Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 51(3): e13837, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302081

RESUMO

Although it is well established that fibromyalgia (FM) syndrome is characterized by chronic diffuse musculoskeletal hyperalgesia, very little is known about the effect of this pathology on muscle tissue plasticity. Therefore, the present study aimed to characterize the putative alterations in skeletal muscle mass in female rats subjected to a FM model by inducing chronic diffuse hyperalgesia (CDH) through double injections of acidic saline (pH 4.0) into the left gastrocnemius muscle at 5-day intervals. To determine protein turnover, the total proteolysis, proteolytic system activities and protein synthesis were evaluated in oxidative soleus muscles of pH 7.2 (control) and pH 4.0 groups at 7 days after CDH induction. All animals underwent behavioural analyses of mechanical hyperalgesia, strength and motor performance. Our results demonstrated that, in addition to hyperalgesia, rats injected with acidic saline exhibited skeletal muscle loss, as evidenced by a decrease in the soleus fibre cross-sectional area. This muscle loss was associated with increased proteasomal proteolysis and expression of the atrophy-related gene (muscle RING-finger protein-1), as well as reduced protein synthesis and decreased protein kinase B/S6 pathway activity. Although the plasma corticosterone concentration did not differ between the control and pH 4.0 groups, the removal of the adrenal glands attenuated hyperalgesia, but it did not prevent the increase in muscle protein loss in acidic saline-injected animals. The data suggests that the stress-related hypothalamic-pituitary-adrenal axis is involved in the development of hyperalgesia, but is not responsible for muscle atrophy observed in the FM model induced by intramuscular administration of acidic saline. Although the mechanisms involved in the attenuation of hyperalgesia in rats injected with acidic saline and subjected to adrenalectomy still need to be elucidated, the results found in this study suggest that glucocorticoids may not represent an effective therapeutic approach to alleviate FM symptoms.


Assuntos
Fibromialgia , Hiperalgesia , Ratos , Feminino , Animais , Hiperalgesia/tratamento farmacológico , Fibromialgia/complicações , Fibromialgia/tratamento farmacológico , Fibromialgia/patologia , Adrenalectomia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Solução Salina/farmacologia
2.
Nord J Psychiatry ; 78(5): 402-410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38573199

RESUMO

BACKGROUND: Pediatric generalized anxiety disorder (GAD) is debilitating and increasingly prevalent, yet its etiology remains unclear. Some believe the disorder to be propagated by chronic dysregulation of the limbic-hypothalamic-pituitary-adrenal (L-HPA) axis, but morphometric studies of implicated subcortical areas have been largely inconclusive. Recognizing that certain subcortical subdivisions are more directly involved in L-HPA axis functioning, this study aims to detect specific abnormalities in these critical areas. METHODS: Thirty-eight MRI scans of preschool children with (n = 15) and without (n = 23) GAD underwent segmentation and between-group volumetric comparisons of the basolateral amygdala (BLA), ventral hippocampal subiculum (vSC), and mediodorsal medial magnocellular (MDm) area of the thalamus. RESULTS: Children with GAD displayed significantly larger vSC compared to healthy peers, F(1, 31) = 6.50, pFDR = .048. On average, children with GAD presented with larger BLA and MDm, Fs(1, 31) ≥ 4.86, psFDR ≤ .054. Exploratory analyses revealed right-hemispheric lateralization of all measures, most notably the MDm, F(1, 31) = 8.13, pFDR = .024, the size of which scaled with symptom severity, r = .83, pFDR = .033. CONCLUSION: The BLA, vSC, and MDm are believed to be involved in the regulation of anxiety and stress, both individually and collectively through the excitation and inhibition of the L-HPA axis. All were found to be enlarged in children with GAD, perhaps reflecting hypertrophy related to hyperexcitability, or early neuronal overgrowth. Longitudinal studies should investigate the relationship between these early morphological differences and the long-term subcortical atrophy previously observed.


Assuntos
Tonsila do Cerebelo , Transtornos de Ansiedade , Hipocampo , Sistema Hipotálamo-Hipofisário , Imageamento por Ressonância Magnética , Tálamo , Humanos , Masculino , Feminino , Transtornos de Ansiedade/diagnóstico por imagem , Transtornos de Ansiedade/patologia , Transtornos de Ansiedade/fisiopatologia , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Criança , Hipocampo/patologia , Hipocampo/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/patologia , Tálamo/fisiopatologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipotálamo-Hipofisário/metabolismo , Pré-Escolar , Sistema Hipófise-Suprarrenal/fisiopatologia , Sistema Hipófise-Suprarrenal/patologia
3.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1154-1163, 2024 Mar.
Artigo em Zh | MEDLINE | ID: mdl-38621962

RESUMO

Ischemic stroke is divided into acute phase, subacute phase, and recovery phase, with different pathological and physiological characteristics manifested at each stage. Among them, immune and inflammatory reactions persist for several days and weeks after ischemia. Ischemic stroke not only triggers local inflammation in damaged brain regions but also induces a disorder in the immune system, thereby promoting neuroinflammation and exacerbating brain damage. Therefore, conducting an in-depth analysis of the interaction between the central nervous system and the immune system after ischemic stroke, intervening in the main factors of the interaction between them, blocking pathological cascades, and thereby reducing brain inflammation have become the treatment strategies for ischemic stroke. This study summarizes and sorts out the interaction pathways between the central nervous system and the immune system. The impact of the central nervous system on the immune system can be analyzed from the perspective of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis(HPA), and local inflammatory stimulation. The impact of the immune system on the central nervous system can be analyzed from the dynamic changes of immune cells. At the same time, the relevant progress in the prevention and treatment of traditional Chinese medicine(TCM) is summarized, so as to provide new insights for the analysis of complex mechanisms of TCM in preventing and treating ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/tratamento farmacológico , Medicina Tradicional Chinesa , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/patologia , Sistema Nervoso Central , Isquemia Encefálica/terapia , Sistema Imunitário , Inflamação
4.
J Neuroinflammation ; 20(1): 219, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37775760

RESUMO

BACKGROUND: Spinal cord injury (SCI), which causes loss of sensory and motor function in the body below the level of injury, is a devastating disease of the central nervous system. SCI leads to severe secondary immunosuppression, called SCI-induced immunodeficiency syndrome (SCI-IDS), which is characterized by increased susceptibility to infection and further exacerbates neurological dysfunction. Several studies have suggested that SCI-IDS is an independent risk factor for poor neurological prognosis. SCI-IDS predominantly occurs following injury above the T5 levels and eventually leads to systemic immune failure, possibly via the sympathetic-adrenal medullary axis and the hypothalamic‒pituitary‒adrenal (HPA) axis. However, the mechanism remains unclear. METHODS AND OBJECTIVES: The concentrations of adrenocorticotropic hormone and cortisol in plasma, as well as changes in sympathetic activity (blood pressure and catecholamine levels in plasma), were assessed in rats in the high-level (T3) spinal cord injury (T3-SCI) group and the low-level (T10) spinal cord injury (T10-SCI) group. Second, the differential regulation of the gene network between the sympathetic-adrenal medullary axis and the HPA axis was explored by histology and multitissue transcriptomics, and the neuroendocrine-immune network associated with SCI-IDS was further elucidated. RESULTS: The spleen and thymus gland, which are secondary immune organs, were significantly atrophied in rats in the T3-SCI group, and the white pulp of the spleen was significantly atrophied. The level of cortisol, which is mediated by the adrenal glands, was markedly elevated, but norepinephrine levels were markedly decreased. There was no difference in adrenocorticotropic hormone expression between any of the groups. The transcriptome analysis results showed that the downregulated differentially expressed genes (DEGs) in the T3-SCI group were enriched in the GO term immunoregulation, indicating that splenic immune function was markedly impaired after high-level SCI. The upregulated DEGs in the hypothalamus (hub genes: Nod2, Serpine1, Cebpb, Nfkbil1, Ripk2, Zfp36, Traf6, Akap8, Gfer, Cxcl10, Tnfaip3, Icam1, Fcgr2b, Ager, Dusp10, and Mapkapk2) were significantly enriched in inflammatory pathways, and the downregulated genes (hub genes: Grm4, Nmu, P2ry12, rt1-bb1, Oprm1, Zfhx2, Gpr83, and Chrm2) were enriched in pathways related to inhibitory Gi-mediated G protein-coupled receptor (Gi-GPCR) neurons and neuropeptide changes. The upregulated genes in the adrenal glands (hub genes: Ciart, per2, per3, cry1, and cry2) were enriched in cortisol secretion and circadian rhythm changes, and the downregulated genes (hub genes: IL7r, rt1-bb, rt1-bb1, rt1-da, rt1-ba, cd74, cxcr3, vcam1, ccl5, bin1, and IL8) were significantly enriched in MHC-mediated immune responses. CONCLUSIONS: To explore the possible mechanism underlying SCI-IDS, this study assessed the differential regulation of the gene network associated with neuroendocrine immunity after SCI. Progressive neuroinflammation spreads after injury, and neurotransmission through Gi-mediated G protein-coupled receptors in the HPA axis and neuropeptide production by the hypothalamus are inhibited. Disruption of the connection between the hypothalamus and the adrenal glands causes autonomous regulation of the adrenal glands, disturbance of circadian rhythm and finally hypercortisolemia, leading to general suppression of peripheral adaptive immunity. Neuraxial nerve inflammation caused by SCI persists indefinitely, blocking nerve repair; persistent system-wide immunosuppression in the periphery results in increased susceptibility to infection, leading to poor neurological prognosis.


Assuntos
Sistema Hipotálamo-Hipofisário , Traumatismos da Medula Espinal , Ratos , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Hidrocortisona/metabolismo , Transcriptoma , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Traumatismos da Medula Espinal/patologia , Perfilação da Expressão Gênica , Hormônio Adrenocorticotrópico/metabolismo
5.
J Pharmacol Exp Ther ; 385(2): 78-87, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828629

RESUMO

Atopic dermatitis is a common chronic inflammatory skin disease, with most cases experiencing skin barrier dysfunction and enhanced allergen entry, accompanied by cytokine production which evokes predominantly type-2-skewed immune responses, itch, and scratching behavior. Although intense itch and excessive scratching behavior affect progression of skin lesions, it is unclear what causes them. Data suggest that scratching behavior stimulates brain dopaminergic reward and habit learning systems, strengthening habitual scratching behavior, while nocturnal scratching behavior presumably increases locus coeruleus-noradrenergic system activity, prompting sleep disturbances. At the early stage of atopic dermatitis, increased cortisol levels, due to hypothalamic-pituitary-adrenal axis overactivation caused by such system stimulation, can induce dorsolateral prefrontal cortex disturbance with reinforcement of habitual scratching behavior and may aggravate type-2-skewed immune responses in the skin. During the later phases, whereas blunted hypothalamic-pituitary-adrenal axis function and the shift of type-2-dominated to type-1-co-dominated inflammation are induced, noradrenergic system overactivation-associated dorsolateral prefrontal cortex disruption is ongoing and responsible for itch cognitive distortion to catastrophize about itch, which leads to a vicious spiral along with habitual scratching behavior and skin lesions. Data are presented in this review indicating that while skin immune system dysfunction initiates pathologic changes in atopic dermatitis, brain neural network and stress system alterations can promote the progression of this condition. It is also suggested that cognitive distortion contributes to pathology in atopic dermatitis as with some psychiatric disorders and chronic pain. The proposed mechanistic model could lead to development of novel medications for slowing or terminating the relentless progression of this disorder. SIGNIFICANCE STATEMENT: Although conventional pharmacological interventions focusing on skin homeostasis and itch occurrence significantly attenuate clinical signs in atopic dermatitis patients, achievement of 100% improvement is less than 40% in several double-blind, randomized, placebo-controlled trials. Our model predicts that itch cognitive distortion, due to dorsolateral prefrontal cortex disturbance, can significantly contribute to the progression of atopic dermatitis and that agents capable of improving brain neural network, stress system, and skin homeostasis may be effective as interventions in the treatment of this condition.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/tratamento farmacológico , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/patologia , Prurido/etiologia , Encéfalo/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
J Cutan Med Surg ; 27(6): 628-640, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898903

RESUMO

Psychodermatology pertains to the relationship between the skin and brain. This review aims to summarize the evidence of the mind body connection in four psychophysiological conditions: rosacea, atopic dermatitis (AD), acne vulgaris (AV), and psoriasis. A literature search was conducted using several English language databases. All four conditions share similar psychiatric co-morbidities, including but not limited to anxiety, depression, and suicidality. In rosacea, the upregulation of transient receptor potential vanilloid type 1, Toll like receptor 2, and Th17 cells releases downstream products that are simultaneously implicated in mood disorders. Stress exacerbates AV through the hypothalamic-pituitary-adrenal (HPA) system, which alters functioning of sebocytes and Cutibacterium acnes. In AD and psoriasis, the HPA axis influences Th1, Th2, Th22, and Th1, Th17 immune mediated responses, respectively. This leads to the secretion of pro-inflammatory cytokines which are also involved in the pathogenesis of anxiety and depression. Neurotransmitters implicated in mental illness, such as gamma-aminobutyric acid and serotonin, may also play a role in the development of AD and psoriasis. The management of cutaneous disease may mitigate psychological distress, and future research may show the corollary to also be true.


Assuntos
Dermatite Atópica , Psoríase , Rosácea , Humanos , Células Th2 , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/patologia , Dermatite Atópica/patologia
7.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293510

RESUMO

Evidence shows that stress can promote the occurrence and development of tumors. In recent years, many studies have shown that stress-related hormones or peripheral neurotransmitters can promote the proliferation, survival, and angiogenesis of tumor cells and impair the body's immune response, causing tumor cells to escape the "surveillance" of the immune system. However, the perception of stress occurs in the central nervous system (CNS) and the role of the central nervous system in tumor progression is still unclear, as are the underlying mechanisms. This review summarizes what is known of stress-related CNS-network activation during the stress response and the influence of the CNS on tumors and discusses available adjuvant treatment methods for cancer patients with negative emotional states, such as anxiety and depression.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Sistema Imunitário/patologia , Sistema Nervoso Central/patologia , Hormônios , Neurotransmissores , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/patologia , Estresse Psicológico
8.
J Endocrinol Invest ; 44(7): 1501-1513, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33123965

RESUMO

PURPOSE: To cope physical and/or psychological threats, the human body activates multiple processes, mediated by a close interconnection among brain, endocrine and inflammatory systems. The aim of the study was to assess the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-thyroid (HPT) axes involvement after an acute stressful event (Emilia Romagna earthquake swarm) with a big data approach. METHODS: A retrospective, observational trial was performed, collecting all biochemical examinations regarding HPA and HPT axes performed in the same laboratory the year before and the year after the earthquake swarm (20-29 May 2012). RESULTS: Comparing 2576 pre-earthquake to 3021 post-earthquake measurements, a cortisol serum level increase was observed (p < 0.001). Similar increase was evident for urinary free cortisol (p = 0.016), but not for adrenocorticotropic hormone (p = 0.222). The biochemical hypercortisolism incidence increased from 7.6 to 10.3% after earthquakes (p = 0.001). Comparing 68,456 pre-earthquake to 116,521 post-earthquake measurements, a reduction in thyroid-stimulating hormone (TSH) levels was evident (p = 0.018), together with an increase in free triiodothyronine and free thyroxine levels (p < 0.001 and p < 0.001). Moreover, a significant increase in altered TSH after earthquakes was registered considering the epicenter-nearest measurements (p < 0.001). No clinically relevant alterations were observed considering thyroid-specific autoantibodies. CONCLUSION: A long-term HPA axis activation in the inhabitants of the earthquake-affected areas was highlighted for the first time. Moreover, an increased incidence of biochemical hypercortisolism emerged after earthquakes. We confirmed a recruitment of HPT axis after stressful events, together with increased incidence of altered TSH in the. Our big data study allowed to increase knowledge about the connection between external stressors and endocrine regulation.


Assuntos
Síndrome de Cushing/epidemiologia , Terremotos , Hidrocortisona/metabolismo , Hipotálamo/patologia , Sistema Hipófise-Suprarrenal/patologia , Glândula Tireoide/patologia , Hormônios Tireóideos/metabolismo , Adulto , Big Data , Síndrome de Cushing/metabolismo , Síndrome de Cushing/patologia , Análise de Dados , Feminino , Seguimentos , Humanos , Hipotálamo/metabolismo , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Sistema Hipófise-Suprarrenal/metabolismo , Estudos Retrospectivos , Glândula Tireoide/metabolismo
9.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360746

RESUMO

Adaptation of organisms to stressors is coordinated by the hypothalamic-pituitary-adrenal axis (HPA), which involves glucocorticoids (GCs) and glucocorticoid receptors (GRs). Although the effects of GCs are well characterized, their impact on brain adaptation to hypoxia/ischemia is still understudied. The brain is not only the most susceptible to hypoxic injury, but also vulnerable to GC-induced damage, which makes studying the mechanisms of brain hypoxic tolerance and resistance to stress-related elevation of GCs of great importance. Cross-talk between the molecular mechanisms activated in neuronal cells by hypoxia and GCs provides a platform for developing the most effective and safe means for prevention and treatment of hypoxia-induced brain damage, including hypoxic pre- and post-conditioning. Taking into account that hypoxia- and GC-induced reprogramming significantly affects the development of organisms during embryogenesis, studies of the effects of prenatal and neonatal hypoxia on health in later life are of particular interest. This mini review discusses the accumulated data on the dynamics of the HPA activation in injurious and non-injurious hypoxia, the role of the brain GRs in these processes, interaction of GCs and hypoxia-inducible factor HIF-1, as well as cross-talk between GC and hypoxic signaling. It also identifies underdeveloped areas and suggests directions for further prospective studies.


Assuntos
Resistência à Doença , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipóxia Encefálica/metabolismo , Precondicionamento Isquêmico , Sistema Hipófise-Suprarrenal/metabolismo , Transdução de Sinais , Animais , Humanos , Sistema Hipotálamo-Hipofisário/patologia , Hipóxia Encefálica/prevenção & controle , Sistema Hipófise-Suprarrenal/patologia
10.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203952

RESUMO

Endocannabinoids play a role in adaptation to stress and regulate the release of glucocorticoids in stressed and unstressed conditions. We recently found that basal corticosterone pulsatility may significantly impact the vulnerability for developing post-traumatic-stress-disorder (PTSD), suggesting that the endocannabinoid system may contribute to its development. To examine this, we exposed rats to predator scent stress (PSS). Behavioral reactions were recorded seven days post-PSS. Cerebrospinal fluid (CSF) was collected from anesthetized rats shortly after PSS exposure to determine the levels of 2-arachidonoyl glycerol (2-AG) and anandamide (AEA). To correlate between endocannabinoids and corticosterone levels, rats were placed in metabolic cages for urine collection. To assess the levels of endocannabinoids in specific brain regions, rats' brains were harvested one day after behavioral analysis for staining and fluorescence quantification. Moreover, 2-AG was elevated in the CSF of PTSD-phenotype rats as compared with other groups and was inversely correlated with corticosterone urinary secretion. Eight days post-PSS exposure, hippocampal and hypothalamic 2-AG levels and hippocampal AEA levels were significantly more reduced in the PTSD-phenotype group compared to other groups. We posit that maladaptation to stress, which is propagated by an abnormal activation of endocannabinoids, mediates the subsequent stress-induced behavioral disruption, which, later, reduces neuronal the expression of endocannabinoids, contributing to PTSD symptomology.


Assuntos
Endocanabinoides/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/patologia , Transtornos de Estresse Pós-Traumáticos/patologia , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Animais , Comportamento Animal , Corticosterona/urina , Endocanabinoides/líquido cefalorraquidiano , Masculino , Fenótipo , Ratos Sprague-Dawley , Transtornos de Estresse Pós-Traumáticos/urina , Estresse Psicológico/urina
11.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477830

RESUMO

The forced swim stress test (FST) is widely used for screening pharmacological or non-pharmacological strategies with potential antidepressant activities. Recent data have suggested that repeated FST for five consecutive days (i.e., 5d-RFSS) could be used to generate a robust depressive-like phenotype in mice. However, the face, construct, and predictive validities of 5d-RFSS have been recently challenged. This study took advantage of recent findings showing that mice vulnerability to anxiety is enhanced when animals are stressed during the dark phase, to provide new insight into the relevance of this model. Our results showed a progressive increase in time of immobility in 5d-RFSS mice relative to control non-stressed animals (sham). Three weeks later, we noticed that 5d-RFSS mice injected with the vehicle compound (Veh) still exhibited a high level of immobility in the FST whereas this behavior was reversed by the antidepressant drug amitriptyline (AMI). However, 5d-RFSS/Veh and 5d-RFSS mice/AMI mice showed normal performances in the open field, the novelty suppressed feeding and the tail suspension tests. Despite this lack of generalized behavioral deficits, an impairment of different parameters characterizing the hypothalamic-pituitary-adrenal (HPA) axis reactivity was evidenced in 5d-RFSS mice/Veh but not in 5d-RFSS mice/AMI. Despite anomalies in the HPA axis, the activity of the central serotonergic system remained unaffected in 5d-RFSS mice relative to controls. From our results, it is suggested that learned immobility does not replicate the broad spectrum of depressive symptoms observed in other chronic models of depression such as the unpredictable chronic mild stress (UCMS) model, the chronic social defeat stress (CSDS) model or chronic corticosterone (CORT) exposure but its influence on the HPA axis is remarkable. Further experiments are warranted to makes this model suitable for modelling depression and therefore refine its translational applicability.


Assuntos
Ansiedade/tratamento farmacológico , Corticosterona/farmacologia , Transtorno Depressivo/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , Animais , Antidepressivos/farmacologia , Ansiedade/fisiopatologia , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/patologia , Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo/patologia , Modelos Animais de Doenças , Humanos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/patologia , Camundongos , Fenótipo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/patologia , Estresse Psicológico/patologia , Natação
12.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153023

RESUMO

Human immunodeficiency virus (HIV) is associated with co-morbid affective and stress-sensitive neuropsychiatric disorders that may be related to dysfunction of the hypothalamic-pituitary-adrenal (HPA) stress axis. The HPA axis is perturbed in up to 46% of HIV patients, but the mechanisms are not known. The neurotoxic HIV-1 regulatory protein, trans-activator of transcription (Tat), may contribute. We hypothesized that HPA dysregulation may contribute to Tat-mediated interactions with oxycodone, a clinically-used opioid often prescribed to HIV patients. In transgenic male mice, Tat expression produced significantly higher basal corticosterone levels with adrenal insufficiency in response to a natural stressor or pharmacological blockade of HPA feedback, recapitulating the clinical phenotype. On acute exposure, HIV-1 Tat interacted with oxycodone to potentiate psychomotor and anxiety like-behavior in an open field and light-dark transition tasks, whereas repeated exposure sensitized stress-related psychomotor behavior and the HPA stress response. Pharmacological blockade of glucocorticoid receptors (GR) partially-restored the stress response and decreased oxycodone-mediated psychomotor behavior in Tat-expressing mice, implicating GR in these effects. Blocking corticotrophin-releasing factor (CRF) receptors reduced anxiety-like behavior in mice that were exposed to oxycodone. Together, these effects support the notion that Tat exposure can dysregulate the HPA axis, potentially raising vulnerability to stress-related substance use and affective disorders.


Assuntos
Transtornos de Ansiedade/etiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Oxicodona/efeitos adversos , Sistema Hipófise-Suprarrenal/metabolismo , Transtornos Psicomotores/etiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia , Animais , Transtornos de Ansiedade/induzido quimicamente , Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/patologia , Depressão/etiologia , Depressão/metabolismo , Depressão/patologia , Progressão da Doença , Interações Medicamentosas , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Infecções por HIV/psicologia , HIV-1/fisiologia , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/patologia , Masculino , Camundongos , Camundongos Transgênicos , Transtornos do Humor/etiologia , Transtornos do Humor/metabolismo , Transtornos do Humor/patologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/patologia , Transtornos Psicomotores/induzido quimicamente , Transtornos Psicomotores/patologia , Transtornos Psicomotores/virologia , Estresse Psicológico/induzido quimicamente , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia
13.
J Transl Med ; 17(1): 306, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492167

RESUMO

BACKGROUND: Identifying how pain transitions from acute to chronic is critical in designing effective prevention and management techniques for patients' well-being, physically, psychosocially, and financially. There is an increasingly pressing need for a quantitative and predictive method to evaluate how low back pain trajectories are classified and, subsequently, how we can more effectively intervene during these progression stages. METHODS: In order to better understand pain mechanisms, we investigated, using computational modeling, how best to describe pain trajectories by developing a platform by which we studied the transition of acute chronic pain. RESULTS: The present study uses a computational neuroscience-based method to conduct such trajectory research, motivated by the use of hypothalamic-pituitary-adrenal (HPA) axis activity-history over a time-period as a way to mimic pain trajectories. A numerical simulation study is presented as a "proof of concept" for this modeling approach. CONCLUSIONS: This model and its simulation results have highlighted the feasibility and the potential of developing such a broader model for patient evaluations.


Assuntos
Dor Aguda/patologia , Dor Crônica/patologia , Dor Lombar/patologia , Simulação por Computador , Humanos , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/patologia
14.
Stress ; 22(3): 347-357, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30741061

RESUMO

Ethanol consumption during pregnancy alters offspring hypothalamus-pituitary-adrenal (HPA) axis regulation. However, little is known about the outcomes of alcohol consumption confined to the periconceptional period. This study investigated the effects of periconceptional ethanol (PC:EtOH) exposure on corticosterone concentrations, response to restraint stress and gene expression of adrenal, hypothalamic, and hippocampal glucocorticoid-related pathways in rat offspring. Female Sprague-Dawley rats were treated with PC:EtOH (12.5% v/v EtOH liquid diet) or a control diet from four days before conception, until embryonic day 4. At 6 (adult) and 12-14 (aged) months of age, basal corticosterone concentrations were measured, while in a separate cohort of aged rats, blood pressure, heart rate, and plasma corticosterone concentrations were measured during a 30-minute restraint stress. Adrenal gland, hypothalamic and hippocampal tissue from aged rats were subjected to transcriptomic analysis. PC:EtOH exposure reduced basal plasma corticosterone concentrations in adult and aged female but not male offspring (p < .05). The corticosterone and pressor response were significantly reduced in aged PC:EtOH female offspring following restraint (p < .05). Expression of adrenal steroidogenesis genes (Mc2r, Cyp11a1, Cyp21a1, 11bhsd2, and Nr3c1) and hypothalamic genes (Crh, Crh-r1, Nr3c1, and Hsp90a1) was not affected by PC:EtOH. In aged female offspring exposed to PC:EtOH, adrenal mRNA expression of Hsp90a1 was significantly elevated, and within the hippocampus, mRNAs for glucocorticoid receptor (Nr3c1) and Hsp90a1 were increased (p < .05). This study supports the hypothesis that prenatal alcohol exposure programs sex-specific alterations in the HPA axis and provides the first evidence that the periconceptional period is a critical window for programing of this axis. Lay summary This study investigated the impact of alcohol consumption around the time of conception on offspring stress reactivity in a rat model. Offspring exposed to alcohol displayed altered cardiovascular responses to stress and had reduced circulating concentrations of the stress hormone corticosterone both under basal conditions and following a stressful challenge. This study also identified altered expression of key genes in an important part of the brain known to be involved in stress responsiveness; the hippocampus. If similar outcomes occur in humans, these results would suggest that alcohol consumption, even before a woman knows she is pregnant, may significantly impact stress-related outcomes in children.


Assuntos
Etanol/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Glândulas Suprarrenais/metabolismo , Consumo de Bebidas Alcoólicas , Animais , Corticosterona/sangue , Feminino , Expressão Gênica , Glucocorticoides/farmacologia , Hipocampo/metabolismo , Hipotálamo/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/patologia , Gravidez , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/fisiopatologia
15.
Pituitary ; 22(3): 249-260, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30684166

RESUMO

PURPOSE: Clinical research studies over the last 15 years have reported a significant burden of hypopituitarism in survivors of traumatic brain injury (TBI). However, debate still exists about the true prevalence of hypopituitarism after head injury. METHODS: We have reviewed the literature describing the frequency of post-traumatic hypopituitarism and discuss the factors which may explain the variable frequency of the reported deficits in clinical studies including research methodology and the natural history of the disease. RESULTS: Pituitary hormone perturbations in the acute phase following injury are frequent but are difficult to attribute to traumatic pituitary damage due to physiological hormonal changes in acute illness, the confounding effect of medications, other co-morbidities and lack of appropriate control subjects. Nevertheless, a small number of studies have emphasised the clinical importance of acute, dynamic disturbance of the hypothalamic-pituitary-adrenal axis. There is a much larger evidence base examining the frequency of hypopituitarism in the chronic, recovery phase following head injury. These studies report a very broad prevalence of long-term pituitary hormone dysfunction in survivors of TBI. However, systematic review suggests the prevalence to be between 27 and 31%. CONCLUSION: Survivors of head injury are at risk of pituitary hormone dysfunction and we suggest an approach to the diagnosis of post-traumatic hypopituitarism in routine clinical practice.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Doenças Hipotalâmicas/diagnóstico , Animais , Humanos , Hipopituitarismo/diagnóstico , Hipopituitarismo/metabolismo , Hipopituitarismo/patologia , Doenças Hipotalâmicas/metabolismo , Doenças Hipotalâmicas/patologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia
16.
J Endocrinol Invest ; 42(9): 1117-1124, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30877658

RESUMO

BACKGROUND: Hypothalamic-pituitary-adrenal axis (HPAA) suppression is the most common and dangerous, although often unrecognized and untreated, side effect of glucocorticoid administration. The risk and duration depend both on patient and treatment characteristics. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) currently represents the gold standard method to evaluate the metabolism of endogenous and exogenous steroids. OBJECTIVE: To assess prevalence, severity, and duration of HPAA suppression subsequent to the injection of two steroids with equivalent potency but different pharmacokinetics. SUBJECTS AND METHODS: Single-blind randomized case-control pilot study. Forty patients (22 F; age 48.7 ± 7.2 years) with shoulder calcific tendinopathy received an intrabursal injection of 40 mg of 6α-methylprednisolone acetate (MA) or triamcinolone acetonide (TA). Just before (T0) and after 1 (T1), 7 (T2), 15 (T3), 30 (T4) and 45 (T5) days, we assessed morning blood cortisol and ACTH by RIA, and 24-h urinary levels of MA, TA and free cortisol by HPLC-MS/MS. RESULTS: HPAA function was normal at baseline. At T1, all patients presented HPAA suppression reaching the lowest cortisol, ACTH and UFC levels, that were similar between groups. At T2, mean cortisol remained lower than at baseline (p < 0.0001) in the TA group. In both groups, mean cortisol and ACTH levels progressively normalized, suggesting HPA recovery, except for three patients in the MA and two in the TA group. UFC levels remained lower than normal (p < 0.0001) up to T5, despite the disappearance of exogenous GCs. No patient developed manifestations of hypocortisolism. CONCLUSIONS: A single 40-mg intrabursal injection of MA or TA is sufficient to suppresses HPAA up to 45 days. Although typically asymptomatic, patients should be instructed to recognize and report symptoms suggestive for hypocortisolism, to provide prompt diagnosis, and eventually, treatment, thus avoiding severe complications.


Assuntos
Insuficiência Adrenal/patologia , Calcinose/tratamento farmacológico , Glucocorticoides/efeitos adversos , Sistema Hipotálamo-Hipofisário/patologia , Artropatias/tratamento farmacológico , Sistema Hipófise-Suprarrenal/patologia , Articulação do Ombro/patologia , Tendinopatia/tratamento farmacológico , Doenças Vasculares/tratamento farmacológico , Insuficiência Adrenal/induzido quimicamente , Biomarcadores/análise , Estudos de Casos e Controles , Feminino , Seguimentos , Glucocorticoides/administração & dosagem , Humanos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Prognóstico , Método Simples-Cego
17.
J Assist Reprod Genet ; 36(6): 1273-1280, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31073722

RESUMO

PURPOSE: Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder mostly characterized by gonadotropins release and/or action deficiencies. Both isolated (idiopathic hypogonadotropic hypogonadism) and syndromic (Kallmann) forms are identified depending on the olfactory ability. Clinical and genetic heterogeneities of CHH have been widely explored, thus improving our understanding of the disease's pathophysiology. This work aims to (1) provide a detailed clinical and hormonal description of normosmic CHH patients and (2) identify the mutation linked to the studied phenotype. PARTICIPANTS AND METHODS: We investigated three affected patients with normosmic CHH, belonging to a consanguineous Tunisian family. Patients underwent an insulin-induced hypoglycemia test. We performed whole exome sequencing to identify the causal mutation. RESULTS: At first diagnosis, a total gonadotropic deficiency was identified in all patients. The insulin-induced hypoglycemia test has also revealed a reduced cortisol secretion and complete growth hormone deficiency. At 20.8 years, one female exhibited a spontaneous recovery of the hypothalamic-pituitary-adrenal axis function, unlike her affected siblings who still depend on corticosteroid replacement therapy. Herein, we identified a novel homozygous nonstop mutation (c.1195T>C) in KISS1R gene in all affected subjects. This mutation led to the substitution of the physiologic stop codon by an arginine (p.X399R). CONCLUSIONS: Our study highlights the importance of the KISS1R signaling, in gonadotropin-releasing hormone neurons, in the control of reproductive function. Additionally, our data suggests a complex central and peripheral metabolic control of puberty, through the hypothalamic KISS1R signaling. We suggest a mutual link between the hypothalamic-pituitary-gonadal, -adrenal, and -somatotropic axes.


Assuntos
Hipogonadismo/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Receptores de Kisspeptina-1/genética , Reprodução/genética , Adolescente , Corticosteroides/uso terapêutico , Adulto , Criança , Feminino , Hormônio Liberador de Gonadotropina/genética , Gonadotropinas/uso terapêutico , Humanos , Hipogonadismo/tratamento farmacológico , Hipogonadismo/patologia , Sistema Hipotálamo-Hipofisário/patologia , Masculino , Mutação , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Sequenciamento do Exoma , Adulto Jovem
18.
Molecules ; 24(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540539

RESUMO

Treatment of the unpredictable chronic mild stress (UCMS) mice with the ethanol extract of Dipterocarpus alatus leaf attenuated anhedonia (increased sucrose preference) and behavioral despair (decreased immobility time in tail suspension test (TST) and forced swimming test (FST)). The extract not only decreased the elevation of serum corticosterone level and the index of over-activation of the hypothalamic-pituitary-adrenal (HPA) axis, caused by UCMS, but also ameliorated UCMS-induced up-regulation of serum- and glucocorticoid-inducible kinase 1 (SGK1) mRNA expression and down-regulation of cyclic AMP-responsive element binding (CREB) and brain-derived neurotrophic factor (BDNF) mRNAs in frontal cortex and hippocampus. In vitro monoamine oxidase (MAO) inhibition assays showed that the extract exhibited the partial selective inhibition on MAO-A. HPLC analysis of the extract showed the presence of flavonoids (luteolin-7-O-glucoside, kaempferol-3-glucoside, rutin) and phenolic acids (gallic acid, ferulic acid, and caffeic acid) as major constituents.


Assuntos
Depressão , Dipterocarpaceae/química , Etanol/química , Extratos Vegetais , Folhas de Planta/química , Estresse Psicológico , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/patologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Proteínas Imediatamente Precoces/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos ICR , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas Serina-Treonina Quinases/biossíntese , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
19.
Int J Exp Pathol ; 99(4): 172-179, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30256482

RESUMO

This study was designed to investigate the HPA-axis impairment in the streptozotocin (STZ)-diabetic gerbils (Gerbillus gerbillus). Twenty-six male gerbils (body weight ~27 g) were divided into 3 groups: vehicle control (n = 10), 2 days of diabetes (n = 09) and 30 days of diabetes (n = 07). The latter 2 groups received an intraperitoneal injection of STZ (150 mg/kg of body weight). At 2 and 30 days of diabetes, streptozotocin-diabetic gerbils underwent a retro-orbital puncture for assessment of biochemical and hormonal parameters. Subsequently the animals were decapitated and the adrenal glands were removed, weighed and processed for light microscopy and stereology. Nondiabetic control gerbils that had been injected with citrate buffer were examined as a comparison. At 2 days of diabetes, STZ gerbils exhibited symptoms that are characteristic of human diabetes type 1. The adrenal gland showed significant increase in weight, associated with a larger cortex layer, hypertrophy of the fasciculate cells and a significant decrease in the nucleocytoplasmic index. These changes were associated with higher plasma ACTH and cortisol concentrations compared to nondiabetic controls. At 30 days postdiabetes, ACTH levels remained elevated, whereas cortisol levels decreased compared to the early stage of diabetes. Histological analysis revealed the existence of a band of connective tissue (collagen) that separates the cortical and medullary zones and is not present in humans or laboratory rodents, which represents a striking change seen throughout the disease. STZ-induced diabetes mellitus in Gerbillus gerbillus resulted in hyperactivation of the HPA axis in the early stages of diabetes mellitus which did not persist into the final stages of the disease, suggesting a possible reduction in adrenocortical sensitivity over time.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/patologia , Estreptozocina/farmacologia , Animais , Peso Corporal/fisiologia , Corticosterona/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/induzido quimicamente , Gerbillinae/fisiologia , Insulina/metabolismo , Masculino
20.
Pediatr Hematol Oncol ; 35(5-6): 355-361, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30457427

RESUMO

Although outcomes for infant leukemia have improved recently, transient adrenal insufficiency is commonly observed during treatment, especially after glucocorticoid administration. We identified three infants with acute leukemia who suffered from prolonged adrenal insufficiency requiring long-term (from 15 to 66 months) hydrocortisone replacement. All infants showed life-threatening symptoms associated with adrenal crisis after viral infections or other stress. Severe and prolonged damage of hypothalamo-pituitary-adrenal (HPA) axis is likely to occur in early infants with leukemia, therefore routine tolerance testing to evaluate HPA axis and hydrocortisone replacement therapy are recommended for infants with leukemia to avoid life-threatening complications caused by adrenal crisis.


Assuntos
Insuficiência Adrenal , Glucocorticoides/efeitos adversos , Leucemia/tratamento farmacológico , Doença Aguda , Insuficiência Adrenal/induzido quimicamente , Insuficiência Adrenal/metabolismo , Insuficiência Adrenal/patologia , Insuficiência Adrenal/terapia , Pré-Escolar , Feminino , Glucocorticoides/administração & dosagem , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Recém-Nascido , Leucemia/metabolismo , Leucemia/patologia , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA