV-2-infected patients with moderate and severe COVID-19. We provide a deep and comprehensive map of the MNP landscape in COVID-19. A redistribution of monocyte subsets toward intermediate monocytes and a general decrease in circulating DCs was observed in response to infection. Severe disease coincided with the appearance of monocytic myeloid-derived suppressor cell-like cells and a higher frequency of pre-DC2. Furthermore, phenotypic alterations in MNPs, and their late precursors, were cell-lineage-specific and associated either with the general response against SARS-CoV-2 or COVID-19 severity. This included an interferon-imprint in DC1s observed in all patients and a decreased expression of the coinhibitory molecule CD200R in pre-DCs, DC2s, and DC3 subsets of severely sick patients. Finally, unsupervised analysis revealed that the MNP profile, alone, pointed to a cluster of COVID-19 nonsurvivors. This study provides a reference for the MNP response to SARS-CoV-2 infection and unravels mononuclear phagocyte dysregulations associated with severe COVID-19.


Assuntos
COVID-19/imunologia , Sistema Fagocitário Mononuclear/imunologia , SARS-CoV-2/imunologia , Adulto , COVID-19/epidemiologia , COVID-19/metabolismo , COVID-19/virologia , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Interferons/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Índice de Gravidade de Doença , Suécia
3.
Immunol Rev ; 295(1): 54-67, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32242952

RESUMO

We have only recently started to appreciate the extent to which immune cell activation involves significant changes in cellular metabolism. We are now beginning to understand how commitment to specific metabolic pathways influences aspects of cellular biology that are the more usual focus of immunological studies, such as activation-induced changes in gene transcription, post-transcriptional regulation of transcription, post-translational modifications of proteins, cytokine secretion, etc. Here, we focus on metabolic reprogramming in mononuclear phagocytes downstream of stimulation with inflammatory signals (such as LPS and IFNγ) vs alternative activation signals (IL-4), with an emphasis on work on dendritic cells and macrophages from our laboratory, and related studies from others. We cover aspects of glycolysis and its branching pathways (glycogen synthesis, pentose phosphate, serine synthesis, hexose synthesis, and glycerol 3 phosphate shuttle), the tricarboxylic acid pathway, fatty acid synthesis and oxidation, and mitochondrial biology. Although our understanding of the metabolism of mononuclear phagocytes has progressed significantly over the last 10 years, major challenges remain, including understanding the effects of tissue residence on metabolic programming related to cellular activation, and the translatability of findings from mouse to human biology.


Assuntos
Sistema Fagocitário Mononuclear/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Animais , Metabolismo Energético , Humanos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Sistema Fagocitário Mononuclear/citologia , Fagócitos/citologia
5.
J Immunol ; 206(10): 2251-2263, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965905

RESUMO

The laboratory rat continues to be the model of choice for many studies of physiology, behavior, and complex human diseases. Cells of the mononuclear phagocyte system (MPS; monocytes, macrophages, and dendritic cells) are abundant residents in every tissue in the body and regulate postnatal development, homeostasis, and innate and acquired immunity. Recruitment and proliferation of MPS cells is an essential component of both initiation and resolution of inflammation. The large majority of current knowledge of MPS biology is derived from studies of inbred mice, but advances in technology and resources have eliminated many of the advantages of the mouse as a model. In this article, we review the tools available and the current state of knowledge of development, homeostasis, regulation, and diversity within the MPS of the rat.


Assuntos
Imunidade Adaptativa , Modelos Animais de Doenças , Imunidade Inata , Sistema Fagocitário Mononuclear/imunologia , Ratos , Animais , Genoma , Homeostase/imunologia , Inflamação/imunologia , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Mutação , Fenótipo
6.
Trends Immunol ; 40(2): 98-112, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30579704

RESUMO

The mononuclear phagocyte system (MPS) is defined as a cell lineage in which committed marrow progenitors give rise to blood monocytes and tissue macrophages. Here, we discuss the concept of self-proscribed macrophage territories and homeostatic regulation of tissue macrophage abundance through growth factor availability. Recent studies have questioned the validity of the MPS model and argued that tissue-resident macrophages are a separate lineage seeded during development and maintained by self-renewal. We address this issue; discuss the limitations of inbred mouse models of monocyte-macrophage homeostasis; and summarize the evidence suggesting that during postnatal life, monocytes can replace resident macrophages in all major organs and adopt their tissue-specific gene expression. We conclude that the MPS remains a valid and accurate framework for understanding macrophage development and homeostasis.


Assuntos
Macrófagos/imunologia , Monócitos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Animais , Homeostase , Humanos , Camundongos
7.
Immunology ; 159(1): 26-38, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31777068

RESUMO

Mucosal tissues contain distinct microbial communities that differ drastically depending on the barrier site, and as such, mucosal immune responses have evolved to be tailored specifically for their location. Whether protective or regulatory immune responses against invading pathogens or the commensal microbiota occur is controlled by local mononuclear phagocytes (MNPs). Comprising macrophages and dendritic cells (DCs), the functions of these cells are highly dependent on the local environment. For example, the intestine contains the greatest bacterial load of any site in the body, and hence, intestinal MNPs are hyporesponsive to bacterial stimulation. This is thought to be one of the major mechanisms by which harmful immune responses directed against the trillions of harmless bacteria that line the gut lumen are avoided. Regulation of MNP function by the microbiota has been characterized in the most depth in the intestine but there are several mucosal sites that also contain their own microbiota. In this review, we present an overview of how MNP function is regulated by the microbiota at mucosal sites, highlighting recent novel pathways by which this occurs in the intestine, and new studies elucidating these interactions at mucosal sites that have been characterized in less depth, including the urogenital tract.


Assuntos
Imunidade nas Mucosas , Microbiota/imunologia , Sistema Fagocitário Mononuclear/imunologia , Mucosa/microbiologia , Simbiose/imunologia , Animais , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Tolerância Imunológica , Intestinos/imunologia , Intestinos/microbiologia , Pulmão/microbiologia , Modelos Animais , Boca/imunologia , Boca/microbiologia , Mucosa/imunologia , Sistema Urogenital/imunologia , Sistema Urogenital/microbiologia
8.
PLoS Pathog ; 14(5): e1007069, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782555

RESUMO

The opportunistic fungal pathogen Candida albicans frequently causes diseases such as oropharyngeal candidiasis (OPC) in immunocompromised individuals. Although it is well appreciated that the cytokine IL-17 is crucial for protective immunity against OPC, the cellular source and the regulation of this cytokine during infection are still a matter of debate. Here, we directly visualized IL-17 production in the tongue of experimentally infected mice, thereby demonstrating that this key cytokine is expressed by three complementary subsets of CD90+ leukocytes: RAG-dependent αß and γδ T cells, as well as RAG-independent ILCs. To determine the regulation of IL-17 production at the onset of OPC, we investigated in detail the myeloid compartment of the tongue and found a heterogeneous and dynamic mononuclear phagocyte (MNP) network in the infected tongue that consists of Zbtb46-Langerin- macrophages, Zbtb46+Langerin+ dendritic cells (DCs) and Ly6C+ inflammatory monocytes. Of those, the Langerin+ DC population stands out by its unique capacity to co-produce the cytokines IL-1ß, IL-6 and IL-23, all of which promote IL-17 induction in response to C. albicans in the oral mucosa. The critical role of Langerin+ DCs for the innate IL-17 response was confirmed by depletion of this cellular subset in vivo, which compromised IL-17 induction during OPC. In conclusion, our work revealed key regulatory factors and their cellular sources of innate IL-17-dependent antifungal immunity in the oral mucosa.


Assuntos
Antígenos de Superfície/imunologia , Candida albicans/imunologia , Candidíase Bucal/imunologia , Células Dendríticas/imunologia , Interleucina-17/biossíntese , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia , Mucosa Bucal/imunologia , Animais , Candidíase Bucal/microbiologia , Citocinas/imunologia , Feminino , Citometria de Fluxo , Interleucina-1beta/biossíntese , Interleucina-23/biossíntese , Interleucina-23/imunologia , Interleucina-6/biossíntese , Leucócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Fagocitário Mononuclear/imunologia , Mucosa Bucal/citologia , Mucosa Bucal/microbiologia , Neutrófilos/imunologia , Organismos Livres de Patógenos Específicos , Baço/citologia , Baço/imunologia , Antígenos Thy-1/imunologia , Língua/citologia , Língua/imunologia , Língua/microbiologia
9.
Cell Immunol ; 357: 104199, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32942189

RESUMO

Signal Inhibitory Receptor on Leukocytes-1 (SIRL-1) is expressed on human blood monocytes and granulocytes and inhibits myeloid effector functions. On monocytes, but not granulocytes, SIRL-1 expression is low or absent in individuals with the single nucleotide polymorphism (SNP) rs612529C. The expression of SIRL-1 in tissue and the influence of rs612529 hereon is currently unknown. Here, we used flow cytometry to determine SIRL-1 expression on immune cells in human blood and three barrier tissues; skin, colon and lung. SIRL-1 was expressed by virtually all neutrophils and eosinophils in these tissues. In contrast, SIRL-1 was not expressed by monocyte-derived cells in skin and colon, whereas it was highly expressed by lung classical monocytes. Lung monocytes from individuals with a rs612529C allele had decreased SIRL-1 expression, consistent with the genotype association in blood. Within the different monocyte subsets in blood and lung, SIRL-1 expression was highest in classical monocytes and lowest in nonclassical monocytes. SIRL-1 was not expressed by dendritic cells in blood and barrier tissues. Together, these results indicate that SIRL-1 is differentially expressed on phagocyte subsets in blood and barrier tissues, and that its expression on monocytes is genotype- and tissue-specific. Immune regulation of monocytes by SIRL-1 may be of particular importance in the lung.


Assuntos
Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Adulto , Colo/citologia , Colo/metabolismo , Eosinófilos/imunologia , Feminino , Citometria de Fluxo/métodos , Humanos , Leucócitos/imunologia , Leucócitos Mononucleares/imunologia , Pulmão/citologia , Pulmão/metabolismo , Masculino , Monócitos/imunologia , Monócitos/metabolismo , Sistema Fagocitário Mononuclear/imunologia , Neutrófilos/imunologia , Fagócitos/imunologia , Fagócitos/metabolismo , Pele/citologia , Pele/metabolismo
10.
J Cardiovasc Pharmacol ; 76(4): 407-413, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33027195

RESUMO

Myocardial infarction (MI) is an irreversible damage of the heart muscle, which often leads to adverse cardiac remodeling and progressive heart failure. After MI, immune cells play a vital role in the clearance of the dying tissue and cardiac remodeling. Post-MI events include the release of danger signals by necrotic cardiomyocytes and the migration of the inflammatory cells, such as dendritic cells, neutrophils, monocytes, and macrophages, into the site of the cardiac injury to digest the cell debris and secrete a variety of inflammatory factors activating the inflammatory response. In this review, we focus on the role of immune cells in the cardiac remodeling after MI and the novel immunotherapies targeting immune cells.


Assuntos
Leucócitos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Infarto do Miocárdio/imunologia , Remodelação Ventricular , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Imunoterapia , Leucócitos/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Sistema Fagocitário Mononuclear/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transdução de Sinais
11.
Acta Neuropsychiatr ; 32(5): 229-236, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32178747

RESUMO

OBJECTIVE: Increasing evidence suggests that immunological and inflammatory dysfunctions may play an important role in predisposition, onset, and progression of schizophrenia and related psychosis. The activation of cells of the mononuclear phagocyte system, especially microglia and monocytes, has been reported in schizophrenia. We carried out this systematic review and meta-analysis to investigate if there are significant differences in monocyte count comparing healthy controls with people suffering from schizophrenia and related disorders. METHODS: We searched main electronic databases; nine records met all our criteria and were included in the meta-analysis. Meta-analyses based on random effects models have been carried out generating pooled standardised mean differences (SMDs) of monocyte count in peripheral blood between schizophrenia and related psychosis and healthy controls. Heterogeneity was estimated. Relevant sensitivity and subgroup analyses were conducted. RESULTS: Patients showed higher monocyte count as compared with healthy control (SMD = 0.393; p = 0.001). Heterogeneity across studies was from moderate to high (I2 = 65.952%); sensitivity analysis leaving out two studies responsible for most of the heterogeneity showed a slightly higher SMD. Subgroup analyses confirmed this result, showing no significant differences in the effect size across different study characteristics. CONCLUSIONS: Monocyte count can be considered an indirect marker of microglia activation in the central nervous system. Thus, the observed higher monocyte count in patients could be considered as a possible peripheral marker of microglia's activation in schizophrenia disorder.


Assuntos
Leucócitos Mononucleares/citologia , Microglia/metabolismo , Transtornos Psicóticos/sangue , Esquizofrenia/sangue , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Heterogeneidade Genética , Humanos , Masculino , Microglia/imunologia , Sistema Fagocitário Mononuclear/imunologia , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/epidemiologia , Transtornos Psicóticos/fisiopatologia , Esquizofrenia/diagnóstico , Esquizofrenia/epidemiologia , Esquizofrenia/fisiopatologia , Sensibilidade e Especificidade
12.
J Hepatol ; 71(6): 1086-1098, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31349000

RESUMO

BACKGROUND & AIMS: Liver macrophages can be involved in both pathogen clearance and/or pathogenesis. To get further insight on their role during chronic hepatitis B virus (HBV) infections, our aim was to phenotypically and functionally characterize in vivo and ex vivo the interplay between HBV, primary human liver macrophages (PLMs) and primary blood monocytes differentiated into pro-inflammatory or anti-inflammatory macrophages (M1-MDMs or M2-MDMs, respectively). METHODS: PLMs or primary blood monocytes, either ex vivo differentiated into M1-MDMs or M2-MDMs, were exposed to HBV and their activation followed by ELISA or quantitative reverse transcription PCR (RT-qPCR). Liver biopsies from HBV-infected patients were analysed by RT-qPCR or immunohistochemistry. Viral parameters in HBV-infected primary human hepatocytes and differentiated HepaRG cells were followed by ELISA, qPCR and RT-qPCR analyses. RESULTS: HBc protein was present within the macrophages of liver biopsies taken from HBV-infected patients. Macrophages from HBV-infected patients also expressed higher levels of anti-inflammatory macrophage markers than those from non-infected patients. Ex vivo exposure of naive PLMs to HBV led to reduced secretion of pro-inflammatory cytokines. Upon exposure to HBV or HBV-producing cells during differentiation and activation, M1-MDMs secreted less IL-6 and IL-1ß, whereas M2-MDMs secreted more IL-10 when exposed to HBV during activation. Finally, cytokines produced by M1-MDMs, but not those produced by HBV-exposed M1-MDMs, decreased HBV infection of hepatocytes. CONCLUSIONS: Altogether, our data strongly suggest that HBV modulates liver macrophage functions to favour the establishment of infection. LAY SUMMARY: Hepatitis B virus modulates liver macrophage function in order to favour the establishment and likely maintenance of infection. It impairs the production of the antiviral cytokine IL-1ß, while promoting that of IL-10 in the microenvironment. This phenotype can be recapitulated in naive liver macrophages or monocyte-derived-macrophages ex vivo by short exposure to the virus or cells replicating the virus, thus suggesting an "easy to implement" mechanism of inhibition.


Assuntos
Diferenciação Celular/imunologia , Vírus da Hepatite B/fisiologia , Hepatite B Crônica , Células de Kupffer , Ativação de Macrófagos/imunologia , Monócitos , Células Cultivadas , DNA Viral/isolamento & purificação , Hepatite B Crônica/imunologia , Hepatite B Crônica/patologia , Humanos , Imuno-Histoquímica , Imunomodulação , Interleucina-10 , Interleucina-1beta , Células de Kupffer/imunologia , Células de Kupffer/patologia , Monócitos/imunologia , Monócitos/patologia , Sistema Fagocitário Mononuclear/imunologia
13.
BMC Immunol ; 20(1): 42, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718550

RESUMO

BACKGROUND: Myeloid cells, especially mononuclear phagocytes, which include monocytes, macrophages and dendritic cells (DC), play vital roles in innate immunity, and in the initiation and maintenance of adaptive immunity. While T cell-associated activation pathways and cytokines have been identified and evaluated in inflammatory bowel disease (IBD) patients (Neurath, Nat Rev Gastroenterol Hepatol 14:269-78, 1989), the role of mononuclear phagocytes are less understood. Recent reports support the crucial role of DC subsets in the development of acute colitis models (Arimura et al., Mucosal Immunol 10:957-70, 2017), and suggest they may contribute to the pathogenesis of ulcerative colitis (UC) by inducing Th1/Th2/Th17 responses (Matsuno et al., Inflamm Bowel Dis 23:1524-34, 2017). RESULTS: We performed in silico analysis and evaluated the enrichment of immune cells, with a focus on mononuclear phagocytes in IBD patient colonic biopsies. Samples were from different gut locations, with different levels of disease severity, and with treatment response to current therapies. We observe enrichment of monocytes, M1 macrophages, activated DCs (aDCs) and plasmacytoid dendritic cells (pDCs) in inflamed tissues from various gut locations. This enrichment correlates with disease severity. Additionally, the same mononuclear phagocytes subsets are among the top enriched cell types in both infliximab and vedolizumab treatment non-responder samples. We further investigated the enrichment of selected DC and monocyte subsets based on gene signatures derived from a DC- and monocyte-focused single cell RNA-seq (scRNA-seq) study (Villani et al., Science 356:eaah4573, 2017), and verified enrichment in both inflamed tissues and those with treatment resistance. Moreover, we validated an increased mononuclear phagocyte subset abundance in a Dextran Sulphate Sodium (DSS) induced colitis model in C57Bl/6 mice representative of chronic inflammation. CONCLUSIONS: We conducted an extensive analysis of immune cell populations in IBD patient colonic samples and identified enriched subsets of monocytes, macrophages and dendritic cells in inflamed tissues. Understanding how they interact with other immune cells and other cells in the colonic microenvironment such as epithelial and stromal cells will help us to delineate disease pathogenesis.


Assuntos
Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Sistema Fagocitário Mononuclear/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Biópsia , Microambiente Celular , Colo/imunologia , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Resistência a Medicamentos , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Infliximab/farmacologia , Infliximab/uso terapêutico , Contagem de Leucócitos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Sistema Fagocitário Mononuclear/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
14.
Semin Dial ; 32(5): 417-423, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30968463

RESUMO

Unexplained chronic inflammation is prevalent in end-stage kidney disease, and contributes toward accelerated cardiovascular disease, and premature death. The source of inflammation is unclear, although increased gastrointestinal permeability is a likely contributory factor. Whether a "leaky" gut leads to penetration of the systemic circulation by gut-derived pathogens is at least partly dependent on Kupffer cell function. These resident liver macrophages are an important part of the reticuloendothelial system (RES), and there is evidence for Kupffer cell and reticuloendothelial dysfunction in chronic kidney disease. These observations are compatible with the inflammatory milieu of chronic kidney disease being of gut origin. Measuring gut permeability in chronic kidney disease is challenging. Use of fecal biomarkers and other novel serum biomarkers represent potential alternative tools. One such marker is (1-3)-Beta-D-glucan, a polysaccharide constituent of many fungal, bacterial, and plant cell walls; levels of (1-3)-Beta-D-glucan are elevated in hemodialysis patients. Gastrointestinal permeability and impaired removal by the RES may contribute to these high levels, suggesting potential importance as a biomarker. High levels of (1-3)-Beta-D-glucan also falsely elevate endotoxin measurements. Measuring the contribution of gastrointestinal permeability and RES dysfunction to systemic inflammation may be an important step in designing therapies to reduce systemic inflammation in chronic kidney disease.


Assuntos
Inflamação/fisiopatologia , Intestinos/fisiopatologia , Falência Renal Crônica/fisiopatologia , Sistema Fagocitário Mononuclear/fisiopatologia , Biomarcadores , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/fisiopatologia , Humanos , Inflamação/imunologia , Intestinos/imunologia , Falência Renal Crônica/imunologia , Sistema Fagocitário Mononuclear/imunologia , Permeabilidade
15.
Int J Mol Sci ; 20(15)2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31357698

RESUMO

The proper functioning of the monocyte-macrophage system, an important unit of innate immunity, ensures the normal course of pregnancy. In this review, we present the current data on the origin of the monocyte-macrophage system and its functioning in the female reproductive system during the ovarian cycle, and over the course of both normal and complicated pregnancy. Preeclampsia is a crucial gestation disorder characterized by pronounced inflammation in the maternal body that affects the work of the monocyte-macrophage system. The effects of inflammation at preeclampsia manifest in changes in monocyte counts and their subset composition, and changes in placental macrophage counts and their polarization. Here we summarize the recent data on this issue for both the maternal organism and the fetus. The influence of estrogen on macrophages and their altered levels in preeclampsia are also discussed.


Assuntos
Imunidade Inata/genética , Inflamação/genética , Sistema Fagocitário Mononuclear/imunologia , Pré-Eclâmpsia/genética , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , Ciclo Menstrual/genética , Ciclo Menstrual/imunologia , Monócitos/imunologia , Placenta/imunologia , Pré-Eclâmpsia/imunologia , Pré-Eclâmpsia/patologia , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/imunologia , Complicações na Gravidez/patologia
16.
Kidney Int ; 93(4): 826-841, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29395335

RESUMO

The atypical chemokine receptor 2 (ACKR2), also named D6, regulates local levels of inflammatory chemokines by internalization and degradation. To explore potential anti-inflammatory functions of ACKR2 in glomerulonephritis, we induced autologous nephrotoxic nephritis in C57/BL6 wild-type and Ackr2-deficient mice. Renal ACKR2 expression increased and localized to interstitial lymphatic endothelium during nephritis. At two weeks Ackr2-/-mice developed increased albuminuria and urea levels compared to wild-type mice. Histological analysis revealed increased structural damage in the glomerular and tubulointerstitial compartments within Ackr2-/- kidneys. This correlated with excessive renal leukocyte infiltration of CD4+ T cells and mononuclear phagocytes with increased numbers in the tubulointerstitium but not glomeruli in knockout mice. Expression of inflammatory mediators and especially markers of fibrotic tissue remodeling were increased along with higher levels of ACKR2 inflammatory chemokine ligands like CCL2 in nephritic Ackr2-/- kidneys. In vitro, Ackr2 deficiency in TNF-stimulated tubulointerstitial tissue but not glomeruli increased chemokine levels. These results are in line with ACKR2 expression in interstitial lymphatic endothelial cells, which also assures efflux of activated leukocytes into regional lymph nodes. Consistently, nephritic Ackr2-/- mice showed reduced adaptive cellular immune responses indicated by decreased regional T-cell activation. However, this did not prevent aggravated injury in the kidneys of Ackr2-/- mice with nephrotoxic nephritis due to simultaneously increased tubulointerstitial chemokine levels, leukocyte infiltration and fibrosis. Thus, ACKR2 is important in limiting renal inflammation and fibrotic remodeling in progressive nephrotoxic nephritis. Hence, ACKR2 may be a potential target for therapeutic interventions in immune complex glomerulonephritis.


Assuntos
Glomerulonefrite/prevenção & controle , Doenças do Complexo Imune/prevenção & controle , Glomérulos Renais/metabolismo , Túbulos Renais/metabolismo , Receptores de Quimiocinas/metabolismo , Imunidade Adaptativa , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Glomerulonefrite/imunologia , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Doenças do Complexo Imune/imunologia , Doenças do Complexo Imune/metabolismo , Doenças do Complexo Imune/patologia , Mediadores da Inflamação/metabolismo , Glomérulos Renais/imunologia , Glomérulos Renais/patologia , Túbulos Renais/imunologia , Túbulos Renais/patologia , Ativação Linfocitária , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Fagocitário Mononuclear/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/genética , Transdução de Sinais
17.
J Clin Immunol ; 38(6): 656-693, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30136218

RESUMO

Autosomal recessive CARD9 deficiency underlies life-threatening, invasive fungal infections in otherwise healthy individuals normally resistant to other infectious agents. In less than 10 years, 58 patients from 39 kindreds have been reported in 14 countries from four continents. The patients are homozygous (n = 49; 31 kindreds) or compound heterozygous (n = 9; 8 kindreds) for 22 different CARD9 mutations. Six mutations are recurrent, probably due to founder effects. Paradoxically, none of the mutant alleles has been experimentally demonstrated to be loss-of-function. CARD9 is expressed principally in myeloid cells, downstream from C-type lectin receptors that can recognize fungal components. Patients with CARD9 deficiency present impaired cytokine and chemokine production by macrophages, dendritic cells, and peripheral blood mononuclear cells and defective killing of some fungi by neutrophils in vitro. Neutrophil recruitment to sites of infection is impaired in vivo. The proportion of Th17 cells is low in most, but not all, patients tested. Up to 52 patients suffering from invasive fungal diseases (IFD) have been reported, with ages at onset of 3.5 to 52 years. Twenty of these patients also displayed superficial fungal infections. Six patients had only mucocutaneous candidiasis or superficial dermatophytosis at their last follow-up visit, at the age of 19 to 50 years. Remarkably, for 50 of the 52 patients with IFD, a single fungus was involved; only two patients had IFDs due to two different fungi. IFD recurred in 44 of 45 patients who responded to treatment, and a different fungal infection occurred in the remaining patient. Ten patients died from IFD, between the ages of 12 and 39 years, whereas another patient died at the age of 91 years, from an unrelated cause. At the most recent scheduled follow-up visit, 81% of the patients were still alive and aged from 6.5 to 75 years. Strikingly, all the causal fungi belonged to the phylum Ascomycota: commensal Candida and saprophytic Trychophyton, Aspergillus, Phialophora, Exophiala, Corynesprora, Aureobasidium, and Ochroconis. Human CARD9 is essential for protective systemic immunity to a subset of fungi from this phylum but seems to be otherwise redundant. Previously healthy patients with unexplained invasive fungal infection, at any age, should be tested for inherited CARD9 deficiency. KEY POINTS: • Inherited CARD9 deficiency (OMIM #212050) is an AR PID due to mutations that may be present in a homozygous or compound heterozygous state. • CARD9 is expressed principally in myeloid cells and transduces signals downstream from CLR activation by fungal ligands. • Endogenous mutant CARD9 levels differ between alleles (from full-length normal protein to an absence of normal protein). • The functional impacts of CARD9 mutations involve impaired cytokine production in response to fungal ligands, impaired neutrophil killing and/or recruitment to infection sites, and defects of Th17 immunity. • The key clinical manifestations in patients are fungal infections, including CMC, invasive (in the CNS in particular) Candida infections, extensive/deep dermatophytosis, subcutaneous and invasive phaeohyphomycosis, and extrapulmonary aspergillosis. • The clinical penetrance of CARD9 deficiency is complete, but penetrance is incomplete for each of the fungi concerned. • Age at onset is highly heterogeneous, ranging from childhood to adulthood for the same fungal disease. • All patients with unexplained IFD should be tested for CARD9 mutations. Familial screening and genetic counseling should be proposed. • The treatment of patients with CARD9 mutations is empirical and based on antifungal therapies and the surgical removal of fungal masses. Patients with persistent/relapsing Candida infections of the CNS could be considered for adjuvant GM-CSF/G-CSF therapy. The potential value of HSCT for CARD9-deficient patients remains unclear.


Assuntos
Candidíase Mucocutânea Crônica/diagnóstico , Candidíase Mucocutânea Crônica/etiologia , Estudos de Associação Genética , Predisposição Genética para Doença , Adulto , Alelos , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Candidíase Mucocutânea Crônica/epidemiologia , Candidíase Mucocutânea Crônica/terapia , Criança , Biologia Computacional/métodos , Modelos Animais de Doenças , Expressão Gênica , Regulação da Expressão Gênica , Frequência do Gene , Estudos de Associação Genética/métodos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade , Camundongos , Sistema Fagocitário Mononuclear/citologia , Sistema Fagocitário Mononuclear/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Mutação , Fenótipo
18.
Cell Immunol ; 330: 159-167, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29395860

RESUMO

In mammals, macrophages (MF) are present in virtually all tissues where they serve many different functions linked primarily to the maintenance of homeostasis, innate defense against pathogens, tissue repair and metabolism. Although some of these functions appear common to all tissues, others are specific to the homing tissue. Thus, MF become adapted to perform particular functions in a given tissue. Accordingly, MF express common markers but also sets of tissue-specific markers linked to dedicated functions. One of the largest pool of MF in the body lines up the wall of the gut. Located in the small intestine, Peyer's patches (PP) are primary antigen sampling and mucosal immune response inductive sites. Surprisingly, although markers of intestinal MF, such as F4/80, have been identified more than 30 years ago, MF of PP escaped any kind of phenotypic description and remained "unknown" for decades. In absence of MF identification, the characterization of the PP mononuclear phagocyte system (MPS) functions has been impaired. However, taking into account that PP are privileged sites of entry for pathogens, it is important to understand how the latter are handled by and/or escape the PP MPS, especially MF, which role in killing invaders is well known. This review focuses on recent advances on the PP MPS, which have allowed, through new criteria of PP phagocyte subset identification, the characterization of PP MF origin, diversity, specificity, location and functions.


Assuntos
Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Macrófagos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Nódulos Linfáticos Agregados/imunologia , Imunidade Adaptativa/imunologia , Animais , Imunidade nas Mucosas/imunologia , Sistema Fagocitário Mononuclear/citologia , Nódulos Linfáticos Agregados/citologia , Fagócitos/imunologia
19.
Cell Immunol ; 330: 97-104, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29748002

RESUMO

The kidney contains a large and complex network of mononuclear phagocytes, which includes dendritic cells (DCs) and macrophages (MØs). The distinction between these cell types is traditionally based on the expression of molecular markers and morphology. However, several classification systems are used in parallel to identify DCs and MØs, leading to considerable uncertainty about their identity and functional roles. The discovery that a substantial proportion of macrophages in tissues like the kidney are embryonically derived further complicates the situation. Recent studies have used newly identified transcription factors such as ZBTB46 and lineage tracing techniques for classifying mononuclear phagocytes. These approaches have shed new light on the functional specialization of these cells in health and disease, uncovered an influence of the renal microenvironment and revealed considerable cellular plasticity, especially in inflammatory situations. In this review, the current knowledge about the developmental origins and versatile functional roles of DCs and MØs in kidney homeostasis and disease is discussed.


Assuntos
Células Dendríticas/imunologia , Rim/imunologia , Macrófagos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Animais , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Homeostase/imunologia , Humanos , Rim/citologia , Rim/metabolismo , Nefropatias/imunologia , Nefropatias/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Sistema Fagocitário Mononuclear/citologia , Sistema Fagocitário Mononuclear/metabolismo , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
20.
Trends Immunol ; 36(9): 547-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26297103

RESUMO

Neutrophils are first responders of the immune system, rapidly migrating into affected tissues in response to injury or infection. To effectively call in this first line of defense, strategically placed cells within the vasculature and tissue respond to noxious stimuli by sending out coordinated signals that recruit neutrophils. Regulation of organ-specific neutrophil entry occurs at two levels. First, the vasculature supplying the organ provides cues for neutrophil egress out of the bloodstream in a manner dependent upon its unique cellular composition and architectural features. Second, resident immune cells and stromal cells within the organ send coordinated signals that guide neutrophils to their final destination. Here, we review recent findings that highlight the importance of these tissue-specific responses in the regulation of neutrophil recruitment and the initiation and resolution of inflammation.


Assuntos
Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Animais , Vasos Sanguíneos/imunologia , Vasos Sanguíneos/metabolismo , Quimiotaxia de Leucócito/imunologia , Endotélio Vascular/metabolismo , Humanos , Imunidade Inata , Imunomodulação , Inflamação/imunologia , Inflamação/metabolismo , Sistema Fagocitário Mononuclear/citologia , Sistema Fagocitário Mononuclear/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Neutrófilos/metabolismo , Especificidade de Órgãos/imunologia , Pericitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA