Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450205

RESUMO

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Assuntos
Antivirais/farmacologia , Imunidade/efeitos dos fármacos , Spliceossomos/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Feminino , Amplificação de Genes/efeitos dos fármacos , Humanos , Íntrons/genética , Camundongos , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética
2.
Annu Rev Biochem ; 84: 291-323, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25784052

RESUMO

Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA-protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA-RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica , Precursores de RNA/genética , Animais , Doença/genética , Humanos , Mutação , Splicing de RNA , RNA Catalítico/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/química , Spliceossomos/efeitos dos fármacos
3.
Nature ; 609(7928): 829-834, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104565

RESUMO

RNA splicing, the process of intron removal from pre-mRNA, is essential for the regulation of gene expression. It is controlled by the spliceosome, a megadalton RNA-protein complex that assembles de novo on each pre-mRNA intron through an ordered assembly of intermediate complexes1,2. Spliceosome activation is a major control step that requires substantial protein and RNA rearrangements leading to a catalytically active complex1-5. Splicing factor 3B subunit 1 (SF3B1) protein-a subunit of the U2 small nuclear ribonucleoprotein6-is phosphorylated during spliceosome activation7-10, but the kinase that is responsible has not been identified. Here we show that cyclin-dependent kinase 11 (CDK11) associates with SF3B1 and phosphorylates threonine residues at its N terminus during spliceosome activation. The phosphorylation is important for the association between SF3B1 and U5 and U6 snRNAs in the activated spliceosome, termed the Bact complex, and the phosphorylation can be blocked by OTS964, a potent and selective inhibitor of CDK11. Inhibition of CDK11 prevents spliceosomal transition from the precatalytic complex B to the activated complex Bact and leads to widespread intron retention and accumulation of non-functional spliceosomes on pre-mRNAs and chromatin. We demonstrate a central role of CDK11 in spliceosome assembly and splicing regulation and characterize OTS964 as a highly selective CDK11 inhibitor that suppresses spliceosome activation and splicing.


Assuntos
Quinases Ciclina-Dependentes , Fosfoproteínas , Precursores de RNA , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U2 , Spliceossomos , Cromatina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Quinolonas/farmacologia , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/efeitos dos fármacos , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/efeitos dos fármacos , Spliceossomos/metabolismo , Treonina/metabolismo
4.
Genes Dev ; 32(3-4): 309-320, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29491137

RESUMO

Somatic mutations in spliceosome proteins lead to dysregulated RNA splicing and are observed in a variety of cancers. These genetic aberrations may offer a potential intervention point for targeted therapeutics. SF3B1, part of the U2 small nuclear RNP (snRNP), is targeted by splicing modulators, including E7107, the first to enter clinical trials, and, more recently, H3B-8800. Modulating splicing represents a first-in-class opportunity in drug discovery, and elucidating the structural basis for the mode of action opens up new possibilities for structure-based drug design. Here, we present the cryogenic electron microscopy (cryo-EM) structure of the SF3b subcomplex (SF3B1, SF3B3, PHF5A, and SF3B5) bound to E7107 at 3.95 Å. This structure shows that E7107 binds in the branch point adenosine-binding pocket, forming close contacts with key residues that confer resistance upon mutation: SF3B1R1074H and PHF5AY36C The structure suggests a model in which splicing modulators interfere with branch point adenosine recognition and supports a substrate competitive mechanism of action (MOA). Using several related chemical probes, we validate the pose of the compound and support their substrate competitive MOA by comparing their activity against both strong and weak pre-mRNA substrates. Finally, we present functional data and structure-activity relationship (SAR) on the PHF5AR38C mutation that sensitizes cells to some chemical probes but not others. Developing small molecule splicing modulators represents a promising therapeutic approach for a variety of diseases, and this work provides a significant step in enabling structure-based drug design for these elaborate natural products. Importantly, this work also demonstrates that the utilization of cryo-EM in drug discovery is coming of age.


Assuntos
Compostos de Epóxi/química , Macrolídeos/química , Fosfoproteínas/química , Fatores de Processamento de RNA/química , Splicing de RNA/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Microscopia Crioeletrônica , Modelos Moleculares , Mutação , Fosfoproteínas/isolamento & purificação , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/isolamento & purificação , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Transativadores
5.
Mol Cell ; 57(1): 23-38, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25482508

RESUMO

Alternative splicing of Fas/CD95 exon 6 generates either a membrane-bound receptor that promotes, or a soluble isoform that inhibits, apoptosis. Using an automatized genome-wide siRNA screening for alternative splicing regulators of endogenous transcripts in mammalian cells, we identified 200 genes whose knockdown modulates the ratio between Fas/CD95 isoforms. These include classical splicing regulators; core spliceosome components; and factors implicated in transcription and chromatin remodeling, RNA transport, intracellular signaling, and metabolic control. Coherent effects of genes involved in iron homeostasis and pharmacological modulation of iron levels revealed a link between intracellular iron and Fas/CD95 exon 6 inclusion. A splicing regulatory network linked iron levels with reduced activity of the Zinc-finger-containing splicing regulator SRSF7, and in vivo and in vitro assays revealed that iron inhibits SRSF7 RNA binding. Our results uncover numerous links between cellular pathways and RNA processing and a mechanism by which iron homeostasis can influence alternative splicing.


Assuntos
Processamento Alternativo , Redes Reguladoras de Genes , Genoma , Ferro/metabolismo , Spliceossomos/metabolismo , Receptor fas/genética , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Desferroxamina/farmacologia , Éxons , Estudo de Associação Genômica Ampla , Células HeLa , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Íntrons , Ferro/farmacologia , Quelantes de Ferro/farmacologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Anotação de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina , Spliceossomos/química , Spliceossomos/efeitos dos fármacos , Receptor fas/antagonistas & inibidores , Receptor fas/metabolismo
6.
Nucleic Acids Res ; 49(5): 2509-2521, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33555349

RESUMO

The paucity of recurrent mutations has hampered efforts to understand and treat neuroblastoma. Alternative splicing and splicing-dependent RNA-fusions represent mechanisms able to increase the gene product repertoire but their role in neuroblastoma remains largely unexplored. Here we investigate the presence and possible roles of aberrant splicing and splicing-dependent RNA-fusion transcripts in neuroblastoma. In addition, we attend to establish whether the spliceosome can be targeted to treat neuroblastoma. Through analysis of RNA-sequenced neuroblastoma we show that elevated expression of splicing factors is a strong predictor of poor clinical outcome. Furthermore, we identified >900 primarily intrachromosomal fusions containing canonical splicing sites. Fusions included transcripts from well-known oncogenes, were enriched for proximal genes and in chromosomal regions commonly gained or lost in neuroblastoma. As a proof-of-principle that these fusions can generate altered gene products, we characterized a ZNF451-BAG2 fusion, producing a truncated BAG2-protein which inhibited retinoic acid induced differentiation. Spliceosome inhibition impeded neuroblastoma fusion expression, induced apoptosis and inhibited xenograft tumor growth. Our findings elucidate a splicing-dependent mechanism generating altered gene products in neuroblastoma and show that the spliceosome is a potential target for clinical intervention.


Assuntos
Chaperonas Moleculares/genética , Proteínas Mutantes Quiméricas/genética , Neuroblastoma/genética , Splicing de RNA , Spliceossomos/efeitos dos fármacos , Aminoaciltransferases/metabolismo , Animais , Apoptose , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Fusão Gênica , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Camundongos Nus , Chaperonas Moleculares/metabolismo , Proteínas Mutantes Quiméricas/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Deleção de Sequência , Fatores de Transcrição/metabolismo , Proteínas tau/metabolismo
7.
Cancer Sci ; 113(2): 373-381, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34812550

RESUMO

There has been accumulating evidence that RNA splicing is frequently dysregulated in a variety of cancers and that hotspot mutations affecting key splicing factors, SF3B1, SRSF2 and U2AF1, are commonly enriched across cancers, strongly suggesting that aberrant RNA splicing is a new class of hallmark that contributes to the initiation and/or maintenance of cancers. In parallel, some studies have demonstrated that cancer cells with global splicing alterations are dependent on the transcriptional products derived from wild-type spliceosome for their survival, which potentially creates a therapeutic vulnerability in cancers with a mutant spliceosome. It has been c. 10 y since the frequent mutations affecting splicing factors were reported in cancers. Based on these surprising findings, there has been a growing interest in targeting altered splicing in the treatment of cancers, which has promoted a wide variety of investigations including genetic, molecular and biological studies addressing how altered splicing promotes oncogenesis and how cancers bearing alterations in splicing can be targeted therapeutically. In this mini-review we present a concise trajectory of what has been elucidated regarding the pathogenesis of cancers with aberrant splicing, as well as the development of therapeutic strategies to target global splicing alterations in cancers.


Assuntos
Neoplasias/genética , Splicing de RNA/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Mutação , Neoplasias/tratamento farmacológico , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/uso terapêutico , Splicing de RNA/efeitos dos fármacos , Fatores de Processamento de RNA/antagonistas & inibidores , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Spliceossomos/efeitos dos fármacos , Spliceossomos/genética , Spliceossomos/metabolismo
8.
BMC Vet Res ; 18(1): 278, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841026

RESUMO

BACKGROUND: Bisphenol-A (BPA) has estrogenic activity and adversely affects humans and animals' reproductive systems and functions. There has been a disagreement with the safety of BPA exposure at Tolerable daily intake (TDI) (0.05 mg/kg/d) value and non-observed adverse effect level (5 mg/kg/d). The current study investigated the effects of BPA exposure at various doses starting from Tolerable daily intake (0.05 mg/kg/d) to the lowest observed adverse effect level (50 mg/kg/d) on the testis development in male mice offspring. The BPA exposure lasted for 63 days from pregnancy day 0 of the dams to post-natal day (PND) 45 of the offspring. RESULTS: The results showed that BPA exposure significantly increased testis (BPA ≥ 20 mg/kg/d) and serum (BPA ≥ 10 mg/kg/d) BPA contents of PND 45 mice. The spermatogenic cells became loose, and the lumen of seminiferous tubules enlarged when BPA exposure at 0.05 mg/kg/d TDI. BPA exposure at a low dose (0.05 mg/kg/d) significantly reduced the expression of Scp3 proteins and elevated sperm abnormality. The significant decrease in Scp3 suggested that BPA inhibits the transformation of spermatogonia into spermatozoa in the testis. The RNA-seq proved that the spliceosome was significantly inhibited in the testes of mice exposed to BPA. According to the RT-qPCR, BPA exposure significantly reduced the expression of Snrpc (BPA ≥ 20 mg/kg/d) and Hnrnpu (BPA ≥ 0.5 mg/kg/d). CONCLUSIONS: This study indicated that long-term BPA exposure at Tolerable daily intake (0.05 mg/kg/d) is not safe because low-dose long-term exposure to BPA inhibits spermatogonial meiosis in mice testis impairs reproductive function in male offspring.


Assuntos
Compostos Benzidrílicos/toxicidade , Estrogênios não Esteroides/toxicidade , Meiose/efeitos dos fármacos , Fenóis/toxicidade , Spliceossomos/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Compostos Benzidrílicos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Gravidez , Sêmen , Espermatozoides , Testículo/metabolismo
9.
Subcell Biochem ; 96: 409-432, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252738

RESUMO

In this chapter, the essential role of the SF3b multi-protein complex will be discussed in the context of the overall spliceosome. SF3b is critical during spliceosome assembly for recognition of the branch point (BP) adenosine and, by de facto, selection of the 3' splice site. This complex is highly dynamic, undergoing significant conformational changes upon loading of the branch duplex RNA and in its relative positioning during spliceosomal remodeling from the A, pre-B, B, Bact and B* complexes. Ultimately, during the spliceosome activation phase, SF3b must be displaced to unmask the branch point adenosine for the first splicing reaction to occur. In certain cancers, such as the hematological malignancies CML, CLL and MDS, the SF3b subunit SF3B1 is frequently mutated. Recent studies suggest these mutations lead to inappropriate branch point selection and mis-splicing events that appear to be drivers of disease. Finally, the SF3b complex is the target for at least three different classes of natural product-based inhibitors. These inhibitors bind in the BP adenosine-binding pocket and demonstrate a pre-mRNA competitive mechanism of action resulting in either intron retention or exon skipping. These compounds are extremely useful as chemical probes to isolate and characterize early stages of spliceosome assembly. They are also being explored preclinically and clinically as possible agents for hematological cancers.


Assuntos
Produtos Biológicos/farmacologia , Complexos Multiproteicos/antagonistas & inibidores , Spliceossomos/química , Spliceossomos/efeitos dos fármacos , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Complexos Multiproteicos/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Spliceossomos/genética , Spliceossomos/metabolismo
10.
PLoS Genet ; 15(10): e1008464, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31634348

RESUMO

SF3B1 is the most frequently mutated splicing factor in cancer. Mutations in SF3B1 likely confer clonal advantages to cancer cells but they may also confer vulnerabilities that can be therapeutically targeted. SF3B1 cancer mutations can be maintained in homozygosis in C. elegans, allowing synthetic lethal screens with a homogeneous population of animals. These mutations cause alternative splicing (AS) defects in C. elegans, as it occurs in SF3B1-mutated human cells. In a screen, we identified RNAi of U2 snRNP components that cause synthetic lethality with sftb-1/SF3B1 mutations. We also detected synthetic interactions between sftb-1 mutants and cancer-related mutations in uaf-2/U2AF1 or rsp-4/SRSF2, demonstrating that this model can identify interactions between mutations that are mutually exclusive in human tumors. Finally, we have edited an SFTB-1 domain to sensitize C. elegans to the splicing modulators pladienolide B and herboxidiene. Thus, we have established a multicellular model for SF3B1 mutations amenable for high-throughput genetic and chemical screens.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Neoplasias/genética , Fatores de Processamento de RNA/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala/métodos , Homozigoto , Humanos , Mutação de Sentido Incorreto , Neoplasias/tratamento farmacológico , Domínios Proteicos/genética , Interferência de RNA , Spliceossomos/efeitos dos fármacos , Mutações Sintéticas Letais
11.
Proc Natl Acad Sci U S A ; 116(22): 10968-10977, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31076555

RESUMO

New therapeutic strategies targeting influenza are actively sought due to limitations in current drugs available. Host-directed therapy is an emerging concept to target host functions involved in pathogen life cycles and/or pathogenesis, rather than pathogen components themselves. From this perspective, we focused on an essential host partner of influenza viruses, the RED-SMU1 splicing complex. Here, we identified two synthetic molecules targeting an α-helix/groove interface essential for RED-SMU1 complex assembly. We solved the structure of the SMU1 N-terminal domain in complex with RED or bound to one of the molecules identified to disrupt this complex. We show that these compounds inhibiting RED-SMU1 interaction also decrease endogenous RED-SMU1 levels and inhibit viral mRNA splicing and viral multiplication, while preserving cell viability. Overall, our data demonstrate the potential of RED-SMU1 destabilizing molecules as an antiviral therapy that could be active against a wide range of influenza viruses and be less prone to drug resistance.


Assuntos
Antivirais/farmacologia , Proteínas Cromossômicas não Histona/metabolismo , Citocinas/metabolismo , Orthomyxoviridae/efeitos dos fármacos , Fatores de Processamento de RNA/metabolismo , Células A549 , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Citocinas/química , Citocinas/genética , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Orthomyxoviridae/patogenicidade , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Splicing de RNA , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/genética , Spliceossomos/efeitos dos fármacos
12.
J Am Chem Soc ; 143(13): 4915-4920, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755462

RESUMO

Atom and step economical total syntheses of spliceosome modulating natural products pladienolides A and B are described. The strategic functionalization of an unsaturated macrolide precursor enabled the most concise syntheses of these natural products to date and provides convenient, flexible access to stereodefined macrolides to streamline medicinal chemistry explorations. Notably, this synthetic route does not depend on protecting group manipulations that traditionally define synthesis planning for polyhydroxylated natural products of polyketide origin. Its utility is further demonstrated by the enantioselective total synthesis of H3B-8800, a hitherto semisynthetic pladienolide-derived spliceosome modulator undergoing clinical trials for hematological malignancies.


Assuntos
Compostos de Epóxi/síntese química , Macrolídeos/síntese química , Spliceossomos/efeitos dos fármacos , Produtos Biológicos/química , Compostos de Epóxi/farmacologia , Macrolídeos/farmacologia , Estereoisomerismo
13.
Pharmacol Res ; 170: 105714, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098070

RESUMO

Second-generation antipsychotics (SGAs) are first-line drugs that are prescribed for mental disorders in clinic. Severe cardiotoxicity has been widely reported and thus limits their clinical application. This study aimed to identify the common mechanism underlying SGAs-induced cardiotoxicity using dual-omics analyses. Balb/C mice were intraperitoneally injected with two representative SGAs, olanzapine (2.5 mg/kg) and clozapine (25 mg/kg), at clinically comparable doses for 0, 7, 14 and 21 days. Our results showed that both SGAs induced cardiomyocyte degeneration, inflammation infiltration, and cardiac fibrosis, all of which worsened with time. Proteomic analysis revelaed that 22 differentially expressed (DE) proteins overlapped in olanzapine and clozapine-treated hearts. These proteins were significantly enriched in muscle contraction, amino acid metabolism and spliceosomal assembly by GO term analysis and spliceosome signaling was among the top enriched pathways by KEGG analysis. Among the 22 DE proteins, three spliceosome signal proteins were validated in a dynamic detection, and their expression significantly correlated with the extent of SGAs-induced cardiac fibrosis. Following the spliceosome signaling dysregulation, RNA sequencing revealed that alternative splicing events in the mouse hearts were markedly enhanced by SGAs treatments, and the production of vast transcript variants resulted in dysregulation of multiple pathways that are critical for cardiomyocytes adaptation and cardiac remodeling. Pladienolide B, a specific inhibitor of mRNA splicing, successfully corrected SGAs-induced alternative splicing and significantly attenuated the secretion of pro-inflammatory factors and cell deaths induced by SGAs exposure. Our study concluded that the spliceosome signaling was a common pathway driving SGAs cardiotoxicity. Pharmacological inhibition of the spliceosome signaling represents a novel therapeutic strategy against SGAs cardiotoxicity.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Antipsicóticos/toxicidade , Clozapina/toxicidade , Cardiopatias/induzido quimicamente , Olanzapina/toxicidade , Proteoma , Spliceossomos/efeitos dos fármacos , Transcriptoma , Animais , Cardiotoxicidade , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Cardiopatias/genética , Cardiopatias/metabolismo , Camundongos Endogâmicos BALB C , Proteômica , Transdução de Sinais , Spliceossomos/genética , Spliceossomos/metabolismo
14.
Org Biomol Chem ; 19(6): 1365-1377, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33480941

RESUMO

Herboxidiene is a potent antitumor agent that targets the SF3B subunit of the spliceosome. Herboxidiene possesses a complex structural architecture with nine stereocenters and design of potent less complex structures would be of interest as a drug lead as well as a tool for studying SF3B1 function in splicing. We investigated a number of C-6 modified herboxidiene derivatives in an effort to eliminate this stereocenter and, also to understand the importance of this functionality. The syntheses of structural variants involved a Suzuki-Miyaura cross-coupling reaction as the key step. The functionalized tetrahydrofuran core has been constructed from commercially available optically active tri-O-acetyl-d-glucal. We investigated the effect of these derivatives on splicing chemistry. The C-6 alkene derivative showed very potent splicing inhibitory activity similar to herboxidiene. Furthermore, the C-6 gem-dimethyl derivative also exhibited very potent in vitro splicing inhibitory activity comparable to herboxidiene.


Assuntos
Antineoplásicos/farmacologia , Álcoois Graxos/farmacologia , Piranos/farmacologia , Splicing de RNA/efeitos dos fármacos , Antineoplásicos/síntese química , Álcoois Graxos/síntese química , Células HeLa , Humanos , Piranos/síntese química , Spliceossomos/efeitos dos fármacos , Estereoisomerismo
15.
J Nat Prod ; 84(5): 1681-1706, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33974423

RESUMO

Spliceostatins and thailanstatins are intriguing natural products due to their structural features as well as their biological significance. This family of natural products has been the subject of immense synthetic interest because they exhibit very potent cytotoxicity in representative human cancer cell lines. The cytotoxic properties of these natural products are related to their ability to inhibit spliceosomes. FR901564 and spliceostatins have been shown to inhibit spliceosomes by binding to their SF3B component. Structurally, these natural products contain two highly functionalized tetrahydropyran rings with multiple stereogenic centers joined by a diene moiety and an acyclic side chain linked with an amide bond. Total syntheses of this family of natural products led to the development of useful synthetic strategies, which enabled the synthesis of potent derivatives. The spliceosome modulating properties of spliceostatins and synthetic derivatives opened the door for understanding the underlying spliceosome mechanism as well as the development of new therapies based upon small-molecule splicing modulators. This review outlines the total synthesis of spliceostatins, synthetic studies of structural derivatives, and their bioactivity.


Assuntos
Antineoplásicos/farmacologia , Piranos/farmacologia , Splicing de RNA/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos , Antineoplásicos/síntese química , Produtos Biológicos/síntese química , Produtos Biológicos/farmacologia , Humanos , Estrutura Molecular , Piranos/síntese química
16.
Nature ; 525(7569): 384-8, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26331541

RESUMO

MYC (also known as c-MYC) overexpression or hyperactivation is one of the most common drivers of human cancer. Despite intensive study, the MYC oncogene remains recalcitrant to therapeutic inhibition. MYC is a transcription factor, and many of its pro-tumorigenic functions have been attributed to its ability to regulate gene expression programs. Notably, oncogenic MYC activation has also been shown to increase total RNA and protein production in many tissue and disease contexts. While such increases in RNA and protein production may endow cancer cells with pro-tumour hallmarks, this increase in synthesis may also generate new or heightened burden on MYC-driven cancer cells to process these macromolecules properly. Here we discover that the spliceosome is a new target of oncogenic stress in MYC-driven cancers. We identify BUD31 as a MYC-synthetic lethal gene in human mammary epithelial cells, and demonstrate that BUD31 is a component of the core spliceosome required for its assembly and catalytic activity. Core spliceosomal factors (such as SF3B1 and U2AF1) associated with BUD31 are also required to tolerate oncogenic MYC. Notably, MYC hyperactivation induces an increase in total precursor messenger RNA synthesis, suggesting an increased burden on the core spliceosome to process pre-mRNA. In contrast to normal cells, partial inhibition of the spliceosome in MYC-hyperactivated cells leads to global intron retention, widespread defects in pre-mRNA maturation, and deregulation of many essential cell processes. Notably, genetic or pharmacological inhibition of the spliceosome in vivo impairs survival, tumorigenicity and metastatic proclivity of MYC-dependent breast cancers. Collectively, these data suggest that oncogenic MYC confers a collateral stress on splicing, and that components of the spliceosome may be therapeutic entry points for aggressive MYC-driven cancers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Genes myc/genética , Spliceossomos/efeitos dos fármacos , Spliceossomos/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Íntrons/genética , Camundongos , Camundongos Nus , Metástase Neoplásica/tratamento farmacológico , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Precursores de RNA/biossíntese , Precursores de RNA/genética , Splicing de RNA/efeitos dos fármacos , Fatores de Processamento de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Ribonucleoproteínas/metabolismo , Fator de Processamento U2AF , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641481

RESUMO

Pladienolides, an emerging class of naturally occurring spliceosome modulators, exhibit interesting structural features, such as highly substituted 12-membered macrocycles and epoxide-containing diene side chains. The potential of pladienolides as anti-cancer agents is confirmed by H3B-8800, a synthetic analog of this natural product class, which is currently under Phase I clinical trials. Since its isolation in 2004 and the first total synthesis in 2007, a dozen total syntheses and synthetic approaches toward the pladienolide class have been reported to date. This review focuses on the eight completed total syntheses of naturally occurring pladienolides or their synthetic analogs, in addition to a synthetic approach to the main framework of the natural product.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Compostos de Epóxi/farmacologia , Macrolídeos/farmacologia , Neoplasias/tratamento farmacológico , Spliceossomos/efeitos dos fármacos , Animais , Humanos , Neoplasias/patologia
18.
Fungal Genet Biol ; 134: 103281, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626987

RESUMO

Cadmium (Cd) is a heavy metal present in the environment mainly as a result of industrial contamination that can cause toxic effects to life. Some microorganisms, as Trichoderma harzianum, a fungus used in biocontrol, are able to survive in polluted environments and act as bioremediators. Aspects about the tolerance to the metal have been widely studied in other fungi although there are a few reports about the response of T. harzianum. In this study, we determined the effects of cadmium over growth of T. harzianum and used RNA-Seq to identify significant genes and processes regulated in the metal presence. Cadmium inhibited the fungus growth proportionally to its concentration although the fungus exhibited tolerance as it continued to grow, even in the highest concentrations used. A total of 3767 (1993 up and 1774 down) and 2986 (1606 up and 1380 down) differentially expressed genes were detected in the mycelium of T. harzianum cultivated in the presence of 1.0 mg mL-1 or 2.0 mg mL-1 of CdCl2, respectively, compared to the absence of the metal. Of these, 2562 were common to both treatments. Biological processes related to cellular homeostasis, transcription initiation, sulfur compound biosynthetic and metabolic processes, RNA processing, protein modification and vesicle-mediated transport were up-regulated. Carbohydrate metabolic processes were down-regulated. Pathway enrichment analysis indicated induction of glutathione and its precursor's metabolism. Interestingly, it also indicated an intense transcriptional induction, especially by up-regulation of spliceosome components. Carbohydrate metabolism was repressed, especially the mycoparasitism-related genes, suggesting that the mycoparasitic ability of T. harzianum could be affected during cadmium exposure. These results contribute to the advance of the current knowledge about the response of T. harzianum to cadmium exposure and provide significant targets for biotechnological improvement of this fungus as a bioremediator and a biocontrol agent.


Assuntos
Cádmio/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Hypocreales/efeitos dos fármacos , Hypocreales/genética , Transcriptoma/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Hypocreales/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/genética , Micélio/crescimento & desenvolvimento , Modificação Traducional de Proteínas/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos
19.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545766

RESUMO

Endometrial infections at a young age can lead to fertility issues in adulthood. Bacterial endotoxins, such as lipopolysaccharide (LPS), can participate in long-term molecular changes even at low concentrations. Lipopolysaccharide plays a crucial role in the progression of septic shock, inflammation and auto-immune diseases. The aim of this study was to describe transcriptomic modulations in the porcine endometrium, induced in vivo by a single subclinical dose of LPS from Salmonella Enteritidis. which did not produce clinical symptoms of toxicity. The RNA-seq methodology was applied to reveal 456 differentially expressed regions, including 375 genes, four long noncoding RNAs, and 77 other unclassified transcripts. Two independent methods confirmed 118 alternatively spliced genes that participate i.a., in the formation of the MHC-I complex and the adaptive immune response. Single nucleotide variant-calling algorithms supported the identification of 3730 allele-specific expression variants and 57 canonical A-to-I RNA editing sites. The results demonstrated that the differential expression of genes involved in inflammation, immune response, angiogenesis and endometrial development may be maintained for up to 7 days after exposure to LPS. RNA editing sites and long noncoding RNAs (lncRNAs) play an important role in transcriptional regulatory machinery in the porcine endometrium in response to LPS administration.


Assuntos
Endométrio/efeitos dos fármacos , Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Salmonella enteritidis/metabolismo , Algoritmos , Animais , Endométrio/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Polissacarídeos Bacterianos/efeitos adversos , Edição de RNA , RNA Longo não Codificante/genética , Análise de Sequência de RNA/veterinária , Spliceossomos/efeitos dos fármacos , Spliceossomos/metabolismo , Suínos
20.
RNA Biol ; 16(12): 1775-1784, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31671032

RESUMO

Pre-messenger RNA splicing involves multi-step assembly of the large spliceosome complexes that catalyse the two consecutive trans-esterification reactions, resulting in intron removal. There is evidence that proof-reading mechanisms monitor the fidelity of this complex process. Transcripts that fail these fidelity tests are thought to be directed to degradation pathways, permitting the splicing factors to be recycled. While studying the roles of splicing factors in vivo, in budding yeast, we performed targeted depletion of individual proteins, and analysed the effect on co-transcriptional spliceosome assembly and splicing efficiency. Unexpectedly, depleting factors such as Prp16 or Prp22, that are known to function at the second catalytic step or later in the splicing pathway, resulted in a defect in the first step of splicing, and accumulation of arrested spliceosomes. Through a kinetic analysis of newly synthesized RNA, we observed that a second step splicing defect (the primary defect) was rapidly followed by the first step of splicing defect. Our results show that knocking down a splicing factor can quickly lead to a recycling defect with splicing factors sequestered in stalled complexes, thereby limiting new rounds of splicing. We demonstrate that this 'feed-back' effect can be minimized by depleting the target protein more gradually or only partially, allowing a better separation between primary and secondary effects. Our findings indicate that splicing surveillance mechanisms may not always cope with spliceosome assembly defects, and suggest that work involving knock-down of splicing factors or components of other large complexes should be carefully monitored to avoid potentially misleading conclusions.


Assuntos
Retroalimentação Fisiológica/efeitos dos fármacos , Splicing de RNA/efeitos dos fármacos , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos , Adenosina Trifosfatases/deficiência , Adenosina Trifosfatases/genética , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Ácidos Indolacéticos/farmacologia , Clivagem do RNA/efeitos dos fármacos , RNA Helicases/deficiência , RNA Helicases/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/deficiência , Fatores de Processamento de RNA/genética , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/genética , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA