Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 599
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 26(1): 1-11, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33146770

RESUMO

The interaction of Tb3+ and La3+ cations with different photosystem II (PSII) membranes (intact PSII, Ca-depleted PSII (PSII[-Ca]) and Mn-depleted PSII (PSII[-Mn]) membranes) was studied. Although both lanthanide cations (Ln3+) interact only with Ca2+-binding site of oxygen-evolving complex (OEC) in PSII and PSII(-Ca) membranes, we found that in PSII(-Mn) membranes both Ln3+ ions tightly bind to another site localized on the oxidizing side of PSII. Binding of Ln3+ cations to this site is not protected by Ca2+ and is accompanied by very effective inhibition of Mn2+ oxidation at the high-affinity (HA) Mn-binding site ([Mn2+ + H2O2] couple was used as a donor of electrons). The values of the constant for inhibition of electron transport Ki are equal to 2.10 ± 0.03 µM for Tb3+ and 8.3 ± 0.4 µM for La3+, whereas OEC inhibition constant in the native PSII membranes is 323 ± 7 µM for Tb3+. The value of Ki for Tb3+ corresponds to Ki for Mn2+ cations in the reaction of diphenylcarbazide oxidation via HA site (1.5 µM) presented in the literature. Our results suggest that Ln3+ cations bind to the HA Mn-binding site in PSII(-Mn) membranes like Mn2+ or Fe2+ cations. Taking into account the fact that Mn2+ and Fe2+ cations bind to the HA site as trivalent cations after light-induced oxidation and the fact that Mn cation bound to the HA site (Mn4) is also in trivalent state, we can suggest that valency may be important for the interaction of Ln3+ with the HA site.


Assuntos
Lantânio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Térbio/metabolismo , 2,6-Dicloroindofenol/química , Sítios de Ligação , Cálcio/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/efeitos da radiação , Cinética , Luz , Manganês/metabolismo , Oxirredução/efeitos dos fármacos , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Spinacia oleracea/enzimologia , Tilacoides/química
2.
Biochemistry (Mosc) ; 86(11): 1369-1376, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34906039

RESUMO

The effect of exogenous cytochrome c (cyt c) on kinetics of photoelectric responses (Δψ) of two types of photosystem II (PSII) core complexes (intact - PSII with active water-oxidizing complex and Mn-depleted complex) reconstituted into liposomes has been investigated by direct electrometric technique. PSII complexes were localized in the proteoliposome membranes with their donor side outward. An additional electrogenic phase was observed in the kinetics of Δψ generation in response to a laser flash besides the main fast (<0.3 µs) electrogenic component due to electron transfer from the redox-active tyrosine YZ to the primary quinone acceptor QA in the presence of oxidized cyt c (cyt c3+) entrapped in the internal space of proteoliposomes with intact PSII complexes. This component with characteristic time τ ≈ 40 µs and relative amplitude of ~10% of the total Δψ was attributed to the vectorial electron transfer from QA- to cyt c3+ serving as an external acceptor. An additional electrogenic component with τ ~ 70 µs and a relative amplitude of ~20% of the total Δψ also appeared in the kinetics of Δψ formation, when cyt c2+ was added to the suspension of proteoliposomes containing Mn-depleted PSII core complexes. This component was attributed to the electrogenic transfer of an electron from cyt c2+ to photooxidized tyrosine YZ. These data imply that cyt c3+ serves as a very effective exogenous electron acceptor for QA- in the case of intact PSII core complexes, and cyt c2+ is an extremely efficient artificial electron donor for YZ in the Mn-depleted PSII. The obtained data on the roles of cyt c2+ and cyt c3+ as an electron donor and acceptor for PSII, respectively, can be used to develop hybrid photoelectrochemical solar energy-converting systems based on photosynthetic pigment-protein complexes.


Assuntos
Citocromos c/química , Complexo de Proteína do Fotossistema II/química , Spinacia oleracea/enzimologia , Transporte de Elétrons , Cinética
3.
Ecotoxicol Environ Saf ; 191: 110243, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32001421

RESUMO

The use of nitrification inhibitors (NIs) such as 3,4-dimethylpyrazole phosphate (DMPP) has been suggested to diminish agricultural soil nitrate (NO3-) loss and increase nitrogen (N) use efficiency (NUE). However, the yield of ammonium (NH4+)-sensitive plants such as spinach (Spinacia oleracea L.) may be adversely affected by the application of NIs at high N levels and, on the other hand, the efficiency of the NIs may also be affected by soil amendments such as biochar. These two issues are still not adequately addressed. The aim of this study was to evaluate the effect of different N levels including DMPP or not in a calcareous soil with and without amendment of wheat straw biochar on spinach yield, NUE, nitrate concentration of spinach leaf, activity of enzymes nitrate reductase (NR) and nitrite reductase (NiR), and soil ammonium (NH4+) and NO3- concentration under greenhouse conditions. This experiment was carried out with different N rates factor at seven levels (un-fertilized, N0; fertilized with 50 mg N kg-1 soil, N50; fertilized with 75 mg N kg-1 soil, N75; fertilized with 100 mg N kg-1 soil, N100; fertilized with N50 + DMPP; fertilized with N75 + DMPP; and fertilized with N100 + DMPP) and biochar (BC) factor at two levels (0, 0%BC; and 2% (w/w), 2%BC) with six replications over a 56-day cultivation period of spinach. Results showed that the application of DMPP had no significant effect on the yield of spinach plant at low and medium levels of N (50 and 75 mg N kg-1 soil), but decreased the yield of this plant at the higher level of N (100 mg N kg-1 soil). However, application of BC decreased the negative effect of DMPP on spinach yield as the yield in spinach plants fertilized with N75 + DMPP and N100 + DMPP significantly increased. Both application of DMPP and addition of BC to soil decreased leaf NO3- concentration by 29.2% and 16.3% compared to control, respectively. Biochar compared to control decreased NR activity by 46.3%. With increasing N rate, NR and NiR activities increased, but DMPP decreased the activities of both enzymes. Biochar reduced the efficiency of DMPP as soil NH4+ concentration was higher in the treatments containing DMPP without BC at 56 days after planting. Biochar and DMPP could increase the quality of spinach plant through decreasing the leaf NO3- concentration. In general, wheat straw biochar counteracted DMPP-mediated negative effect on growth of spinach plant at high level of N by decreasing the efficiency of this inhibitor. These results provide the useful information for managing the application rate of N fertilizers including DMPP in biochar-amended soil.


Assuntos
Carvão Vegetal/farmacologia , Fertilizantes/análise , Nitrificação , Pirazóis/farmacologia , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/crescimento & desenvolvimento , Biomassa , Carvão Vegetal/química , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Nitrito Redutases/metabolismo , Nitrogênio/metabolismo , Solo/química , Spinacia oleracea/enzimologia
4.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019636

RESUMO

Plant growth is the result of the coordinated photosynthesis-mediated assimilation of oxidized forms of C, N and S. Nitrate is the predominant N source in soils and its reductive assimilation requires the successive activities of soluble cytosolic NADH-nitrate reductases (NR) and plastid stroma ferredoxin-nitrite reductases (NiR) allowing the conversion of nitrate to nitrite and then to ammonium. However, nitrite, instead of being reduced to ammonium in plastids, can be reduced to nitric oxide (NO) in mitochondria, through a process that is relevant under hypoxic conditions, or in the cytoplasm, through a side-reaction catalyzed by NRs. We use a loss-of-function approach, based on CRISPR/Cas9-mediated genetic edition, and gain-of-function, using transgenic overexpressing HA-tagged Arabidopsis NiR1 to characterize the role of this enzyme in controlling plant growth, and to propose that the NO-related post-translational modifications, by S-nitrosylation of key C residues, might inactivate NiR1 under stress conditions. NiR1 seems to be a key target in regulating nitrogen assimilation and NO homeostasis, being relevant to the control of both plant growth and performance under stress conditions. Because most higher plants including crops have a single NiR, the modulation of its function might represent a relevant target for agrobiotechnological purposes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Nitrito Redutases/genética , Nitritos/metabolismo , Folhas de Planta/genética , Processamento de Proteína Pós-Traducional , Compostos de Amônio/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , Edição de Genes , Mitocôndrias/metabolismo , Modelos Moleculares , Mutação , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitrito Redutases/química , Nitrito Redutases/metabolismo , Nitrogênio/metabolismo , Compostos Nitrosos/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Conformação Proteica , Spinacia oleracea/enzimologia , Spinacia oleracea/genética
5.
J Biol Chem ; 293(24): 9198-9209, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29720404

RESUMO

Disulfide reductases reduce other proteins and are critically important for cellular redox signaling and homeostasis. Methanosarcina acetivorans is a methane-producing microbe from the domain Archaea that produces a ferredoxin:disulfide reductase (FDR) for which the crystal structure has been reported, yet its biochemical mechanism and physiological substrates are unknown. FDR and the extensively characterized plant-type ferredoxin:thioredoxin reductase (FTR) belong to a distinct class of disulfide reductases that contain a unique active-site [4Fe-4S] cluster. The results reported here support a mechanism for FDR similar to that reported for FTR with notable exceptions. Unlike FTR, FDR contains a rubredoxin [1Fe-0S] center postulated to mediate electron transfer from ferredoxin to the active-site [4Fe-4S] cluster. UV-visible, EPR, and Mössbauer spectroscopic data indicated that two-electron reduction of the active-site disulfide in FDR involves a one-electron-reduced [4Fe-4S]1+ intermediate previously hypothesized for FTR. Our results support a role for an active-site tyrosine in FDR that occupies the equivalent position of an essential histidine in the active site of FTR. Of note, one of seven Trxs encoded in the genome (Trx5) and methanoredoxin, a glutaredoxin-like enzyme from M. acetivorans, were reduced by FDR, advancing the physiological understanding of FDR's role in the redox metabolism of methanoarchaea. Finally, bioinformatics analyses show that FDR homologs are widespread in diverse microbes from the domain Bacteria.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Dissulfetos/metabolismo , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Methanosarcina/enzimologia , NADH NADPH Oxirredutases/metabolismo , Oxirredutases/metabolismo , Archaea/química , Archaea/metabolismo , Bactérias/química , Bactérias/metabolismo , Domínio Catalítico , Dissulfetos/química , Transporte de Elétrons , Ferredoxinas/química , Proteínas Ferro-Enxofre/química , Methanosarcina/química , Methanosarcina/metabolismo , Modelos Moleculares , NADH NADPH Oxirredutases/química , Oxirredução , Oxirredutases/química , Spinacia oleracea/química , Spinacia oleracea/enzimologia , Spinacia oleracea/metabolismo
6.
Angew Chem Int Ed Engl ; 58(7): 2000-2004, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30565373

RESUMO

Enzyme mimics have broad applications in catalysis and can assist elucidation of the catalytic mechanism of natural enzymes. However, challenges arise from the design of catalytic sites, the selection of host molecules, and their integration into active three-dimensional structures. Herein, we describe the development of a photooxidase mimic by synergetic molecular self-assembly. 9-Fluorenylmethyloxycarbonyl-l-histidine undergoes efficient co-assembly with phthalocyanine into nanovesicles with tunable particle size and membrane thickness. The obtained nanovesicles can be used as catalysts for reactive-oxygen-mediated photosensitive oxidation with improved efficiency and stability. This work highlights the co-assembly of simple building blocks into a supramolecular photocatalyst, which might give insight into possible evolutionary paths of photocatalytic membrane systems, and might allow facile transfer into photosensitive nanoreactors or artificial organelles.


Assuntos
Aminoácidos/metabolismo , Indóis/metabolismo , Nanopartículas/metabolismo , Oxirredutases/metabolismo , Tensoativos/metabolismo , Aminoácidos/química , Biocatálise , Indóis/química , Isoindóis , Nanopartículas/química , Oxirredutases/química , Processos Fotoquímicos , Spinacia oleracea/enzimologia , Tensoativos/química
7.
Biochim Biophys Acta Bioenerg ; 1859(5): 394-399, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29524382

RESUMO

The binding site of the extrinsic protein PsbP in plant photosystem II was mapped by pulsed electron-electron double resonance, using mutant spinach PsbP (Pro20Cys, Ser82Cys, Ala111Cys, and Ala186Cys) labeled with 4-maleimido-TEMPO (MSL) spin label. The distances between the spin label and the Tyr160 neutral radical (YD) in PsbD, the D2 subunit of plant photosystem II, were 50.8 ±â€¯3.5 Å, 54.9 ±â€¯4.0 Å, 57.8 ±â€¯4.9 Å, and 58.4 ±â€¯14.1 Å, respectively. The geometry inferred from these distances was fitted to the PsbP crystal structure (PDB: 4RTI) to obtain the coordinates of YD relative to PsbP. These coordinates were then fitted under boundary conditions to the structure of cyanobacterial photosystem II (PDB: 4UB6), by rotating on Euler angles centered at fixed YD coordinates. The result proposed two models which show possible acidic amino acid residues in CP43, CP47 and D2 that can bind the basic amino acids Arg48, Lys143, and Lys160 in PsbP.


Assuntos
Complexo de Proteína do Fotossistema II/química , Spinacia oleracea/enzimologia , Substituição de Aminoácidos , Mutação de Sentido Incorreto , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Espectroscopia de Perda de Energia de Elétrons , Spinacia oleracea/genética
8.
Biochim Biophys Acta Bioenerg ; 1859(2): 129-136, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29174010

RESUMO

Light-induced Fourier transformed infrared (FTIR) difference spectroscopy is a powerful method to study the structures and reactions of redox cofactors involved in the photosynthetic electron transport chain. So far, most of the FTIR studies of the reactions of oxygenic photosynthesis have been performed using isolated photosystem I (PSI) and photosystem II (PSII) preparations, which, however, could be modified during isolation procedures. In this study, we developed a methodology to evaluate the photosynthetic activities of thylakoids using FTIR spectroscopy. FTIR difference spectra upon successive flashes using thylakoids from spinach exhibited signals typical of the S-state cycle at the Mn4CaO5 cluster and QB reactions in PSII with period-four and -two oscillations, respectively. Similar measurement in the presence of an artificial quinone as an exogenous electron acceptor showed features specific to the S-state cycle. Simulations of the oscillation patterns provided the quantum efficiencies of the S-state cycle and electron transfer in PSII. Moreover, FTIR measurement under continuous illumination on thylakoids in the presence of DCMU showed signals due to QA reduction and P700 oxidation simultaneously. From the relative amplitudes of marker bands of QA- and P700+, the molar ratio of photoactive PSII and PSI centers in thylakoids was estimated. FTIR analyses of the photo-reactions in thylakoids, which are more intact than isolated photosystems, will be useful in investigations of the photosynthetic mechanism especially by genetic modification of photosystem proteins.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema II/química , Spinacia oleracea/enzimologia , Tilacoides/enzimologia , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Spinacia oleracea/genética , Tilacoides/genética
9.
J Biol Chem ; 292(16): 6838-6850, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28154188

RESUMO

The catalytic inefficiencies of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) often limit plant productivity. Strategies to engineer more efficient plant Rubiscos have been hampered by evolutionary constraints, prompting interest in Rubisco isoforms from non-photosynthetic organisms. The methanogenic archaeon Methanococcoides burtonii contains a Rubisco isoform that functions to scavenge the ribulose-1,5-bisphosphate (RuBP) by-product of purine/pyrimidine metabolism. The crystal structure of M. burtonii Rubisco (MbR) presented here at 2.6 Å resolution is composed of catalytic large subunits (LSu) assembled into pentamers of dimers, (L2)5, and differs from Rubiscos from higher plants where LSus are glued together by small subunits (SSu) into hexadecameric L8S8 enzymes. MbR contains a unique 29-amino acid insertion near the C terminus, which folds as a separate domain in the structure. This domain, which is visualized for the first time in this study, is located in a similar position to SSus in L8S8 enzymes between LSus of adjacent L2 dimers, where negatively charged residues coordinate around a Mg2+ ion in a fashion that suggests this domain may be important for the assembly process. The Rubisco assembly domain is thus an inbuilt SSu mimic that concentrates L2 dimers. MbR assembly is ligand-stimulated, and we show that only 6-carbon molecules with a particular stereochemistry at the C3 carbon can induce oligomerization. Based on MbR structure, subunit arrangement, sequence, phylogenetic distribution, and function, MbR and a subset of Rubiscos from the Methanosarcinales order are proposed to belong to a new Rubisco subgroup, named form IIIB.


Assuntos
Methanosarcinaceae/enzimologia , Ribulose-Bifosfato Carboxilase/química , Ribulosefosfatos/química , Carbono/química , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/metabolismo , Ligantes , Mutagênese Sítio-Dirigida , Pentoses/química , Filogenia , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Ribulose-Bifosfato Carboxilase/metabolismo , Spinacia oleracea/enzimologia , Eletricidade Estática , Estereoisomerismo , Difração de Raios X
10.
J Biol Chem ; 292(28): 11850-11860, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28559282

RESUMO

Cyclic electron flow around photosystem I (CEF) is critical for balancing the photosynthetic energy budget of the chloroplast by generating ATP without net production of NADPH. We demonstrate that the chloroplast NADPH dehydrogenase complex, a homolog to respiratory Complex I, pumps approximately two protons from the chloroplast stroma to the lumen per electron transferred from ferredoxin to plastoquinone, effectively increasing the efficiency of ATP production via CEF by 2-fold compared with CEF pathways involving non-proton-pumping plastoquinone reductases. By virtue of this proton-pumping stoichiometry, we hypothesize that NADPH dehydrogenase not only efficiently contributes to ATP production but operates near thermodynamic reversibility, with potentially important consequences for remediating mismatches in the thylakoid energy budget.


Assuntos
Arabidopsis/enzimologia , Cloroplastos/enzimologia , Modelos Moleculares , NADPH Desidrogenase/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/enzimologia , Spinacia oleracea/enzimologia , Trifosfato de Adenosina/metabolismo , Algoritmos , Biocatálise , Domínio Catalítico , Transporte de Elétrons , Ferredoxinas/química , Ferredoxinas/metabolismo , Cinética , NADPH Desidrogenase/química , NADPH Desidrogenase/isolamento & purificação , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/isolamento & purificação , Plastoquinona/química , Plastoquinona/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Especificidade da Espécie , Termodinâmica
11.
New Phytol ; 217(2): 896-908, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990194

RESUMO

Diverse natural products are synthesized in plants by specialized metabolic enzymes, which are often lineage-specific and derived from gene duplication followed by functional divergence. However, little is known about the contribution of primary metabolism to the evolution of specialized metabolic pathways. Betalain pigments, uniquely found in the plant order Caryophyllales, are synthesized from the aromatic amino acid l-tyrosine (Tyr) and replaced the otherwise ubiquitous phenylalanine-derived anthocyanins. This study combined biochemical, molecular and phylogenetic analyses, and uncovered coordinated evolution of Tyr and betalain biosynthetic pathways in Caryophyllales. We found that Beta vulgaris, which produces high concentrations of betalains, synthesizes Tyr via plastidic arogenate dehydrogenases (TyrAa /ADH) encoded by two ADH genes (BvADHα and BvADHß). Unlike BvADHß and other plant ADHs that are strongly inhibited by Tyr, BvADHα exhibited relaxed sensitivity to Tyr. Also, Tyr-insensitive BvADHα orthologs arose during the evolution of betalain pigmentation in the core Caryophyllales and later experienced relaxed selection and gene loss in lineages that reverted from betalain to anthocyanin pigmentation, such as Caryophyllaceae. These results suggest that relaxation of Tyr pathway regulation increased Tyr production and contributed to the evolution of betalain pigmentation, highlighting the significance of upstream primary metabolic regulation for the diversification of specialized plant metabolism.


Assuntos
Betalaínas/biossíntese , Vias Biossintéticas/genética , Caryophyllales/genética , Evolução Molecular , Pigmentação/genética , Tirosina/metabolismo , Antocianinas/metabolismo , Beta vulgaris/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Plastídeos/enzimologia , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo , Spinacia oleracea/enzimologia , Spinacia oleracea/genética
12.
Eur Biophys J ; 47(8): 951-960, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29987407

RESUMO

Protein fouling is a serious problem in many food, pharmaceutical and household industries. In this work, the removal of rubisco protein fouling from cellulosic surfaces using a protease (subtilisin A) has been investigated experimentally and mathematically. The cellulosic surfaces were prepared using self-assembled monolayers (SAMs) on a surface plasmon resonance biosensor (chip) surface after conjugating cellulose to α-lipoic acid. Rubisco adsorption on the prepared cellulosic SAMs was found to be irreversible, leading to the creation of a tough protein fouling. The heterogeneous enzymatic cleansing of such tough fouling involves enzyme transfer to the surface and the subsequent removal of the rubisco via protease activity. In this work, these two processes were decoupled, allowing enzyme transfer and enzymatic surface reaction to be parameterized separately. Mathematical modeling of the enzymatic cleaning of protein fouling from cellulosic SAMs revealed that enzymatic mobility at the interface is an important factor. The approach presented in this work might be useful in designing better protein fouling-resistant surfaces. It could also be used to guide efforts to screen and gauge the cleaning performance of detergent-enzyme formulations.


Assuntos
Incrustação Biológica/prevenção & controle , Celulose/química , Modelos Moleculares , Nanoestruturas/química , Proteínas/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Adsorção , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Proteólise , Spinacia oleracea/enzimologia , Propriedades de Superfície
13.
Molecules ; 23(9)2018 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-30200523

RESUMO

Excessive accumulation of nitrate in spinach is not only harmful to human beings, but also limits the efficiency of nitrogen usage. However, the underlying mechanism of nitrate accumulation in plants remains unclear. This study analyzed the physiological and molecular characteristics of nitrate uptake and assimilation in the spinach varieties with high or low nitrate accumulation. Our results showed that the variety of spinach with a high nitrate content (So18) had higher nitrate uptake compared to the variety with a low nitrate content (So10). However, the nitrate reductase activities of both varieties were similar, which suggests that the differential capacity to uptake and transport nitrate may account for the differences in nitrate accumulation. The quantitative PCR analysis showed that there was a higher level of expression of spinach nitrate transporter (SoNRT) genes in So18 compared to those in So10. Based on the function of Arabidopsis homologs AtNRTs, the role of spinach SoNRTs in nitrate accumulation is discussed. It is concluded that further work focusing on the expression of SoNRTs (especially for SoNRT1.4, SoNRT1.5 and SoNRT1.3) may help us to elucidate the molecular mechanism of nitrate accumulation in spinach.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Nitratos/metabolismo , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Análise de Variância , Transporte Biológico/genética , Biomassa , Perfilação da Expressão Gênica , Nitrogênio/metabolismo , Spinacia oleracea/enzimologia
14.
Biochemistry ; 56(36): 4906-4921, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28795566

RESUMO

Higher-plant Rubisco activase (Rca) plays a critical role in regulating the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). In vitro, Rca is known to undergo dynamic assembly-disassembly processes, with several oligomer stoichiometries coexisting over a broad concentration range. Although the hexamer appears to be the active form, changes in quaternary structure could play a role in Rubisco regulation. Therefore, fluorescent labels were attached to the C-termini of spinach ß-Rca, and the rate of subunit mixing was monitored by measuring energy transfer as a function of nucleotide and divalent cation. Only dimeric units appeared to exchange. Poorly hydrolyzable substrate analogues provided locked complexes with high thermal stabilities (apparent Tm = 60 °C) and an estimated t1/2 of at least 7 h, whereas ATP-Mg provided tight assemblies with t1/2 values of 30-40 min and ADP-Mg loose assemblies with t1/2 values of <15 min. Accumulation of ADP to 20% of the total level of adenine nucleotide substantially accelerated equilibration. An initial lag period was observed with ATP·Mg, indicating inhibition of subunit exchange at low ADP concentrations. The ADP Ki value was estimated to exceed the Km for ATP (0.772 ± 96 mM), suggesting that the equilibration rate is a function of the relative contributions of high- and low-affinity states. C-Terminal cross-linking generated covalent dimers, required the N-terminal extension to the AAA+ domain, and provided evidence of different classes of sites. We propose that oligomer reorganization may be stalled during periods of high Rubisco reactivation activity, whereas changes in quaternary structure are stimulated by the accumulation of ADP at low light levels.


Assuntos
Proteínas de Plantas/metabolismo , Spinacia oleracea/enzimologia , Difosfato de Adenosina , Trifosfato de Adenosina , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Proteínas de Plantas/genética , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas
15.
Anal Chem ; 89(3): 1459-1468, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208298

RESUMO

Mass spectrometry (MS) has become an indispensable tool for investigating the architectures and dynamics of macromolecular assemblies. Here we show that covalent labeling of solvent accessible residues followed by their MS-based identification yields modeling restraints that allow mapping the location and orientation of subunits within protein assemblies. Together with complementary restraints derived from cross-linking and native MS, we built native-like models of four heterocomplexes with known subunit structures and compared them with available X-ray crystal structures. The results demonstrated that covalent labeling followed by MS markedly increased the predictive power of the integrative modeling strategy enabling more accurate protein assembly models. We applied this strategy to the F-type ATP synthase from spinach chloroplasts (cATPase) providing a structural basis for its function as a nanomotor. By subjecting the models generated by our restraint-based strategy to molecular dynamics (MD) simulations, we revealed the conformational states of the peripheral stalk and assigned flexible regions in the enzyme. Our strategy can readily incorporate complementary chemical labeling strategies and we anticipate that it will be applicable to many other systems providing new insights into the structure and function of protein complexes.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons/análise , Espectrometria de Massas em Tandem/métodos , Área Sob a Curva , Cloroplastos/enzimologia , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Dietil Pirocarbonato/química , Simulação de Dinâmica Molecular , Subunidades Proteicas/análise , Curva ROC , Spinacia oleracea/enzimologia
16.
Planta ; 245(2): 255-264, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27718072

RESUMO

MAIN CONCLUSION: Acrolein is a lipid-derived highly reactive aldehyde, mediating oxidative signal and damage in plants. We found acrolein-scavenging glutathione transferase activity in plants and purified a low K M isozyme from spinach. Various environmental stressors on plants cause the generation of acrolein, a highly toxic aldehyde produced from lipid peroxides, via the promotion of the formation of reactive oxygen species, which oxidize membrane lipids. In mammals, acrolein is scavenged by glutathione transferase (GST; EC 2.5.1.18) isozymes of Alpha, Pi, and Mu classes, but plants lack these GST classes. We detected the acrolein-scavenging GST activity in four species of plants, and purified an isozyme showing this activity from spinach (Spinacia oleracea L.) leaves. The isozyme (GST-Acr), obtained after an affinity chromatography and two ion exchange chromatography steps, showed the K M value for acrolein 93 µM, the smallest value known for acrolein-detoxifying enzymes in plants. Peptide sequence homology search revealed that GST-Acr belongs to the GST Tau, a plant-specific class. The Arabidopsis thaliana GST Tau19, which has the closest sequence similar to spinach GST-Acr, also showed a high catalytic efficiency for acrolein. These results suggest that GST plays as a scavenger for acrolein in plants.


Assuntos
Acroleína/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Plantas/metabolismo , Spinacia oleracea/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cromatografia de Afinidade , Cromatografia por Troca Iônica , Glutationa Transferase/química , Glutationa Transferase/genética , Glutationa Transferase/isolamento & purificação , Inativação Metabólica , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Folhas de Planta/enzimologia , Proteínas de Plantas/isolamento & purificação , Homologia de Sequência de Aminoácidos
17.
Biochem J ; 473(7): 873-85, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26792760

RESUMO

In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL.


Assuntos
Betaína-Aldeído Desidrogenase/química , Betaína/análogos & derivados , Mutação de Sentido Incorreto , Proteínas de Plantas/química , Spinacia oleracea/enzimologia , Substituição de Aminoácidos , Betaína/química , Betaína-Aldeído Desidrogenase/genética , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Proteínas de Plantas/genética , Spinacia oleracea/genética
18.
Proc Natl Acad Sci U S A ; 111(45): 16178-83, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349426

RESUMO

Protein cross-linking and radiolytic footprinting coupled with high-resolution mass spectrometry were used to examine the structure of PsbP and PsbQ when they are bound to Photosystem II. In its bound state, the N-terminal 15-amino-acid residue domain of PsbP, which is unresolved in current crystal structures, interacts with domains in the C terminus of the protein. These interactions may serve to stabilize the structure of the N terminus and may facilitate PsbP binding and function. These interactions place strong structural constraints on the organization of PsbP when associated with the Photosystem II complex. Additionally, amino acid residues in the structurally unresolved loop 3A domain of PsbP ((90)K-(107)V), (93)Y and (96)K, are in close proximity (≤ 11.4 Å) to the N-terminal (1)E residue of PsbQ. These findings are the first, to our knowledge, to identify a putative region of interaction between these two components. Cross-linked domains within PsbQ were also identified, indicating that two PsbQ molecules can interact in higher plants in a manner similar to that observed by Liu et al. [(2014) Proc Natl Acad Sci 111(12):4638-4643] in cyanobacterial Photosystem II. This interaction is consistent with either intra-Photosystem II dimer or inter-Photosystem II dimer models in higher plants. Finally, OH(•) produced by synchrotron radiolysis of water was used to oxidatively modify surface residues on PsbP and PsbQ. Domains on the surface of both protein subunits were resistant to modification, indicating that they were shielded from water and appear to define buried regions that are in contact with other Photosystem II components.


Assuntos
Complexo de Proteína do Fotossistema II/química , Spinacia oleracea/enzimologia , Reagentes de Ligações Cruzadas , Cristalografia por Raios X , Hidróxidos/química , Complexo de Proteína do Fotossistema II/metabolismo , Pegadas de Proteínas/métodos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
19.
Proteins ; 84(10): 1339-46, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27273261

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) plays a central role in carbon dioxide fixation on our planet. Rubisco from a hyperthermophilic archaeon Thermococcus kodakarensis (Tk-Rubisco) shows approximately twenty times the activity of spinach Rubisco at high temperature, but only one-eighth the activity at ambient temperature. We have tried to improve the activity of Tk-Rubisco at ambient temperature, and have successfully constructed several mutants which showed higher activities than the wild-type enzyme both in vitro and in vivo. Here, we designed new Tk-Rubisco mutants based on its three-dimensional structure and a sequence comparison of thermophilic and mesophilic plant Rubiscos. Four mutations were introduced to generate new mutants based on this strategy, and one of the four mutants, T289D, showed significantly improved activity compared to that of the wild-type enzyme. The crystal structure of the Tk-Rubisco T289D mutant suggested that the increase in activity was due to mechanisms distinct from those involved in the improvement in activity of Tk-Rubisco SP8, a mutant protein previously reported to show the highest activity at ambient temperature. Combining the mutations of T289D and SP8 successfully generated a mutant protein (SP8-T289D) with the highest activity to date both in vitro and in vivo. The improvement was particularly pronounced for the in vivo activity of SP8-T289D when introduced into the mesophilic, photosynthetic bacterium Rhodopseudomonas palustris, which resulted in a strain with nearly two-fold higher specific growth rates compared to that of a strain harboring the wild-type enzyme at ambient temperature. Proteins 2016; 84:1339-1346. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Arqueais/química , Proteínas de Bactérias/química , Mutação , Proteínas de Plantas/química , Ribulose-Bifosfato Carboxilase/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Engenharia de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodopseudomonas/química , Rodopseudomonas/enzimologia , Rodopseudomonas/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Spinacia oleracea/química , Spinacia oleracea/enzimologia , Spinacia oleracea/genética , Relação Estrutura-Atividade , Thermococcus/química , Thermococcus/enzimologia , Thermococcus/genética
20.
Photosynth Res ; 129(1): 29-41, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27116125

RESUMO

Violaxanthin de-epoxidase (VDE) is a conditionally soluble enzyme located in the thylakoid lumen and catalyses the conversion of violaxanthin to antheraxanthin and zeaxanthin, which are located in the thylakoid membrane. These reactions occur when the plant or algae are exposed to saturating light and the zeaxanthin formed is involved in the process of non-photochemical quenching that protects the photosynthetic machinery during stress. Oversaturation by light results in a reduction of the pH inside the thylakoids, which in turn activates VDE and the de-epoxidation of violaxanthin. To elucidate the structural events responsible for the pH-dependent activation of VDE, full length and truncated forms of VDE were studied at different pH using circular dichroism (CD) spectroscopy, crosslinking and small angle X-ray scattering (SAXS). CD spectroscopy showed the formation of α-helical coiled-coil structure, localised in the C-terminal domain. Chemical crosslinking of VDE showed that oligomers were formed at low pH, and suggested that the position of the N-terminal domain is located near the opening of lipocalin-like barrel, where violaxanthin has been predicted to bind. SAXS was used to generate models of monomeric VDE at high pH and also a presumably dimeric structure of VDE at low pH. For the dimer, the best fit suggests that the interaction is dominated by one of the domains, preferably the C-terminal domain due to the lost ability to oligomerise at low pH, shown in earlier studies, and the predicted formation of coiled-coil structure.


Assuntos
Modelos Moleculares , Oxirredutases/química , Spinacia oleracea/enzimologia , Xantofilas/metabolismo , Concentração de Íons de Hidrogênio , Luz , Oxirredutases/genética , Fotossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimerização , Espalhamento a Baixo Ângulo , Spinacia oleracea/genética , Tilacoides/enzimologia , Difração de Raios X , Zeaxantinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA