Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 210: 111873, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418157

RESUMO

Food availability represents a major worldwide concern due to population growth, increased demand, and climate change. Therefore, it is imperative to identify compounds that can improve crop performance. Plant biostimulants have gained prominence because of their potentials to increase germination, productivity and quality of a wide range of horticultural and agronomic crops. Phosphite (Phi), an analog of orthophosphate, is an emerging biostimulant used in horticulture and agronomy. The aim of this study was to uncover the molecular mechanisms through which Phi acts as a biostimulant with potential effects of overall plant growth. Field and greenhouse experiments, using 4 potato cultivars, showed that following Phi applications, plant performance, including several physio-biochemical traits, crop productivity, and quality traits, were significantly improved. RNA sequencing of control and Phi-treated plants of cultivar Xingjia No. 2, at 0 h, 6 h, 24 h, 48 h, 72 h and 96 h after the Phi application for 24 h revealed extensive changes in the gene expression profiles. A total of 2856 differentially expressed genes were identified, suggesting that multiple pathways of primary and secondary metabolism, such as flavonoids biosynthesis, starch and sucrose metabolism, and phenylpropanoid biosynthesis, were strongly influenced by foliar applications of Phi. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses associated with defense responses revealed significant effects of Phi on a plethora of defense mechanisms. These results suggest that Phi acted as a biostimulant by priming the plants, that was, by triggering dynamic changes in gene expression and modulating metabolic fluxes in a way that allowed plants to perform better. Therefore, Phi usage has the potential to improve crop yield and health, alleviating the challenges posed by the need of feeding a growing world population, while minimizing the agricultural impact on human health and environment.


Assuntos
Fosfitos/farmacologia , Solanum tuberosum/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
2.
ScientificWorldJournal ; 2021: 5928769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628138

RESUMO

AIM: Potato (Solanum tuberosum L.) is one of the important crops in Ethiopia which has a crucial role in nutritional security, poverty alleviation, and income generation. The aim of the present investigation is to develop an efficient in vitro propagation protocol for Belete and Gudiene potato varieties by using lateral bud as explants. MATERIALS AND METHODS: Shoot initiation was achieved by inoculating buds on full-strength MS Murashige and Skoog medium (MS) fortified with variable concentrations of BAP and NAA. Basal MS was used as control throughout the experiment. RESULTS: Results of our study showed that best shoot initiation was obtained on MS medium supplemented with 1.5 mg/l BAP + 3.0 mg/l NAA for Gudiene variety, whereas 1.0 mg/l BAP and 2.0 mg/l NAA produced more shoots in Belete variety. The initiated shoots increased two- to three-fold upon subculture on the MS medium fortified with varying concentrations of BAP and Kinetin. The highest numbers of multiple shoots were obtained in the MS medium containing 2.5 mg/l Kinetin. The combined effect of BAP and Kinetin did not produce any additional positive effect for shoot multiplication. Rooting percentage and number of roots/shoot were found best on the MS medium fortified with 1.0 mg/l IBA + 0.5 IAA. CONCLUSIONS: The variety Gudiene was found best for shoot initiation and root formation, while Belete variety proved its superiority for multiple shoot formation. A total number of 82.66% of plantlets were acclimatized under field conditions. This work indicates the practical applicability of plant tissue culture using lateral bud as explants is effective for micropropagation of potato in vitro.


Assuntos
Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/crescimento & desenvolvimento , Regeneração/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , Meios de Cultura , Etiópia/epidemiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Solanum tuberosum/efeitos dos fármacos
3.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769436

RESUMO

New promising manganese-containing nanobiocomposites (NCs) based on natural polysaccharides, arabinogalactan (AG), arabinogalactan sulfate (AGS), and κ-carrageenan (κ-CG) were studied to develop novel multi-purpose trophic low-dose organomineral fertilizers. The general toxicological effects of manganese (Mn) on the vegetation of potatoes (Solanum tuberosum L.) was evaluated in this study. The essential physicochemical properties of this trace element in plant tissues, such as its elemental analysis and its spectroscopic parameters in electron paramagnetic resonance (EPR), were determined. Potato plants grown in an NC-containing medium demonstrated better biometric parameters than in the control medium, and no Mn accumulated in plant tissues. In addition, the synthesized NCs demonstrated a pronounced antibacterial effect against the phytopathogenic bacterium Clavibacter sepedonicus (Cms) and were proved to be safe for natural soil microflora.


Assuntos
Antibacterianos/farmacologia , Clavibacter/efeitos dos fármacos , Manganês/toxicidade , Micronutrientes/farmacologia , Nanocompostos/química , Polissacarídeos/química , Solanum tuberosum/crescimento & desenvolvimento , Carragenina/química , Galactanos/química , Micronutrientes/química , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologia , Oligoelementos/farmacologia
4.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806406

RESUMO

The NAC (NAM, ATAF1/2, and CUC2) transcription factors comprise one of the largest transcription factor families in plants and play important roles in stress responses. However, little is known about the functions of potato NAC family members. Here we report the cloning of a potato NAC transcription factor gene StNAC053, which was significantly upregulated after salt, drought, and abscisic acid treatments. Furthermore, the StNAC053-GFP fusion protein was found to be located in the nucleus and had a C-terminal transactivation domain, implying that StNAC053 may function as a transcriptional activator in potato. Notably, Arabidopsis plants overexpressing StNAC053 displayed lower seed germination rates compared to wild-type under exogenous ABA treatment. In addition, the StNAC053 overexpression Arabidopsis lines displayed significantly increased tolerance to salt and drought stress treatments. Moreover, the StNAC053-OE lines were found to have higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) under multiple stress treatments. Interestingly, the expression levels of several stress-related genes including COR15A,DREB1A, ERD11, RAB18, ERF5, and KAT2, were significantly upregulated in these StNAC053-overexpressing lines. Taken together, overexpression of the stress-inducible StNAC053 gene could enhance the tolerances to both salt and drought stress treatments in Arabidopsis, likely by upregulating stress-related genes.


Assuntos
Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Catalase/genética , Núcleo Celular/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Peroxidase/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Cloreto de Sódio/administração & dosagem , Cloreto de Sódio/farmacologia , Solanum tuberosum/efeitos dos fármacos , Superóxido Dismutase/genética , Regulação para Cima/genética
5.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34769466

RESUMO

Thaxtomin A (TA) is a phytotoxin secreted by Streptomyces scabies that causes common scab in potatoes. However, the mechanism of potato proteomic changes in response to TA is barely known. In this study, the proteomic changes in potato leaves treated with TA were determined using the Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) technique. A total of 693 proteins were considered as differentially expressed proteins (DEPs) following a comparison of leaves treated with TA and sterile water (as a control). Among the identified DEPs, 460 and 233 were upregulated and downregulated, respectively. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, many DEPs were found to be involved in defense and stress responses. Most DEPs were grouped in carbohydrate metabolism, amino acid metabolism, energy metabolism, and secondary metabolism including oxidation-reduction process, response to stress, plant-pathogen interaction, and plant hormone signal transduction. In this study, we analyzed the changes in proteins to elucidate the mechanism of potato response to TA, and we provided a molecular basis to further study the interaction between plant and TA. These results also offer the option for potato breeding through analysis of the resistant common scab.


Assuntos
Indóis/farmacologia , Piperazinas/farmacologia , Proteínas de Plantas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Solanum tuberosum/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/imunologia , Indóis/isolamento & purificação , Piperazinas/isolamento & purificação , Imunidade Vegetal/efeitos dos fármacos , Imunidade Vegetal/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Solanum tuberosum/metabolismo , Streptomyces/química
6.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925499

RESUMO

The paper presents a study of the effect of chemically synthesized selenium nanocomposites (Se NCs) in natural polymer matrices arabinogalactan (AG) and starch (ST) on the viability of the potato ring rot pathogen Clavibacter sepedonicus (Cms), potato plants in vitro, and the soil bacterium Rhodococcus erythropolis. It was found that the studied Se NCs have an antibacterial effect against the phytopathogenic Cms, reducing its growth rate and ability to form biofilms. It was revealed that Se NC based on AG (Se/AG NC) stimulated the growth and development of potato plants in vitro as well as their root formation. At the same time, Se did not accumulate in potato tissues after the treatment of plants with Se NCs. The safety of the Se NCs was also confirmed by the absence of a negative effect on the growth and biofilm formation of the soil bacterium R. erythropolis. The obtained results indicate that Se NCs are promising environmentally safe agents for the protection and recovery of cultivated plants from phytopathogenic bacteria.


Assuntos
Clavibacter/efeitos dos fármacos , Nanocompostos/química , Selênio/farmacologia , Solanum tuberosum/microbiologia , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Clavibacter/patogenicidade , Galactanos/química , Microscopia Eletrônica de Transmissão , Doenças das Plantas/microbiologia , Rhodococcus/efeitos dos fármacos , Rhodococcus/fisiologia , Selênio/química , Selênio/farmacocinética , Microbiologia do Solo , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , Espectrometria por Raios X , Amido/química
7.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201482

RESUMO

Fusarium wilt of potato is one of the most common diseases of potato in China, and is becoming a serious threat in potato production. It has been reported that osthole from Cnidium monnieri (L.) Cusson can inhibit plant pathogens. Here, we test the anti-fungal activity of C. monnieri osthole against Fusarium oxysporum in potatoes. The results showed that at a concentration of 5 mg/mL, osthole was able to obviously inhibit mycelial growth of F. oxysporum. We found that osthole caused changes of mycelial morphology, notably hyphal swelling and darkening. Osthole significantly reduced the spore germination of Fusarium by 57.40%. In addition, osthole also inhibited the growth of other pathogens such as Fusarium moniliforme J. Sheld, Thanatephorus cucumeris Donk, and Alternaria alternata (Fr.) Keissl, but not Alternaria solani Jonesetgrout and Valsa mali Miyabe and G. Yamada. Our results suggest that osthole has considerable potential as an agent for the prevention and treatment of potato Fusarium wilt.


Assuntos
Cnidium/química , Cumarínicos/administração & dosagem , Fusarium/efeitos dos fármacos , Micélio/efeitos dos fármacos , Solanum tuberosum/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Micélio/citologia , Solanum tuberosum/microbiologia
8.
Curr Microbiol ; 77(6): 910-917, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31965226

RESUMO

Tolaasins are lipodepsipeptides secreted by Pseudomonas tolaasii, the causal agent of bacterial blotch on several kinds of cultivated mushrooms. Our previous study reported on tolaasin detoxification by Microbacterium sp. K3-5 as a potential biocontrol of the disease. In this study, the tolaasin-detoxifying activities of various type strains of Microbacterium spp. were evaluated through chemical and biological assays. The bacterial cells of all tested strains of Microbacterium spp. showed tolaasin I-elimination from liquid phase. However, the toxin activities of tolaasins were still retained on the tolaasin-treated bacterial cells of all Microbacterium strains except M. foliorum NBRC 103072T. Furthermore, intact tolaasin I was recovered from the tolaasin-treated bacterial cells of all tested strains except M. foliorum NBRC 103072T. Our data reveal that Microbacterium spp. can be characterized as effective tolaasin I-eliminating bacteria through cell adsorption, but that this adsorption alone is insufficient for actual tolaasin detoxification. The biological degradation process must be needed to carry out the detoxification.


Assuntos
Proteínas de Bactérias/química , Toxinas Bacterianas/química , Agentes de Controle Biológico/química , Depsipeptídeos/química , Microbacterium/fisiologia , Adsorção , Agaricus/efeitos dos fármacos , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Depsipeptídeos/toxicidade , Microbacterium/classificação , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/microbiologia
9.
Ecotoxicol Environ Saf ; 190: 110048, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837570

RESUMO

Phosphite (Phi), an analog of phosphate (Pi) anion, is emerging as a potential biostimulator, fungicide and insecticide. Here, we reported that Phi also significantly enhanced thermotolerance in potatoes under heat stress. Potato plants with and without Phi pretreatment were exposed to heat stress and their heat tolerance was examined by assessing the morphological characteristics, photosynthetic pigment content, photosystem II (PS II) efficiency, levels of oxidative stress, and level of DNA damage. In addition, RNA-sequencing (RNA-Seq) was adopted to investigate the roles of Phi signals and the underlying heat resistance mechanism. RNA-Seq revealed that Phi orchestrated plant immune responses against heat stress by reprograming global gene expressions. Results from physiological data combined with RNA-Seq suggested that the supply of Phi not only was essential for the better plant performance, but also improved thermotolerance of the plants by alleviating oxidative stress and DNA damage, and improved biosynthesis of osmolytes and defense metabolites when exposed to unfavorable thermal conditions. This is the first study to explore the role of Phi in thermotolerance in plants, and the work can be applied to other crops under the challenging environment.


Assuntos
Fosfitos/farmacologia , Solanum tuberosum/efeitos dos fármacos , Termotolerância/efeitos dos fármacos , Dano ao DNA , Resposta ao Choque Térmico/efeitos dos fármacos , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , RNA-Seq , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/imunologia , Plântula/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Solanum tuberosum/metabolismo
10.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126590

RESUMO

Citral is well known for its antimicrobial, antifungal, and insecticidal activities. Natural sesquiterpene α-methylenelactones also exhibit a broad spectrum of biological activities. The aim of the study was to explore the effect of structural changes to citral molecules on citral behavior-modifying activity towards Myzus persicae. Specifically, the effects of the introduction of a γ-lactone moiety and methylene groups in α and γ positions of the lactone ring were investigated. The lactones were obtained in five-step (saturated lactone and γ-methylenelactone) or six-step (α-methylenelactone and α,γ-dimethylenelactone) syntheses from citral. The synthetic procedures and physical and spectral data of the lactones are presented. The settling behavior of freely moving aphids in choice and no-choice situations was monitored. The probing behavior of tethered M. persicae using the Electrical Penetration Graph (EPG) technique was also analyzed. Citral appeared a strong repellent and pre-ingestive and ingestive probing deterrent to M. persicae. The incorporation of a lactone moiety caused the loss of the repellent activity. α-Methylenelactone inhibited aphid settling and probing activities at pre-ingestive and ingestive phases. The saturated γ-lactone and α,γ-dimethylenelactone were the settling post-ingestive deterrents to M. persicae, which did not affect aphid probing activity. γ-Methylenelactone did not affect aphid behavior.


Assuntos
Monoterpenos Acíclicos/química , Afídeos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Inseticidas/farmacologia , Lactonas/farmacologia , Solanum tuberosum/crescimento & desenvolvimento , Animais , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/parasitologia
11.
Dokl Biochem Biophys ; 495(1): 296-299, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33368038

RESUMO

The growth-stimulating activity of three selenium nanocomposites (NCs) in various matrices based on arabinogalactan (NC Se/AG, 6.4% Se), starch (NC Se/St, 2% Se), and carrageenan (NC Se/Car, 12% Se) with respect to plants of radish, soybean, and potato was investigated. It was shown that the treatment of plant seeds with NCs stimulated root growth during germination. It was found that the studied NCs affected both the level of lipid peroxidation and the activity of the antioxidant enzyme glutathione peroxidase (GPX). The treatment of radish seeds with NCs stimulated root growth during their germination and reduced the content of diene conjugates (DC) in root tissues. It was shown that soaking seeds in NC Se/AG solution increased the GPX activity in the tissues of the radish root by 40%. Stimulation of soybean root growth under the influence of NC Se/Car may also be associated with the activation of GPX. Furthermore, in potato plants, this NC led to the stimulation of germination; however, this was probably due to the activation of other antioxidant enzymes. The results obtained allow us to consider Se NCs as potential plant growth stimulants.


Assuntos
Glycine max/efeitos dos fármacos , Nanocompostos/química , Raphanus/efeitos dos fármacos , Selênio/farmacologia , Solanum tuberosum/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/farmacologia , Germinação/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Nanocompostos/administração & dosagem , Polímeros/química , Polímeros/farmacologia , Raphanus/crescimento & desenvolvimento , Raphanus/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Selênio/química , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo
12.
Plant J ; 93(5): 931-942, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315972

RESUMO

Wound-induced suberin deposition involves the temporal and spatial coordination of phenolic and fatty acid metabolism. Phenolic metabolism leads to both soluble metabolites that accumulate as defense compounds as well as hydroxycinnamoyl derivatives that form the basis of the poly(phenolic) domain found in suberized tissue. Fatty acid metabolism involves the biosynthesis of very-long-chain fatty acids, 1-alkanols, ω-hydroxy fatty acids and α,ω-dioic acids that form a poly(aliphatic) domain, commonly referred to as suberin. Using the abscisic acid (ABA) biosynthesis inhibitor fluridone (FD), we reduced wound-induced de novo biosynthesis of ABA in potato tubers, and measured the impact on the expression of genes involved in phenolic metabolism (StPAL1, StC4H, StCCR, StTHT), aliphatic metabolism (StCYP86A33, StCYP86B12, StFAR3, StKCS6), metabolism linking phenolics and aliphatics (StFHT) or acyl chains and glycerol (StGPAT5, StGPAT6), and in the delivery of aliphatic monomers to the site of suberization (StABCG1). In FD-treated tissue, both aliphatic gene expression and accumulation of aliphatic suberin monomers were delayed. Exogenous ABA restored normal aliphatic suberin deposition in FD-treated tissue, and enhanced aliphatic gene expression and poly(aliphatic) domain deposition when applied alone. By contrast, phenolic metabolism genes were not affected by FD treatment, while FD + ABA and ABA treatments slightly enhanced the accumulation of polar metabolites. These data support a role for ABA in the differential induction of phenolic and aliphatic metabolism during wound-induced suberization in potato.


Assuntos
Lipídeos/biossíntese , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lipídeos/genética , Tubérculos/efeitos dos fármacos , Tubérculos/genética , Piridonas/farmacologia , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/genética
13.
New Phytol ; 222(1): 438-454, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30536576

RESUMO

The potato blight agent Phytophthora infestans secretes a range of RXLR effectors to promote disease. Recent evidence indicates that some effectors suppress early pattern-triggered immunity (PTI) following perception of microbe-associated molecular patterns (MAMPs). Phytophthora infestans effector PiSFI3/Pi06087/PexRD16 has been previously shown to suppress MAMP-triggered pFRK1-Luciferase reporter gene activity. How PiSFI3 suppresses immunity is unknown. We employed yeast-two-hybrid (Y2H) assays, co-immunoprecipitation, transcriptional silencing by RNA interference and virus-induced gene silencing (VIGS), and X-ray crystallography for structure-guided mutagenesis, to investigate the function of PiSFI3 in targeting a plant U-box-kinase protein (StUBK) to suppress immunity. We discovered that PiSFI3 is active in the host nucleus and interacts in yeast and in planta with StUBK. UBK is a positive regulator of specific PTI pathways in both potato and Nicotiana benthamiana. Importantly, it contributes to early transcriptional responses that are suppressed by PiSFI3. PiSFI3 forms an unusual trans-homodimer. Mutation to disrupt dimerization prevents nucleolar localisation of PiSFI3 and attenuates both its interaction with StUBK and its ability to enhance P. infestans leaf colonisation. PiSFI3 is a 'WY-domain' RXLR effector that forms a novel trans-homodimer which is required for its ability to suppress PTI via interaction with the U-box-kinase protein StUBK.


Assuntos
Phytophthora infestans/metabolismo , Proteínas Quinases/metabolismo , Proteínas/metabolismo , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia , Transcrição Gênica , Apoptose/efeitos dos fármacos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Flagelina/farmacologia , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Phytophthora infestans/patogenicidade , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Proteínas Quinases/química , Multimerização Proteica , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/genética , Virulência
14.
J Invertebr Pathol ; 166: 107224, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31362005

RESUMO

When Colorado potato beetle larvae ingested potato plants treated with the plant defense inducer compound hexanoic acid, midgut chymotrypsin enzyme activity increased, and the corresponding chymotrypsin genes were differentially expressed, evidence of the larval digestive proteolytic system's plasticity. We previously reported increased susceptibility to Cry3Aa toxin in larvae fed hexanoic acid treated plants. Here we show that the most expressed chymotrypsin gene in larvae fed hexanoic acid treated plants, CTR6, was dramatically downregulated in Cry3Aa intoxicated larvae. lde-miR-965-5p and lde-miR-9a-5p microRNAs, predicted to target CTR6, might be involved in regulating the response to hexanoic acid but not to Cry3Aa toxin.


Assuntos
Proteínas de Bactérias/farmacologia , Caproatos/farmacologia , Quimotripsina/biossíntese , Besouros/enzimologia , Endotoxinas/farmacologia , Genes de Insetos , Proteínas Hemolisinas/farmacologia , Animais , Toxinas de Bacillus thuringiensis , Quimotripsina/genética , Besouros/efeitos dos fármacos , Besouros/genética , Sistema Digestório/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes de Insetos/efeitos dos fármacos , Genes de Insetos/fisiologia , Larva , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/parasitologia
15.
Ecotoxicol Environ Saf ; 185: 109689, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31550566

RESUMO

Nitrification inhibition as an alleviation tool to decrease nitrogen (N) losses and increase N use efficiency (NUE) as well as reducing NO3- accumulation in plants is a promising technology. No study thus far has directly or indirectly to use the secondary metabolites extracted from Moringa (Moringa oleifera Lam) seeds as nitrification inhibitors. Moringa seed extract (MSE) was studied based on its content of phenolic compounds (PC) and for its antioxidant characteristic. A 2-year field experiment and 30-day incubation experiment were conducted with three treatments of control (CK), N fertilizer (300 kg N ha-1 and 200 mg N kg-1 soil for the field and incubation experiment, respectively), and N fertilizer with MSE (500 ppm as a TPC) to investigate the responses of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to MSE and the consequences for NUE and NO3- accumulation in potato tubers. Total phenolics amount was 144 mg gallic acid equivalent g-1 MSE, while flavonoid contents were 76.6 quercetin equivalent g-1 MSE. MSE showed antioxidant activity that was comparable to the standard antioxidants TBHQ and gallic acid. MSE application with N fertilizer retarded the nitrification process, as indicated by a higher NH4+-N and lower NO3--N content, compared with N fertilizer application alone. NH4+-N content reduced to initial CK level on Day 20 under N fertilizer application alone. However, NH4+-N content decreased to initial control level on Day 30 when MSE was applied. The mechanisms resulted from curbing AOB growth by phenolic compounds (TPC, TF, TAC), leading to a delay in nitrification process. AOB increased significantly when N fertilizer was applied alone; on the contrary, AOA was not sensitive to N fertilizer (with and without MSE). Increase in NUE from 37.5% to 66.3% in potato plants under MSE application with N fertilizer was also observed compared with N fertilizer application alone. The highest NO3- accumulation (569 mg NO3- kg-1) in tubers was recorded under N fertilizer application without MSE. MSE application significantly decreased NO3- accumulation (92 mg NO3- kg-1) in tubers which is lower than the maximum value of accepting tubers (200 mg NO3- kg-1). The highest average of N uptake, fresh and dry weight, carotenoids, chlorophyll a, chlorophyll b and nitrate reductase activity was recorded when MSE was applied with N fertilizer. Accordingly, using of Moringa extracted secondary metabolites to suppress AOB growth in the soil is a significant strategy to reduce nitrification rate and N loss from soils, and therefore increase NUE as well as reducing NO3- accumulation in potato tubers.


Assuntos
Amônia/metabolismo , Antioxidantes/farmacologia , Moringa/química , Nitratos/metabolismo , Nitrogênio/metabolismo , Sementes/química , Solanum tuberosum/efeitos dos fármacos , Antioxidantes/isolamento & purificação , Clorofila A/metabolismo , Fertilizantes/análise , Moringa/metabolismo , Nitrificação , Oxirredução , Sementes/metabolismo , Solo/química , Microbiologia do Solo , Solanum tuberosum/metabolismo
16.
Ecotoxicol Environ Saf ; 172: 317-325, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30721875

RESUMO

Heavy metal toxicity is one of the main factors that limit crop growth and yield in the world. Salicylic acid (SA) is thought to be a plant hormone that plays an important role in plant growth, development, and resistance to abiotic stresses. To uncover the toxic alleviation effects of SA on potato plants to cadmium (Cd) stress, the morphological, physiological, and biochemical indexes including antioxidant defense system were assayed in potato plants under 200 µM Cd stress in 1/2 Hoagland solution with foliar application of 600 µM SA concentration (10 ml/plant). Interestingly, exogenous SA treatment mitigated Cd toxicity by increasing the relative water content (RWC), chlorophyll, proline, and endogenous SA contents along with decline in malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion radicals (O2-). Correspondingly, our study also proved that SA may stimulate the antioxidant enzymatic mechanism pathway including superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2) in potato plants subjected to Cd stress. Moreover, the expression level of selected genes relate to SA and reactive oxygen species (ROS) metabolism (StSABP2, StSOD and StAPX) were enhanced in SA-treated potato plants under Cd stress, indicating that SA treatment regulated the expression of these genes, which in turn enhanced potato tolerance to Cd stress. Taken together, our results indicated that exogenous SA can play a positive regulatory role in alleviating Cd toxicity in potato plants.


Assuntos
Cádmio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/farmacologia , Solanum tuberosum/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Estudos de Avaliação como Assunto , Regulação da Expressão Gênica de Plantas , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Solanum tuberosum/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
17.
Ecotoxicol Environ Saf ; 180: 588-599, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31132554

RESUMO

Past studies have already determined that selenium (Se) is very effective in alleviating cell oxidative damage caused by various abiotic stresses in plants. Past studies have also indicated other physiological pathways by which Se may benefit plants. In order to better understand the full array of potential applications for Se in agriculture, this study investigated the influence of Se on carbohydrate and nitrogen (N) metabolism in potato plants (Solanum tuberosum L. cv. Sante) grown under cadmium (Cd) and/or arsenic (As) toxicity. Potato plants were grown in a growth chamber and fertigated with Hoagland nutrient solution with or without Se (9 µM). After 48-d of growth under Cd (40 µM) and/or As (40 µM) stress, carbohydrate and N metabolism in leaves, roots and stolons were measured. For carbohydrate metabolism, various sugars-i.e., sucrose, starch, glucose, fructose, and total soluble sugar contents (TSSC)-and the activities of enzymes associated with sucrose metabolism and glycolysis-i.e., acid invertase (AI), neutral invertase (NI), sucrose-synthetase (SS), sucrose phosphatesynthetase (SPS), fructokinase (FK), hexokinase (HK), phosphofructokinase (PFK), and pyruvatekinase (PK)-were measured. For N metabolism, NO3-, NO2- and NH4+ contents along with the enzymatic activities of nitrate reductase (NRA), nitrite reductase (NiRA), glutamine-synthetase (GS), and glutamate-synthetase (GOGAT) were measured. Overall, Cd and/or As treatments had reduced plant growth relative to those plants grown without heavy metal toxicity, due to hindered photosynthesis and alterations in N metabolism and glycolysis. Regarding N metabolism, heavy metal toxicity caused a reduction in NO3- and NO2- content and NRA and NiRA enzymatic activity and enhanced NH4+ content and GDH activity in leaves, roots and stolons. Regarding glycolysis, the activity of enzymes of glycolysis-i.e., FK, HK, PFK, and PK-were also reduced. In the C metabolism study, plants combatted Cd and As toxicity naturally by an adaptation mechanism which caused an increase in soluble sugars (fructose, glucose, sucrose) by increasing NI, SS and SSP enzymatic activity. Supplementation with Se in the Cd and/or As treatments in the carbohydrate and N metabolism studies improved plant growth. Selenium supplementation in the Cd and As treatments decreased Cd and/or As content in the plant tissue and alleviating the Cd- and/or As-induced toxicity by enhancing the C-metabolism adaptation mechanism. Applying Se to Cd and As treatments also decreased nitrogen losses by hindering Cd- and As-induced changes in the N-metabolism. Se also limited Cd and As accumulation in the plant tissue by the antagonistic effect between Cd/Se and As/Se in the roots. The results of this study indicate that in the presence of Cd and/or As. soil toxicity, Se may be a powerful tool for promoting plant growth.


Assuntos
Arsênio/toxicidade , Cádmio/toxicidade , Metabolismo dos Carboidratos/efeitos dos fármacos , Nitrogênio/metabolismo , Selênio/farmacologia , Solanum tuberosum/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Solanum tuberosum/metabolismo , Estresse Fisiológico , Sacarose/metabolismo
18.
Int J Mol Sci ; 20(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623239

RESUMO

Light is one of the most important abiotic factors for most plants, which affects almost all growth and development stages. In this study, physiological indicators suggest that the application of exogenous Ca2+ improves photosynthesis and changes phytohormone levels. Under weak light, photosynthetic parameters of the net photosynthetic rate (PN), stomatal conductance (Gs), and transpiration rate (Tr) decreased; the antioxidation systems peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) reduced; the degrees of malondialdehyde (MDA), H2O2, and superoxide anion (O2-) free radical damage increased; while exogenous Ca2+ treatment was significantly improved. RNA-seq analysis indicated that a total of 13,640 differently expressed genes (DEGs) were identified and 97 key DEGs related to hormone, photosynthesis, and calcium regulation were differently transcribed. Gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses, plant hormone signal transduction, photosynthesis, carbon metabolism, and phenylpropanoid biosynthesis were significantly enriched. Additionally, quantitative real-time PCR (qRT-PCR) analysis confirmed some of the key gene functions in response to Ca2+. Overall, these results provide novel insights into the complexity of Ca2+ to relieve injuries under weak light, and they are helpful for potato cultivation under weak light stress.


Assuntos
Cálcio/metabolismo , Luz , Solanum tuberosum/fisiologia , Solanum tuberosum/efeitos da radiação , Transcriptoma , Antioxidantes/metabolismo , Cálcio/farmacologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase , Fotossíntese/genética , Reguladores de Crescimento de Plantas , Transdução de Sinais , Solanum tuberosum/efeitos dos fármacos , Estresse Fisiológico
19.
Dokl Biol Sci ; 489(1): 184-188, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32130588

RESUMO

The influence of nanocomposites (NC) of selenium in matrices of arabinogalactan (Se/AG) and starch (Se/St) on in vitro vegetation of potato plants, peroxidase activity, and reactive oxygen species has been thoroughly studied. It has been shown that these nanocomposites of selenium have antimicrobial effect to the phytopathogenic bacterium Clavibacter michiganensis ssp. sepedonicus (Cms). In the present investigation, it has been shown that Se/AG NC (6.4% of Se) and Se/St NC (12.0% of Se) have no negative impact on the potato plants healthy and Cms infected, while stimulating their growth, number of leaves and weight of the vegetative part. Se/AG NC has shown a positive effect on potato plants by increasing its immune status by increasing the ROS content and increasing the peroxidase activity. With the use of the element analysis technique, it has been shown that scrutinized nanocomposites are not accumulated in potato plants after the bactericidal processing with the nanocomposites. Se/AG NC and Se/St NC as potential agents used for treatment of potato plants against pathogenic bacteria.


Assuntos
Actinobacteria/patogenicidade , Nanocompostos/uso terapêutico , Doenças das Plantas/terapia , Selênio/química , Solanum tuberosum/efeitos dos fármacos , Clavibacter , Nanocompostos/química , Peroxidases/metabolismo , Proteínas de Plantas/metabolismo , Polissacarídeos/química , Espécies Reativas de Oxigênio/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologia
20.
Pak J Pharm Sci ; 32(5): 1971-1977, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31813860

RESUMO

Based on the ethnomedicinal use of Isodon rugosus the current study was designed to evaluate its crude saponins (Ir.Sp), and subsequent fractions for anti-angiogenic and anti-tumor potentials. Chorioallantoic membrane (CAM) assay was used in anti-angiogenic potentials with Dexamethasone as positive control. The antitumor activity was evaluated with potato disk method using Vincristine sulfate as positive control. Moreover, antibacterial activity was also conducted against A. tumefaciens. The highest anti-angiogenic effect was observed with Ir.Sp, i.e., 79.00±0.58% at concentration of 1000 µg/ml which drop drown to 48.67±1.20% at lowest tested concentration of 31.25 µg/ml with IC50 of 41 µg/ml. Similarly, in the anti-tumor activity the Ir. Chf revealed excellent inhibition of tumor with IC50 value of 60 µg/ml. All the samples (excluding Ir. Sp and Ir. Cr) were inactive against A. tumefaciens, which demonstrates that the samples which did not show any antibacterial activity are rich in certain bioactive principles which may be responsible for the anti-tumor and anti-angiogenic potentials. Our results conclude that the Ir.Sp, Ir.Chfmay be good targets for isolation of bioactive compounds responsible for the inhibition of excessive proliferation of cells and angiogenesis.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Isodon/química , Neovascularização Patológica/tratamento farmacológico , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Solanum tuberosum/efeitos dos fármacos , Agrobacterium tumefaciens/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Galinhas , Medicina Tradicional/métodos , Metanol/química , Óvulo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA