Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.533
Filtrar
Mais filtros

Coleção BVS Equador
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 53(1): 172-186.e6, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32610078

RESUMO

B-1 B cells derive from a developmental program distinct from that of conventional B cells, through B cell receptor (BCR)-dependent positive selection of fetally derived precursors. Here, we used direct labeling of B cells reactive with the N-acetyl-D-glucosamine (GlcNAc)-containing Lancefield group A carbohydrate of Streptococcus pyogenes to study the effects of bacterial antigens on the emergent B-1 B cell clonal repertoire. The number, phenotype, and BCR clonotypes of GlcNAc-reactive B-1 B cells were modulated by neonatal exposure to heat-killed S. pyogenes bacteria. GlcNAc-reactive B-1 clonotypes and serum antibodies were reduced in germ-free mice compared with conventionally raised mice. Colonization of germ-free mice with a conventional microbiota promoted GlcNAc-reactive B-1 B cell development and concomitantly elicited clonally related IgA+ plasma cells in the small intestine. Thus, exposure to microbial antigens in early life determines the clonality of the mature B-1 B cell repertoire and ensuing antibody responses, with implications for vaccination approaches and schedules.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Subpopulações de Linfócitos B/imunologia , Polissacarídeos Bacterianos/imunologia , Streptococcus pyogenes/imunologia , Acetilglucosamina/metabolismo , Animais , Animais Recém-Nascidos/imunologia , Vida Livre de Germes/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/imunologia
2.
J Immunol ; 212(12): 1913-1921, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647373

RESUMO

Using an Ig H chain conferring specificity for N-acetyl-d-glucosamine (GlcNAc), we developed transgenic (VHHGAC39 TG) mice to study the role of self-antigens in GlcNAc-reactive B-1 B cell development. In VHHGAC39 TG mice, GlcNAc-reactive B-1 B cell development during ontogeny and in adult bone marrow was normal. However, adult TG mice exhibited a block at transitional-2 immature B cell stages, resulting in impaired allelic exclusion and accumulation of a B cell subset coexpressing endogenous Ig gene rearrangements. Similarly, VHHGAC39 B cell fitness was impeded compared with non-self-reactive VHJ558 B TG cells in competitive mixed bone marrow chimeras. Nonetheless, adult VHHGAC39 mice immunized with Streptococcus pyogenes produce anti-GlcNAc Abs. Peritoneal cavity B cells transferred from VHHGAC39 TG mice into RAG-/- mice also exhibited robust expansion and anti-GlcNAc Ab production. However, chronic treatment of young VHHGAC39 mice with GlcNAc-specific mAbs leads to lower GlcNAc-binding B cell frequencies while increasing the proportion of GlcNAc-binding B1-a cells, suggesting that Ag masking or clearance of GlcNAc Ags impedes maturation of newly formed GlcNAc-reactive B cells. Finally, BCR H chain editing promotes expression of endogenous nontransgenic BCR alleles, allowing potentially self-reactive TG B cells to escape anergy or deletion at the transitional stage of precursor B cell development. Collectively, these observations indicate that GlcNAc-reactive B cell development is sensitive to the access of autologous Ags.


Assuntos
Acetilglucosamina , Camundongos Transgênicos , Animais , Camundongos , Acetilglucosamina/imunologia , Diferenciação Celular/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Imunidade Inata/imunologia , Subpopulações de Linfócitos B/imunologia , Camundongos Endogâmicos C57BL , Autoantígenos/imunologia , Streptococcus pyogenes/imunologia , Linfócitos B/imunologia
3.
Mol Cell Proteomics ; 23(5): 100753, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527648

RESUMO

Bacterial or viral antigens can contain subdominant protein regions that elicit weak antibody responses upon vaccination or infection although there is accumulating evidence that antibody responses against subdominant regions can enhance the protective immune response. One proposed mechanism for subdominant protein regions is the binding of host proteins that prevent antibody production against epitopes hidden within the protein binding interfaces. Here, we used affinity purification combined with quantitative mass spectrometry (AP-MS) to examine the level of competition between antigen-specific antibodies and host-pathogen protein interaction networks using the M1 protein from Streptococcus pyogenes as a model system. As most humans have circulating antibodies against the M1 protein, we first used AP-MS to show that the M1 protein interspecies protein network formed with human plasma proteins is largely conserved in naïve mice. Immunizing mice with the M1 protein generated a time-dependent increase of anti-M1 antibodies. AP-MS analysis comparing the composition of the M1-plasma protein network from naïve and immunized mice showed significant enrichment of 292 IgG peptides associated with 56 IgG chains in the immune mice. Despite the significant increase of bound IgGs, the levels of interacting plasma proteins were not significantly reduced in the immune mice. The results indicate that the antigen-specific polyclonal IgG against the M1 protein primarily targets epitopes outside the other plasma protein binding interfaces. In conclusion, this study demonstrates that AP-MS is a promising strategy to determine the relationship between antigen-specific antibodies and host-pathogen interaction networks that could be used to define subdominant protein regions of relevance for vaccine development.


Assuntos
Antígenos de Bactérias , Imunoglobulina G , Ligação Proteica , Streptococcus pyogenes , Animais , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/metabolismo , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Camundongos , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunidade Adaptativa , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Anticorpos Antibacterianos/imunologia , Mapas de Interação de Proteínas , Espectrometria de Massas , Proteínas de Transporte/metabolismo , Proteínas de Transporte/imunologia , Feminino , Interações Hospedeiro-Patógeno/imunologia
4.
J Biol Chem ; 299(8): 104980, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390991

RESUMO

Coiled coil-forming M proteins of the widespread and potentially deadly bacterial pathogen Streptococcus pyogenes (strep A) are immunodominant targets of opsonizing antibodies. However, antigenic sequence variability of M proteins into >220 M types, as defined by their hypervariable regions (HVRs), is considered to limit M proteins as vaccine immunogens because of type specificity in the antibody response. Surprisingly, a multi-HVR immunogen in clinical vaccine trials was shown to elicit M-type crossreactivity. The basis for this crossreactivity is unknown but may be due in part to antibody recognition of a 3D pattern conserved in many M protein HVRs that confers binding to human complement C4b-binding protein (C4BP). To test this hypothesis, we investigated whether a single M protein immunogen carrying the 3D pattern would elicit crossreactivity against other M types carrying the 3D pattern. We found that a 34-amino acid sequence of S. pyogenes M2 protein bearing the 3D pattern retained full C4BP-binding capacity when fused to a coiled coil-stabilizing sequence from the protein GCN4. We show that this immunogen, called M2G, elicited cross-reactive antibodies against a number of M types that carry the 3D pattern but not against those that lack the 3D pattern. We further show that the M2G antiserum-recognized M proteins displayed natively on the strep A surface and promoted the opsonophagocytic killing of strep A strains expressing these M proteins. As C4BP binding is a conserved virulence trait of strep A, we propose that targeting the 3D pattern may prove advantageous in vaccine design.


Assuntos
Antígenos de Bactérias , Proteínas da Membrana Bacteriana Externa , Proteínas de Transporte , Streptococcus pyogenes , Humanos , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Ligação Proteica , Streptococcus pyogenes/imunologia , Reações Cruzadas
5.
Infect Immun ; 92(7): e0007724, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38869295

RESUMO

The interplay between host nutritional immune mechanisms and bacterial nutrient uptake systems has a major impact on the disease outcome. The host immune factor calprotectin (CP) limits the availability of essential transition metals, such as manganese (Mn) and zinc (Zn), to control the growth of invading pathogens. We previously demonstrated that the competition between CP and the human pathogen group A streptococcus (GAS) for Zn impacts GAS pathogenesis. However, the contribution of Mn sequestration by CP in GAS infection control and the role of GAS Mn acquisition systems in overcoming host-imposed Mn limitation remain unknown. Using a combination of in vitro and in vivo studies, we show that GAS-encoded mtsABC is a Mn uptake system that aids bacterial evasion of CP-imposed Mn scarcity and promotes GAS virulence. Mn deficiency caused by either the inactivation of mtsC or CP also impaired the protective function of GAS-encoded Mn-dependent superoxide dismutase. Our ex vivo studies using human saliva show that saliva is a Mn-scant body fluid, and Mn acquisition by MtsABC is critical for GAS survival in human saliva. Finally, animal infection studies using wild-type (WT) and CP-/- mice showed that MtsABC is critical for GAS virulence in WT mice but dispensable in mice lacking CP, indicating the direct interplay between MtsABC and CP in vivo. Together, our studies elucidate the role of the Mn import system in GAS evasion of host-imposed metal sequestration and underscore the translational potential of MtsABC as a therapeutic or prophylactic target.


Assuntos
Complexo Antígeno L1 Leucocitário , Manganês , Infecções Estreptocócicas , Streptococcus pyogenes , Manganês/metabolismo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade , Streptococcus pyogenes/imunologia , Animais , Humanos , Camundongos , Complexo Antígeno L1 Leucocitário/metabolismo , Virulência , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno/imunologia , Saliva/microbiologia , Saliva/imunologia , Modelos Animais de Doenças
6.
Infect Immun ; 92(6): e0014124, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38722166

RESUMO

The human-specific bacterial pathogen group A Streptococcus (GAS) is a significant cause of morbidity and mortality. Macrophages are important to control GAS infection, but previous data indicate that GAS can persist in macrophages. In this study, we detail the molecular mechanisms by which GAS survives in THP-1 macrophages. Our fluorescence microscopy studies demonstrate that GAS is readily phagocytosed by macrophages, but persists within phagolysosomes. These phagolysosomes are not acidified, which is in agreement with our findings that GAS cannot survive in low pH environments. We find that the secreted pore-forming toxin Streptolysin O (SLO) perforates the phagolysosomal membrane, allowing leakage of not only protons but also large proteins including the lysosomal protease cathepsin B. Additionally, GAS recruits CD63/LAMP-3, which may contribute to lysosomal permeabilization, especially in the absence of SLO. Thus, although GAS does not inhibit fusion of the lysosome with the phagosome, it has multiple mechanisms to prevent proper phagolysosome function, allowing for persistence of the bacteria within the macrophage. This has important implications for not only the initial response but also the overall functionality of the macrophages, which may lead to the resulting pathologies in GAS infection. Our data suggest that therapies aimed at improving macrophage function may positively impact patient outcomes in GAS infection.


Assuntos
Proteínas de Bactérias , Lisossomos , Macrófagos , Streptococcus pyogenes , Estreptolisinas , Streptococcus pyogenes/imunologia , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Lisossomos/metabolismo , Lisossomos/microbiologia , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fagossomos/microbiologia , Fagossomos/metabolismo , Células THP-1 , Fagocitose , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/metabolismo , Catepsina B/metabolismo , Concentração de Íons de Hidrogênio
7.
Infect Immun ; 92(7): e0015224, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38888310

RESUMO

The major gram-positive pathogen group A Streptococcus (GAS) is a model organism for studying microbial epidemics as it causes waves of infections. Since 1980, several GAS epidemics have been ascribed to the emergence of clones producing increased amounts of key virulence factors such as streptolysin O (SLO). Herein, we sought to identify mechanisms underlying our recently identified temporal clonal emergence among emm4 GAS, given that emergent strains did not produce augmented levels of virulence factors relative to historic isolates. By creating and analyzing isoallelic strains, we determined that a conserved mutation in a previously undescribed gene encoding a putative carbonic anhydrase was responsible for the defective in vitro growth observed in the emergent strains. We also identified that the emergent strains survived better inside macrophages and killed macrophages at lower rates than the historic strains. Via the creation of isogenic mutant strains, we linked the emergent strain "survival" phenotype to the downregulation of the SLO encoding gene and upregulation of the msrAB operon which encodes proteins involved in defense against extracellular oxidative stress. Our findings are in accord with recent surveillance studies which found a high ratio of mucosal (i.e., pharyngeal) relative to invasive infections among emm4 GAS. Since ever-increasing virulence is unlikely to be evolutionarily advantageous for a microbial pathogen, our data further understanding of the well-described oscillating patterns of virulent GAS infections by demonstrating mechanisms by which emergent strains adapt a "survival" strategy to outcompete previously circulating isolates.


Assuntos
Proteínas de Bactérias , Macrófagos , Infecções Estreptocócicas , Streptococcus pyogenes , Estreptolisinas , Fatores de Virulência , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Streptococcus pyogenes/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/mortalidade , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estreptolisinas/genética , Estreptolisinas/metabolismo , Fatores de Virulência/genética , Mutação , Interações Hospedeiro-Patógeno/imunologia , Virulência/genética , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/imunologia , Viabilidade Microbiana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Camundongos , Regulação Bacteriana da Expressão Gênica , Proteínas de Transporte
8.
Anal Chem ; 96(22): 9060-9068, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38701337

RESUMO

An important element of antibody-guided vaccine design is the use of neutralizing or opsonic monoclonal antibodies to define protective epitopes in their native three-dimensional conformation. Here, we demonstrate a multimodal mass spectrometry-based strategy for in-depth characterization of antigen-antibody complexes to enable the identification of protective epitopes using the cytolytic exotoxin Streptolysin O (SLO) from Streptococcus pyogenes as a showcase. We first discovered a monoclonal antibody with an undisclosed sequence capable of neutralizing SLO-mediated cytolysis. The amino acid sequence of both the antibody light and the heavy chain was determined using mass-spectrometry-based de novo sequencing, followed by chemical cross-linking mass spectrometry to generate distance constraints between the antibody fragment antigen-binding region and SLO. Subsequent integrative computational modeling revealed a discontinuous epitope located in domain 3 of SLO that was experimentally validated by hydrogen-deuterium exchange mass spectrometry and reverse engineering of the targeted epitope. The results show that the antibody inhibits SLO-mediated cytolysis by binding to a discontinuous epitope in domain 3, likely preventing oligomerization and subsequent secondary structure transitions critical for pore-formation. The epitope is highly conserved across >98% of the characterized S. pyogenes isolates, making it an attractive target for antibody-based therapy and vaccine design against severe streptococcal infections.


Assuntos
Proteínas de Bactérias , Epitopos , Espectrometria de Massas , Streptococcus pyogenes , Estreptolisinas , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/química , Estreptolisinas/química , Estreptolisinas/imunologia , Estreptolisinas/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/química , Epitopos/imunologia , Epitopos/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Sequência de Aminoácidos , Modelos Moleculares
9.
Mol Cell ; 64(3): 616-623, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27618488

RESUMO

CRISPR-Cas systems defend prokaryotes against viruses and plasmids. Short DNA segments of the invader, known as spacers, are stored in the CRISPR array as immunological memories. New spacers are added invariably to the 5' end of the array; therefore, the first spacer matches the latest foreign threat. Whether this highly polarized order of spacer insertion influences CRISPR-Cas immunity has not been explored. Here we show that a conserved sequence located immediately upstream of the CRISPR array specifies the site of new spacer integration. Mutation of this sequence results in erroneous incorporation of new spacers into the middle of the array. We show that spacers added through polarized acquisition give rise to more robust CRISPR-Cas immunity than spacers added to the middle of the array. This study demonstrates that the CRISPR-Cas system specifies the site of spacer integration to optimize the immune response against the most immediate threat to the host.


Assuntos
Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/imunologia , Endonucleases/genética , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus/genética , Streptococcus pyogenes/genética , Regiões 5' não Traduzidas , Proteínas de Bactérias/metabolismo , Bacteriófagos/imunologia , Sequência de Bases , Proteína 9 Associada à CRISPR , Proteínas Associadas a CRISPR/imunologia , Cromossomos Bacterianos/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/metabolismo , Loci Gênicos , Staphylococcus aureus/imunologia , Staphylococcus aureus/virologia , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/virologia
10.
Clin Exp Nephrol ; 28(5): 359-374, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38170299

RESUMO

BACKGROUND: Post-streptococcal glomerulonephritis (PSGN) is a consequence of the infection by group A beta-hemolytic streptococcus. During this infection, various immunological processes generated by streptococcal antigens are triggered, such as the induction of antibodies and immune complexes. This activation of the immune system involves both innate and acquired immunity. The immunological events that occur at the renal level lead to kidney damage with chronic renal failure as well as resolution of the pathological process (in most cases). Angiotensin II (Ang II) is a molecule with vasopressor and pro-inflammatory capacities, being an important factor in various inflammatory processes. During PSGN some events are defined that make Ang II conceivable as a molecule involved in the inflammatory processes during the disease. CONCLUSION: This review is focused on defining which reported events would be related to the presence of this hormone in PSGN.


Assuntos
Angiotensina II , Glomerulonefrite , Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Glomerulonefrite/imunologia , Glomerulonefrite/microbiologia , Glomerulonefrite/etiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/complicações , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/imunologia , Animais , Rim/imunologia , Rim/patologia
11.
PLoS Pathog ; 17(12): e1010097, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34969060

RESUMO

Streptococcus pyogenes (group A Streptococcus) is a globally disseminated and human-adapted bacterial pathogen that causes a wide range of infections, including scarlet fever. Scarlet fever is a toxin-mediated disease characterized by the formation of an erythematous, sandpaper-like rash that typically occurs in children aged 5 to 15. This infectious disease is caused by toxins called superantigens, a family of highly potent immunomodulators. Although scarlet fever had largely declined in both prevalence and severity since the late 19th century, outbreaks have now reemerged in multiple geographical regions over the past decade. Here, we review recent findings that address the role of superantigens in promoting a fitness advantage for S. pyogenes within human populations and discuss how superantigens may be suitable targets for vaccination strategies.


Assuntos
Antígenos de Bactérias/imunologia , Escarlatina/imunologia , Streptococcus pyogenes/imunologia , Superantígenos/imunologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino
12.
Nature ; 590(7844): 29-31, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33469204
13.
Proc Natl Acad Sci U S A ; 116(51): 25923-25931, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772015

RESUMO

Streptococcal toxic shock syndrome (STSS) is a rapidly progressing, life-threatening, systemic reaction to invasive infection caused by group A streptococci (GAS). GAS superantigens are key mediators of STSS through their potent activation of T cells leading to a cytokine storm and consequently vascular leakage, shock, and multiorgan failure. Mucosal-associated invariant T (MAIT) cells recognize MR1-presented antigens derived from microbial riboflavin biosynthesis and mount protective innate-like immune responses against the microbes producing such metabolites. GAS lack de novo riboflavin synthesis, and the role of MAIT cells in STSS has therefore so far been overlooked. Here we have conducted a comprehensive analysis of human MAIT cell responses to GAS, aiming to understand the contribution of MAIT cells to the pathogenesis of STSS. We show that MAIT cells are strongly activated and represent the major T cell source of IFNγ and TNF in the early stages of response to GAS. MAIT cell activation is biphasic with a rapid TCR Vß2-specific, TNF-dominated response to superantigens and a later IL-12- and IL-18-dependent, IFNγ-dominated response to both bacterial cells and secreted factors. Depletion of MAIT cells from PBMC resulted in decreased total production of IFNγ, IL-1ß, IL-2, and TNFß. Peripheral blood MAIT cells in patients with STSS expressed elevated levels of the activation markers CD69, CD25, CD38, and HLA-DR during the acute compared with the convalescent phase. Our data demonstrate that MAIT cells are major contributors to the early cytokine response to GAS, and are therefore likely to contribute to the pathological cytokine storm underlying STSS.


Assuntos
Citocinas/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Choque Séptico/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Adulto , Idoso , Citocinas/sangue , Antígenos HLA-DR/metabolismo , Humanos , Interferon gama/metabolismo , Interleucina-12/metabolismo , Interleucina-18/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-2/metabolismo , Linfotoxina-alfa/metabolismo , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Riboflavina/biossíntese , Streptococcus pyogenes/patogenicidade , Superantígenos/metabolismo
14.
J Infect Dis ; 223(8): 1367-1375, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32845315

RESUMO

BACKGROUND: A vaccine against group A Streptococcus (GAS) has been actively pursued for decades. The surface receptor Shr is vital in GAS heme uptake and provides an effective target for active and passive immunization. Here, we isolated human monoclonal antibodies (mAbs) against Shr and evaluated their efficacy and mechanism. METHODS: We used a single B-lymphocyte screen to discover the mAbs TRL186 and TRL96. Interactions of the mAbs with whole cells, proteins, and peptides were investigated. Growth assays and cultured phagocytes were used to study the mAbs' impact on heme uptake and bacterial killing. Efficacy was tested in prophylactic and therapeutic vaccination using intraperitoneal mAb administration and GAS challenge. RESULTS: Both TRL186 and TRL96 interact with whole GAS cells, recognizing the NTR and NEAT1 domains of Shr, respectively. Both mAbs promoted killing by phagocytes in vitro, but prophylactic administration of only TRL186 increased mice survival. TRL186 improved survival also in a therapeutic mode. TRL186 but not TRL96 also impeded Shr binding to hemoglobin and GAS growth on hemoglobin iron. CONCLUSIONS: Interference with iron acquisition is central for TRL186 efficacy against GAS. This study supports the concept of antibody-based immunotherapy targeting the heme uptake proteins to combat streptococcal infections.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Hemeproteínas , Infecções Estreptocócicas , Animais , Heme , Hemoglobinas , Humanos , Imunoglobulinas , Ferro , Camundongos , Infecções Estreptocócicas/prevenção & controle , Streptococcus pyogenes/imunologia
15.
Angew Chem Int Ed Engl ; 61(11): e202115342, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-34935243

RESUMO

Streptococcus pyogenes is a primary infective agent that causes approximately 700 million human infections each year, resulting in more than 500 000 deaths. Carbohydrate-based vaccines are proven to be one of the most promising subunit vaccine candidates, as the bacterial glycan pattern(s) are different from mammalian cells and show increased pathogen serotype conservancy than the protein components. In this Review we highlight reverse vaccinology for use in the development of subunit vaccines against S. pyogenes, and report reproducible methods of carbohydrate antigen production, in addition to the structure-immunogenicity correlation between group A carbohydrate epitopes and alternative vaccine antigen carrier systems. We also report recent advances used to overcome hurdles in carbohydrate-based vaccine development.


Assuntos
Vacinas Bacterianas/imunologia , Polissacarídeos Bacterianos/imunologia , Streptococcus pyogenes/imunologia , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/síntese química , Vacinas Bacterianas/química , Polissacarídeos Bacterianos/síntese química , Polissacarídeos Bacterianos/química
16.
J Biol Chem ; 295(12): 3826-3836, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32029479

RESUMO

Group A streptococcus (Strep A) surface M protein, an α-helical coiled-coil dimer, is a vaccine target and a major determinant of streptococcal virulence. The sequence-variable N-terminal region of the M protein defines the M type and also contains epitopes that promote opsonophagocytic killing of streptococci. Recent reports have reported considerable cross-reactivity among different M types, suggesting the prospect of identifying cross-protective epitopes that would constitute a broadly protective multivalent vaccine against Strep A isolates. Here, we have used a combination of immunological assays, structural biology, and cheminformatics to construct a recombinant M protein-based vaccine that included six Strep A M peptides that were predicted to elicit antisera that would cross-react with an additional 15 nonvaccine M types of Strep A. Rabbit antisera against this recombinant vaccine cross-reacted with 10 of the 15 nonvaccine M peptides. Two of the five nonvaccine M peptides that did not cross-react shared high sequence identity (≥50%) with the vaccine peptides, implying that high sequence identity alone was insufficient for cross-reactivity among the M peptides. Additional structural analyses revealed that the sequence identity at corresponding polar helical-wheel heptad sites between vaccine and nonvaccine peptides accurately distinguishes cross-reactive from non-cross-reactive peptides. On the basis of these observations, we developed a scoring algorithm based on the sequence identity at polar heptad sites. When applied to all epidemiologically important M types, this algorithm should enable the selection of a minimal number of M peptide-based vaccine candidates that elicit broadly protective immunity against Strep A.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos/imunologia , Streptococcus pyogenes/metabolismo , Vacinas Sintéticas/imunologia , Algoritmos , Sequência de Aminoácidos , Animais , Reações Antígeno-Anticorpo , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Análise por Conglomerados , Reações Cruzadas , Epitopos/imunologia , Peptídeos/química , Conformação Proteica em alfa-Hélice , Coelhos , Streptococcus pyogenes/imunologia
17.
Infect Immun ; 89(12): e0029221, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34543125

RESUMO

Group A Streptococcus (GAS) is a preeminent human bacterial pathogen causing hundreds of millions of infections each year worldwide. In the clinical setting, the bacterium is easily identified by a rapid antigen test against the group A carbohydrate (GAC), a polysaccharide that comprises 30 to 50% of the GAS cell wall by weight. Originally described by Rebecca Lancefield in the 1930s, GAC consists of a polyrhamnose backbone and a N-acetylglucosamine (GlcNAc) side chain. This side chain, the species-defining immunodominant antigen, is potentially implicated in autoreactive immune responses against human heart or brain tissue in poststreptococcal rheumatic fever or rheumatic heart disease. The recent discovery of the genetic locus encoding GAC biosynthesis and new insights into its chemical structure have provided novel insights into the assembly of the polysaccharide, its contribution to immune evasion and virulence, and ideas for safely harnessing its natural immunogenicity in vaccine design. This minireview serves to summarize the emerging new literature on GAC, the eponymous cell well antigen that provides structural integrity to GAS and directly interfaces with host innate and adaptive immune responses.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Polissacarídeos Bacterianos/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/imunologia , Antígenos de Bactérias/imunologia , Suscetibilidade a Doenças , Humanos , Imunidade , Infecções Estreptocócicas/prevenção & controle , Virulência , Fatores de Virulência
18.
Infect Immun ; 89(8): e0018521, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33972369

RESUMO

M-type 28 (M28) Streptococcus pyogenes (group A Streptococcus [GAS]) strains are highly associated with life-threatening puerperal infections. Genome sequencing has revealed a large mobile genetic element, RD2, present in most M28 GAS isolates but not found widely in other serotypes. Previous studies have linked RD2 to the ability of M28 GAS to colonize the vaginal tract. A new study by Roshika and colleagues (R. Roshika, I. Jain, J. Medicielo, J. Wächter, J. L. Danger, P. Sumby, Infect Immun 89:e00722-20, 2021, https://doi.org/10.1128/IAI.00722-20) used gain-of-function mutants in three different GAS serotypes to help determine why RD2 appears to have a serotype preference and what that could mean for GAS mucosal colonization and pathogenesis.


Assuntos
Elementos de DNA Transponíveis , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/classificação , Streptococcus pyogenes/genética , Suscetibilidade a Doenças/imunologia , Genoma Bacteriano , Genômica/métodos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Sorogrupo , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/genética
19.
Biochem Biophys Res Commun ; 566: 177-183, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34129965

RESUMO

Streptococcus pyogenes (Group A Streptococcus, GAS) causes a range of human diseases, including life-threatening and severe invasive GAS infections, such as streptococcal toxic shock syndrome (STSS). Several antibiotics, including penicillin, are effective against GAS. Still, invasive GAS diseases have a high mortality rate (>30%). Clinical isolates from STSS patients show higher expression of pore-forming streptolysin O (SLO). Thus, SLO is an important pathogenic factor for GAS and may be an effective target for treatment of GAS disease. We succeeded in obtaining a single-chain variable fragment (scFv) SLO-I4 capable of recognizing SLO, which significantly inhibited GAS-induced cell lytic activity in erythrocytes, macrophages, and epithelial cells. In epithelial cells, SLO-I4 significantly reduced SLO-mediated endosomal membrane damage, which consequently prevented bacterial escape from the endosome. The effectiveness of anti-SLO scFv in counteracting SLO function suggests that it might be beneficial against GAS infections.


Assuntos
Anticorpos de Cadeia Única/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Estreptolisinas/imunologia , Proteínas de Bactérias/imunologia , Células HeLa , Hemólise , Humanos
20.
Eur J Clin Microbiol Infect Dis ; 40(3): 549-558, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32996031

RESUMO

Sensitivity and specificity of rapid antigen detection tests (RADTs) for detection of group A hemolytic streptococcus (GAS) vary. The purpose is to present the first SKUP (Scandinavian evaluation of laboratory equipment for point of care testing) evaluations concerning the assessment of the diagnostic performance and user-friendliness of two RADTs for detection of GAS when used under real-life conditions in primary health care. Throat samples were collected in duplicates at primary health care centers (PHCCs) from patients with symptoms of pharyngitis. The performance of QuickVue Dipstick Strep A test (307 samples) and DIAQUICK Strep A Blue Dipstick (348 samples) was evaluated using culture results at a clinical microbiology laboratory as comparison. The user-friendliness was evaluated using a questionnaire. The diagnostic sensitivity was 92% (90% confidence interval (CI) 87-96%) and 72% (90% CI 65-79%), while the diagnostic specificity was 86% (90% CI 81-90%) and 98% (90% CI 96-99%) for QuickVue Dipstick Strep A test and DIAQUICK Strep A Blue Dipstick, respectively. Both RADTs obtained acceptable assessments for user-friendliness and fulfilled SKUP's quality goal for user-friendliness. The diagnostic sensitivity for QuickVue Dipstick Strep A test and the diagnostic specificity for DIAQUICK Strep A Blue Dipstick in this objective and supplier-independent evaluation were higher compared with previous meta-analyses of RADTs. However, the diagnostic specificity for QuickVue Dipstick Strep A test and the diagnostic sensitivity for DIAQUICK Strep A Blue Dipstick were lower compared with previous meta-analyses of RADTs.


Assuntos
Antígenos de Bactérias/análise , Faringite/microbiologia , Infecções Estreptocócicas/diagnóstico , Streptococcus pyogenes/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Faringite/diagnóstico , Testes Imediatos , Atenção Primária à Saúde , Estudos Prospectivos , Kit de Reagentes para Diagnóstico , Sensibilidade e Especificidade , Testes Sorológicos , Streptococcus pyogenes/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA