Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.003
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33627480

RESUMO

Previous studies have demonstrated that the synaptic EphB1 receptor tyrosine kinase is a major mediator of neuropathic pain, suggesting that targeting the activity of this receptor might be a viable therapeutic option. Therefore, we set out to determine if any FDA-approved drugs can act as inhibitors of the EphB1 intracellular catalytic domain. An in silico screen was first used to identify a number of tetracycline antibiotics which demonstrated potential docking to the ATP-binding catalytic domain of EphB1. Kinase assays showed that demeclocycline, chlortetracycline, and minocycline inhibit EphB1 kinase activity at low micromolar concentrations. In addition, we cocrystallized chlortetracycline and EphB1 receptor, which confirmed its binding to the ATP-binding domain. Finally, in vivo administration of the three-tetracycline combination inhibited the phosphorylation of EphB1 in the brain, spinal cord, and dorsal root ganglion (DRG) and effectively blocked neuropathic pain in mice. These results indicate that demeclocycline, chlortetracycline, and minocycline can be repurposed for treatment of neuropathic pain and potentially for other indications that would benefit from inhibition of EphB1 receptor kinase activity.


Assuntos
Sistema Nervoso Central/enzimologia , Clortetraciclina , Neuralgia , Inibidores de Proteínas Quinases , Receptor EphB1 , Animais , Clortetraciclina/química , Clortetraciclina/farmacologia , Cristalografia por Raios X , Humanos , Masculino , Camundongos , Neuralgia/tratamento farmacológico , Neuralgia/enzimologia , Domínios Proteicos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptor EphB1/antagonistas & inibidores , Receptor EphB1/química , Receptor EphB1/metabolismo
2.
J Biol Chem ; 295(13): 4079-4092, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32019865

RESUMO

Organophosphate (OP) intoxications from nerve agent and OP pesticide exposures are managed with pyridinium aldoxime-based therapies whose success rates are currently limited. The pyridinium cation hampers uptake of OPs into the central nervous system (CNS). Furthermore, it frequently binds to aromatic residues of OP-inhibited acetylcholinesterase (AChE) in orientations that are nonproductive for AChE reactivation, and the structural diversity of OPs impedes efficient reactivation. Improvements of OP antidotes need to include much better access of AChE reactivators to the CNS and optimized orientation of the antidotes' nucleophile within the AChE active-center gorge. On the basis of X-ray structures of a CNS-penetrating reactivator, monoxime RS194B, reversibly bound to native and venomous agent X (VX)-inhibited human AChE, here we created seven uncharged acetamido bis-oximes as candidate antidotes. Both oxime groups in these bis-oximes were attached to the same central, saturated heterocyclic core. Diverse protonation of the heterocyclic amines and oxime groups of the bis-oximes resulted in equilibration among up to 16 distinct ionization forms, including uncharged forms capable of diffusing into the CNS and multiple zwitterionic forms optimal for reactivation reactions. Conformationally diverse zwitterions that could act as structural antidote variants significantly improved in vitro reactivation of diverse OP-human AChE conjugates. Oxime group reorientation of one of the bis-oximes, forcing it to point into the active center for reactivation, was confirmed by X-ray structural analysis. Our findings provide detailed structure-activity properties of several CNS-directed, uncharged aliphatic bis-oximes holding promise for use as protonation-dependent, conformationally adaptive, "smart" accelerated antidotes against OP toxicity.


Assuntos
Acetilcolinesterase/química , Antídotos/química , Sistema Nervoso Central/efeitos dos fármacos , Inibidores da Colinesterase/química , Reativadores da Colinesterase/química , Acetamidas/química , Acetamidas/uso terapêutico , Antídotos/síntese química , Antídotos/uso terapêutico , Sistema Nervoso Central/enzimologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/síntese química , Reativadores da Colinesterase/uso terapêutico , Cristalografia por Raios X , Humanos , Cinética , Organofosfatos/química , Organofosfatos/toxicidade , Compostos Organofosforados/química , Compostos Organofosforados/toxicidade , Oximas/síntese química , Oximas/química , Oximas/farmacologia , Oximas/uso terapêutico , Conformação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
3.
Proteins ; 89(11): 1587-1601, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34288098

RESUMO

ß-hexosaminidase A (HexA) protein is responsible for the degradation of GM2 gangliosides in the central and peripheral nervous systems. Tay-Sachs disease occurs when HexA within Hexosaminidase does not properly function and harmful GM2 gangliosides begin to build up within the neurons. In this study, in silico methods such as SIFT, PolyPhen-2, PhD-SNP, and MutPred were utilized to analyze the effects of nonsynonymous single nucleotide polymorphisms (nsSNPs) on HexA in order to identify possible pathogenetic and deleterious variants. Molecular dynamics (MD) simulations showed that two mutants, P25S and W485R, experienced an increase in structural flexibility compared to the native protein. Particularly, there was a decrease in the overall number and frequencies of hydrogen bonds for the mutants compared to the wildtype. MM/GBSA calculations were performed to help assess the change in binding affinity between the wildtype and mutant structures and a mechanism-based inhibitor, NGT, which is known to help increase the residual activity of HexA. Both of the mutants experienced a decrease in the binding affinity from -23.8 kcal/mol in wildtype to -20.9 and -18.7 kcal/mol for the P25S and W485R variants of HexA, respectively.


Assuntos
Gangliosídeo G(M2)/química , Simulação de Dinâmica Molecular , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Doença de Tay-Sachs/genética , Cadeia alfa da beta-Hexosaminidase/química , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Acetilglucosamina/farmacologia , Sítios de Ligação , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/patologia , Gangliosídeo G(M2)/metabolismo , Expressão Gênica , Humanos , Ligação de Hidrogênio , Neurônios/enzimologia , Neurônios/patologia , Sistema Nervoso Periférico/enzimologia , Sistema Nervoso Periférico/patologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Doença de Tay-Sachs/enzimologia , Doença de Tay-Sachs/patologia , Termodinâmica , Tiazóis/química , Tiazóis/farmacologia , Cadeia alfa da beta-Hexosaminidase/genética , Cadeia alfa da beta-Hexosaminidase/metabolismo
4.
Int J Food Sci Nutr ; 72(2): 184-194, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32664762

RESUMO

New neuroprotective treatments of natural origin are being investigated. Both, plant extracts and isolated compounds have shown bioactive effects. Hempseed is known for its composition of fatty acids, proteins, fibre, vitamins, as well as a large number of phytochemical compounds. After a defatting process of the seeds, hydroxycinnamic acids and its amine derivatives are the majoritarian compounds in an ethyl acetate fraction (EAF). In the present study, we investigated in vitro effect on neuronal enzymes: MAO-A, MAO-B, tyrosinase and acetylcholinesterase. Besides, the effect of EAF on striatal biogenic amines in mice was evaluated. Both, EAF and isolated compounds (N-trans-caffeoyltyramine and N-trans-coumaroyltyramine), showed inhibitory action on MAO-A, MAO-B and tyrosinase. Furthermore, an increasing of biogenic amines was observed in the corpus striatum of the mice, after administration of EAF. These findings show that EAF and the hydroxycinnamic acid derivatives may represent a potential treatment in degenerative neuronal diseases.


Assuntos
Sistema Nervoso Central/enzimologia , Ácidos Cumáricos/farmacologia , Extratos Vegetais/farmacologia , Acetilcolinesterase/metabolismo , Animais , Aminas Biogênicas , Cannabis/química , Corpo Estriado , Masculino , Camundongos , Monoaminoxidase/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fármacos Neuroprotetores/farmacologia
5.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070424

RESUMO

BACKGROUND: The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS: To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS: This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.


Assuntos
Sistema Nervoso Central/metabolismo , Matriz Extracelular/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Sistema Nervoso Periférico/metabolismo , Animais , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/fisiologia , Humanos , Ácido Hialurônico/metabolismo , Rede Nervosa/enzimologia , Rede Nervosa/fisiologia , Neurogênese/genética , Neurogênese/fisiologia , Sistema Nervoso Periférico/enzimologia , Sistema Nervoso Periférico/fisiologia , Proteoglicanas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
6.
Cell Mol Neurobiol ; 40(5): 695-710, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31808010

RESUMO

Cathepsin K deficiency in male mice (Ctsk-/-) results in decreased numbers of hippocampal astrocytes and altered neuronal patterning as well as learning and memory deficits. Additionally, cathepsin K carries essential roles in the thyroid gland where it contributes to the liberation of thyroid hormones (TH). Because TH are essential for brain development, in particular for the cerebellum, we investigated whether cathepsin K's function in the thyroid is directly linked to the brain phenotype of Ctsk-/- mice. Serum levels of thyroid stimulating hormone, brain concentrations of free TH, and deiodinase 2 (Dio2) activity in brain parenchyma as well as cerebellar development were comparable in Ctsk-/- and WT animals, suggesting regular thyroid states and TH metabolism. Despite unaltered transcript levels, protein expression of two TH transporters was enhanced in specific brain regions in Ctsk-/- mice, suggesting altered TH supply to these regions. Thyrotropin releasing hormone (Trh) mRNA levels were enhanced threefold in the hippocampus of Ctsk-/- mice. In the striatum of Ctsk-/- mice the mRNA for Dio2 and hairless were approximately 1.3-fold enhanced, while mRNA levels for monocarboxylate transporter 8 and Trh were reduced to 60% and 40%, respectively, pointing to altered striatal physiology. We conclude that the role of cathepsin K in the thyroid gland is not directly associated with its function in the central nervous system (CNS) of mice. Future studies will show whether the brain region-specific alterations in Trh mRNA may eventually result in altered neuroprotection that could explain the neurobehavioral defects of Ctsk-/- mice.


Assuntos
Catepsina K/fisiologia , Sistema Nervoso Central/enzimologia , Glândula Tireoide/enzimologia , Animais , Catepsina K/genética , Cerebelo/enzimologia , Cerebelo/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/análise , Tireotropina/sangue , Tiroxina/sangue , Tri-Iodotironina/sangue
7.
Pharmacol Res ; 160: 105090, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32707231

RESUMO

Aging is known to be one of the major risk factors in many neurodegenerative diseases (ND) whose prevalence is estimated to rise in the coming years due to the increase in life expectancy. Examples of neurodegenerative diseases include Huntington's, Parkinson's, and Alzheimer's diseases, along with Amyotrophic Lateral Sclerosis, Spinocerebellar ataxias and Frontotemporal Dementia. Given that so far these ND do not have effective pharmacological therapies, a better understanding of the molecular and cellular mechanisms can contribute to development of effective treatments. During the previous decade, the data indicated that dysregulation of MAP kinases [which included c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1 and 2 (ERK1/2), and p38] are associated with several stages of the inflammatory process which in turn contributes to age-related neurodegenerative diseases. This evidence suggests that control of inflammation through regulation of MAP kinase could be a worthwhile approach against neurodegenerative diseases. In this review we summarize the pathways of MAP kinase signal transduction and different pharmacological inhibitors that can be used in its modulation against ND.


Assuntos
Anti-Inflamatórios/uso terapêutico , Sistema Nervoso Central/efeitos dos fármacos , Mediadores da Inflamação/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Degeneração Neural , Doenças Neurodegenerativas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Anti-Inflamatórios/efeitos adversos , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Humanos , Mediadores da Inflamação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Inibidores de Proteínas Quinases/efeitos adversos , Transdução de Sinais
8.
Pharmacol Res ; 160: 105078, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32673703

RESUMO

Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Inibidores da Fosfodiesterase 4/uso terapêutico , Regulação Alostérica , Animais , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/fisiopatologia , AMP Cíclico/metabolismo , Humanos , Terapia de Alvo Molecular , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/efeitos adversos , Transdução de Sinais
9.
J Cell Physiol ; 234(2): 1001-1007, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30145792

RESUMO

Dysregulation of neuronal Ca2+ and oxidative stress plays an important role in the activation of cysteine proteases including calpains and caspases that contribute to neuronal death. In neurodegenerative diseases, traumatic brain injury, stroke, and neuropathic pain calpain activities are markedly increased. Melatonin is a beneficial supplement in the treatment of central nervous system (CNS) disorders. Melatonin is a potent antioxidant and works as a free-radical scavenger to regulate a large number of molecular pathways, including oxidative stress, inflammation, apoptosis, and cell death under different pathological conditions. However, limited studies have evaluated the inhibitory effect of melatonin on calpains. This review summarizes the current knowledge related to the effects of melatonin on calpains in some of the common CNS disorders.


Assuntos
Calpaína/antagonistas & inibidores , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistema Nervoso Central/efeitos dos fármacos , Inibidores de Cisteína Proteinase/uso terapêutico , Melatonina/uso terapêutico , Animais , Calpaína/metabolismo , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Doenças do Sistema Nervoso Central/enzimologia , Doenças do Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/fisiopatologia , Humanos , Transdução de Sinais
10.
Am J Physiol Heart Circ Physiol ; 314(3): H580-H592, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29350998

RESUMO

Despite advances in antihypertensive therapeutics, at least 15-20% of hypertensive patients have resistant hypertension through mechanisms that remain poorly understood. In this study, we provide a new mechanism for the regulation of blood pressure (BP) in the central nervous system (CNS) by the (pro)renin receptor (PRR), a recently identified component of the renin-angiotensin system that mediates ANG II formation in the CNS. Although PRR also mediates ANG II-independent signaling, the importance of these pathways in BP regulation is unknown. Here, we developed a unique transgenic mouse model overexpressing human PRR (hPRR) specifically in neurons (Syn-hPRR). Intracerebroventricular infusion of human prorenin caused increased BP in Syn-hPRR mice. This BP response was attenuated by a NADPH oxidase (NOX) inhibitor but not by antihypertensive agents that target the renin-angiotensin system. Using a brain-targeted genetic knockdown approach, we found that NOX4 was the key isoform responsible for the prorenin-induced elevation of BP in Syn-hPRR mice. Moreover, inhibition of ERK significantly attenuated the increase in NOX activity and BP induced by human prorenin. Collectively, our findings indicate that an ANG II-independent, PRR-mediated signaling pathway regulates BP in the CNS by a PRR-ERK-NOX4 mechanism. NEW & NOTEWORTHY This study characterizes a new transgenic mouse model with overexpression of the human (pro)renin receptor in neurons and demonstrated a novel angiotensin II-independent mechanism mediated by human prorenin and the (pro)renin receptor in the central regulation of blood pressure.


Assuntos
Angiotensina II , Pressão Sanguínea , Sistema Nervoso Central/enzimologia , Hipertensão/induzido quimicamente , Hipertensão/enzimologia , Neurônios/enzimologia , Receptores de Superfície Celular/metabolismo , Sistema Renina-Angiotensina , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiopatologia , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Infusões Intraventriculares , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Neurônios/efeitos dos fármacos , Regiões Promotoras Genéticas , Receptores de Superfície Celular/genética , Renina/administração & dosagem , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/genética , Transdução de Sinais , Sinapsinas/genética , Regulação para Cima , ATPases Vacuolares Próton-Translocadoras/genética
11.
Gen Comp Endocrinol ; 256: 43-49, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28935582

RESUMO

The prohormone, dehydroepiandrosterone (DHEA) circulates in vertebrate blood with the potential for actions on target tissues including the central nervous system (CNS). Many actions of DHEA require its conversion into more active products, some of which are catalyzed by the enzyme 3ß-hydroxysteroid-dehydrogenase/isomerase (3ß-HSD). Studies of birds show both expression and activity of 3ß-HSD in brain and its importance in regulating social behavior. In oscine songbirds, 3ß-HSD is expressed at reasonably high levels in brain, possibly linked to their complex neural circuitry controlling song. Studies also indicate that circulating DHEA may serve as the substrate for neural 3ß-HSD to produce active steroids that activate behavior during non-breeding seasons. In the golden-collared manakin (Manacus vitellinus), a sub-oscine bird, low levels of courtship behavior are displayed by males when circulating testosterone levels are basal. Therefore, we asked whether DHEA circulates in blood of manakins and whether the brain expresses 3ß-HSD mRNA. Given that the spinal cord is a target of androgens and likely important in regulating acrobatic movements, we also examined expression of this enzyme in the manakin spinal cord. For comparison, we examined expression levels with those of an oscine songbird, the zebra finch (Taeniopygia guttata), a species in which brain, but not spinal cord, 3ß-HSD has been well studied. DHEA was detected in manakin blood at levels similar to that seen in other species. As described previously, 3ß-HSD was expressed in all zebra finch brain regions examined. By contrast, expression of 3ß-HSD was only detected in the manakin hypothalamus where levels were greater than zebra finches. In spinal cord, 3ß-HSD was detected in some but not all regions in both species. These data point to species differences and indicate that manakins have the substrate and neural machinery to convert circulating DHEA into potentially active androgens and/or estrogens.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Sistema Nervoso Central/enzimologia , Tentilhões/metabolismo , Passeriformes/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , Animais , Desidroepiandrosterona/sangue , Feminino , Tentilhões/sangue , Masculino , Passeriformes/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/enzimologia
12.
Proc Natl Acad Sci U S A ; 112(1): 268-72, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535386

RESUMO

Huntington's disease, the most common inherited neurodegenerative disease, is characterized by a dramatic loss of deep-layer cortical and striatal neurons, as well as morbidity in midlife. Human genetic studies led to the identification of the causative gene, huntingtin. Recent genomic advances have also led to the identification of hundreds of potential interacting partners for huntingtin protein and many hypotheses as to the molecular mechanisms whereby mutant huntingtin leads to cellular dysfunction and death. However, the multitude of possible interacting partners and cellular pathways affected by mutant huntingtin has complicated efforts to understand the etiology of this disease, and to date no curative therapeutic exists. To address the general problem of identifying the disease-phenotype contributing genes from a large number of correlative studies, here we develop a synthetic lethal screening methodology for the mammalian central nervous system, called SLIC, for synthetic lethal in the central nervous system. Applying SLIC to the study of Huntington's disease, we identify the age-regulated glutathione peroxidase 6 (Gpx6) gene as a modulator of mutant huntingtin toxicity and show that overexpression of Gpx6 can dramatically alleviate both behavioral and molecular phenotypes associated with a mouse model of Huntington's disease. SLIC can, in principle, be used in the study of any neurodegenerative disease for which a mouse model exists, promising to reveal modulators of neurodegenerative disease in an unbiased fashion, akin to screens in simpler model organisms.


Assuntos
Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/patologia , Glutationa Peroxidase/metabolismo , Doença de Huntington/enzimologia , Doença de Huntington/patologia , Animais , Comportamento Animal , Sistema Nervoso Central/fisiopatologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Camundongos , Atividade Motora , Neostriado/metabolismo , Neostriado/patologia , Neostriado/fisiopatologia
13.
Biochem Soc Trans ; 45(1): 131-139, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28202666

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are found in familial and idiopathic cases of Parkinson's disease (PD), but are also associated with immune-related disorders, notably Crohn's disease and leprosy. Although the physiological function of LRRK2 protein remains largely elusive, increasing evidence suggests that it plays a role in innate immunity, a process that also has been implicated in neurodegenerative diseases, including PD. Innate immunity involves macrophages and microglia, in which endogenous LRRK2 expression is precisely regulated and expression is strongly up-regulated upon cell activation. This brief report discusses the current understanding of the involvement of LRRK2 in innate immunity particularly in relation to PD, critically examining its role in myeloid cells, particularly macrophages and microglia.


Assuntos
Sistema Nervoso Central/imunologia , Imunidade Inata/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/imunologia , Doença de Parkinson/imunologia , Sistema Nervoso Periférico/imunologia , Sistema Nervoso Central/enzimologia , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Macrófagos/imunologia , Microglia/imunologia , Modelos Imunológicos , Mutação/imunologia , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Sistema Nervoso Periférico/enzimologia
14.
Crit Rev Food Sci Nutr ; 57(2): 254-258, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26091183

RESUMO

In recent years, individuals have begun to tend more frequently to some natural and herbal products to be used alone or as a combination with diet and exercise for ensuring the weight loss. Green tea is the leading one of these products. In some studies, it is reported that the green tea causes an increase in thermogenesis and substrate with fat oxidation by affecting on the sympathetic nervous system. It is reported that green tea has two main components that are associated with energy expenditure. One of them is caffeine and the other is catechin content. Each of these two components has an impact on energy mechanism separately. In this minireview article, mechanisms of action and effects of caffeine and catechin, which are found in green tea composition, on energy expenditure are assessed.


Assuntos
Metabolismo Energético , Manipulação de Alimentos , Modelos Biológicos , Chá/química , Animais , Fármacos Antiobesidade/análise , Fármacos Antiobesidade/química , Fármacos Antiobesidade/uso terapêutico , Regulação do Apetite , Cafeína/análise , Cafeína/uso terapêutico , Camellia sinensis/química , Camellia sinensis/enzimologia , Catequina/análogos & derivados , Catequina/análise , Catequina/uso terapêutico , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/metabolismo , Suplementos Nutricionais , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Temperatura Alta , Humanos , Sobrepeso/metabolismo , Sobrepeso/prevenção & controle , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Folhas de Planta/enzimologia , Desnaturação Proteica , Termogênese
15.
Artigo em Inglês | MEDLINE | ID: mdl-27989866

RESUMO

In decapod crustaceans, molting is controlled by the pulsatile release of molt-inhibiting hormone (MIH) from neurosecretory cells in the X-organ/sinus gland (XO/SG) complex in the eyestalk ganglia (ESG). A drop in MIH release triggers molting by activating the molting gland or Y-organ (YO). Post-transcriptional mechanisms ultimately control MIH levels in the hemolymph. Neurotransmitter-mediated electrical activity controls Ca2+-dependent vesicular release of MIH from the SG axon terminals, which may be modulated by nitric oxide (NO). In green shore crab, Carcinus maenas, nitric oxide synthase (NOS) protein and NO are present in the SG. Moreover, C. maenas are refractory to eyestalk ablation (ESA), suggesting other regions of the nervous system secrete sufficient amounts of MIH to prevent molting. By contrast, ESA induces molting in the blackback land crab, Gecarcinus lateralis. Double-label immunofluorescence microscopy and quantitative polymerase chain reaction were used to localize and quantify MIH and NOS proteins and transcripts, respectively, in the ESG, brain, and thoracic ganglion (TG) of C. maenas and G. lateralis. In ESG, MIH- and NOS-immunopositive cells were closely associated in the SG of both species; confocal microscopy showed that NOS was localized in cells adjacent to MIH-positive axon terminals. In brain, MIH-positive cells were located in a small number of cells in the olfactory lobe; no NOS immunofluorescence was detected. In TG, MIH and NOS were localized in cell clusters between the segmental nerves. In G. lateralis, Gl-MIH and Gl-crustacean hyperglycemic hormone (CHH) mRNA levels were ~105-fold higher in ESG than in brain or TG of intermolt animals, indicating that the ESG is the primary source of these neuropeptides. Gl-NOS and Gl-elongation factor (EF2) mRNA levels were also higher in the ESG. Molt stage had little or no effect on CHH, NOS, NOS-interacting protein (NOS-IP), membrane Guanylyl Cyclase-II (GC-II), and NO-independent GC-III expression in the ESG of both species. By contrast, MIH and NO receptor GC-I beta subunit (GC-Iß) transcripts were increased during premolt and postmolt stages in G. lateralis, but not in C. maenas. MIH immunopositive cells in the brain and TG may be a secondary source of MIH; the release of MIH from these sources may contribute to the difference between the two species in response to ESA. The MIH-immunopositive cells in the TG may be the source of an MIH-like factor that mediates molt inhibition by limb bud autotomy. The association of MIH- and NOS-labeled cells in the ESG and TG suggests that NO may modulate MIH release. A model is proposed in which NO-dependent activation of GC-I inhibits Ca2+-dependent fusion of MIH vesicles with the nerve terminal membrane; the resulting decrease in MIH activates the YO and the animal enters premolt.


Assuntos
Proteínas de Artrópodes/metabolismo , Braquiúros/fisiologia , Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hormônios de Invertebrado/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase/metabolismo , Animais , Aquicultura , Proteínas de Artrópodes/genética , Oceano Atlântico , Braquiúros/crescimento & desenvolvimento , California , Sistema Nervoso Central/citologia , Sistema Nervoso Central/enzimologia , República Dominicana , Olho , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/enzimologia , Gânglios dos Invertebrados/metabolismo , Hormônios de Invertebrado/genética , Masculino , Muda , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/enzimologia , Óxido Nítrico Sintase/genética , Córtex Olfatório/citologia , Córtex Olfatório/enzimologia , Córtex Olfatório/metabolismo , Especificidade de Órgãos , Oceano Pacífico , Especificidade da Espécie , Tórax
16.
J Biol Chem ; 290(52): 30728-35, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26499798

RESUMO

WW domain-containing oxidoreductase (WWOX), originally marked as a likely tumor suppressor gene, has over the years become recognized for its role in a much wider range of cellular activities. Phenotypic effects displayed in animal studies, along with resolution of WWOX's architecture, fold, and binding partners, point to the protein's multifaceted biological functions. Results from a series of complementary experiments seem to indicate WWOX's involvement in metabolic regulation. More recently, clinical studies involving cases of severe encephalopathy suggest that WWOX also plays a part in controlling CNS development, further expanding our understanding of the breadth and complexity of WWOX behavior. Here we present a short overview of the various approaches taken to study this dynamic gene, emphasizing the most recent findings regarding WWOX's metabolic- and CNS-associated functions and their underlying molecular basis.


Assuntos
Sistema Nervoso Central/enzimologia , Neoplasias/enzimologia , Oxirredutases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Humanos , Neoplasias/genética , Oxirredutases/química , Oxirredutases/genética , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
17.
Biochim Biophys Acta ; 1850(2): 255-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445710

RESUMO

BACKGROUND: Triatoma infestans is the main vector of Chagas'disease in Southern Cone countries. In triatomines, symptoms suggesting neurotoxicity were observed after treatment with Jaburetox (Jbtx), the entomotoxic peptide obtained from jackbean urease. Here, we study its effect in the central nervous system (CNS) of this species. METHODS: Immunohistochemistry, Western blots, immunoprecipitation, two-dimensional electrophoresis, tandem mass spectrometry and enzymatic assays were performed. RESULTS: Anti-Jbtx antibody labeled somata of the antennal lobe only in Jbtx-treated insects. Western blot assays of nervous tissue using the same antibody reacted with a 61kDa protein band only in peptide-injected insects. Combination of immunoprecipitation, two-dimensional electrophoresis and tandem mass spectrometry identified UDP-N-acetylglucosamine pyrophosphorylase (UDP-GlcNAcP) as a molecular target for Jbtx. The activity of UDP-GlcNAcP increased significantly in the CNS of Jbtx-treated insects. The effect of Jbtx on the activity of nitric oxide synthase (NOS) and NO production was investigated as NO is a recognized messenger molecule in the CNS of T. infestans. NOS activity and NO levels decreased significantly in CNS homogenates of Jbtx-treated insects. CONCLUSIONS: UDP-GlcNAcP is a molecular target of Jbtx. Jbtx impaired the activity of T. infestans nitrergic system, which may be related with early behavioral effects. GENERAL SIGNIFICANCE: We report that the CNS of Triatoma infestans is a target for the entomotoxic peptide and propose that a specific area of the brain is involved. Besides potentially providing tools for control strategies of Chagas' disease vectors our data may be relevant in various fields of research as insect physiology, neurobiology and protein function.


Assuntos
Sistema Nervoso Central/enzimologia , Inibidores Enzimáticos/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Peptídeos/farmacologia , Proteínas de Plantas/farmacologia , Triatoma/enzimologia , Urease/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Inibidores Enzimáticos/química , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Nucleotidiltransferases/metabolismo , Peptídeos/química , Proteínas de Plantas/química , Urease/química
18.
Clin Sci (Lond) ; 130(21): 1913-28, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27528769

RESUMO

We previously developed cardiac ventricle-specific choline acetyltransferase (ChAT) gene-overexpressing transgenic mice (ChAT tgm), i.e. an in vivo model of the cardiac non-neuronal acetylcholine (NNA) system or non-neuronal cardiac cholinergic system (NNCCS). By using this murine model, we determined that this system was responsible for characteristics of resistance to ischaemia, or hypoxia, via the modulation of cellular energy metabolism and angiogenesis. In line with our previous study, neuronal ChAT-immunoreactivity in the ChAT tgm brains was not altered from that in the wild-type (WT) mice brains; in contrast, the ChAT tgm hearts were the organs with the highest expression of the ChAT transgene. ChAT tgm showed specific traits in a central nervous system (CNS) phenotype, including decreased response to restraint stress, less depressive-like and anxiety-like behaviours and anti-convulsive effects, all of which may benefit the heart. These phenotypes, induced by the activation of cardiac NNCCS, were dependent on the vagus nerve, because vagus nerve stimulation (VS) in WT mice also evoked phenotypes similar to those of ChAT tgm, which display higher vagus nerve discharge frequency; in contrast, lateral vagotomy attenuated these traits in ChAT tgm to levels observed in WT mice. Furthermore, ChAT tgm induced several biomarkers of VS responsible for anti-convulsive and anti-depressive-like effects. These results suggest that the augmentation of the NNCCS transduces an effective and beneficial signal to the afferent pathway, which mimics VS. Therefore, the present study supports our hypothesis that activation of the NNCCS modifies CNS to a more stress-resistant state through vagus nerve activity.


Assuntos
Acetilcolina/metabolismo , Sistema Nervoso Central/fisiologia , Ventrículos do Coração/metabolismo , Coração/fisiologia , Animais , Sistema Nervoso Central/enzimologia , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Ventrículos do Coração/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Fisiológico , Nervo Vago/enzimologia , Nervo Vago/metabolismo
19.
PLoS Biol ; 11(3): e1001506, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554574

RESUMO

Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase). As a major mechanism of central nervous system (CNS) metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR) in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos) in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg) display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV)-mediated Ugcg delivery to the arcuate nucleus (Arc) significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis.


Assuntos
Peso Corporal/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/enzimologia , Glucosiltransferases/metabolismo , Neurônios/enzimologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Western Blotting , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Dependovirus/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Ácidos Graxos não Esterificados/sangue , Feminino , Imunofluorescência , Glucosiltransferases/genética , Homeostase/efeitos dos fármacos , Homeostase/genética , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Imunoprecipitação , Leptina/sangue , Masculino , Camundongos , Camundongos Mutantes , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos
20.
Hippocampus ; 25(3): 373-84, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25330763

RESUMO

Geranylgeranyltransferase I (GGT), a protein prenyltransferase, is responsible for the posttranslational lipidation of Rho GTPases, such as Rac, Rho and Cdc42, all of which play an important role in neuronal synaptogenesis. We previously demonstrated that GGT promotes dendritic morphogenesis in cultured hippocampal neurons and cerebellar slices. We report here that inhibiting GGT activity decreases basal- and activity-dependent changes in spine density as well as in learning and memory ability of mice in vivo. We found that KCl- or bicuculline-induced dendritic spine density increases was abolished by specific GGT inhibitor GGTi-2147 treatment in cultured hippocampal neurons. GGTi-2147 lateral ventricular injection reduced GGT activity and membrane association of Rac and decreased the density of dendritic spines in the mouse hippocampus, frontal cortex and cerebellum. GGTi-2147 administration also impaired learning and memory ability of mice. More importantly, mice exposed to environmental enrichment (EE) showed increased spine density and learning and memory ability, which were significantly reversed by GGTi-2147 administration. These data demonstrate that inhibiting GGT activity prevents both basal- and activity-dependent changes in spine density in central nervous system both in vitro and in vivo. Manipulating GGT activity may be a promising strategy for the therapies of neurodevelopmental disorders, such as autism, depression, and schizophrenia.


Assuntos
Alquil e Aril Transferases/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/enzimologia , Espinhas Dendríticas/patologia , Animais , Bicuculina/farmacologia , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Hipocampo/citologia , Imidazóis/farmacologia , Aprendizagem/efeitos dos fármacos , Leucina/análogos & derivados , Leucina/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Cloreto de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas rac de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA