Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.344
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 208, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862894

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is a serious worldwide public health concern that needs immediate action. Probiotics could be a promising alternative for fighting antibiotic resistance, displaying beneficial effects to the host by combating diseases, improving growth, and stimulating the host immune responses against infection. This study was conducted to evaluate the probiotic, antibacterial, and antibiofilm potential of Streptomyces levis strain HFM-2 isolated from the healthy human gut. RESULTS: In vitro antibacterial activity in the cell-free supernatant of S. levis strain HFM-2 was evaluated against different pathogens viz. K. pneumoniae sub sp. pneumoniae, S. aureus, B. subtilis, VRE, S. typhi, S. epidermidis, MRSA, V. cholerae, M. smegmatis, E. coli, P. aeruginosa and E. aerogenes. Further, the ethyl acetate extract from S. levis strain HFM-2 showed strong biofilm inhibition against S. typhi, K. pneumoniae sub sp. pneumoniae, P. aeruginosa and E. coli. Fluorescence microscopy was used to detect biofilm inhibition properties. MIC and MBC values of EtOAc extract were determined at 500 and 1000 µg/mL, respectively. Further, strain HFM-2 showed high tolerance in gastric juice, pancreatin, bile, and at low pH. It exhibited efficient adhesion properties, displaying auto-aggregation (97.0%), hydrophobicity (95.71%, 88.96%, and 81.15% for ethyl acetate, chloroform and xylene, respectively), and showed 89.75%, 86.53%, 83.06% and 76.13% co-aggregation with S. typhi, MRSA, S. pyogenes and E. coli, respectively after 60 min of incubation. The S. levis strain HFM-2 was susceptible to different antibiotics such as tetracycline, streptomycin, kanamycin, ciprofloxacin, erythromycin, linezolid, meropenem, amikacin, gentamycin, clindamycin, moxifloxacin and vancomycin, but resistant to ampicillin and penicillin G. CONCLUSION: The study shows that S. levis strain HFM-2 has significant probiotic properties such as good viability in bile, gastric juice, pancreatin environment, and at low pH; proficient adhesion properties, and antibiotic susceptibility. Further, the EtOAc extract of Streptomyces levis strain HFM-2 has a potent antibiofilm and antibacterial activity against antibacterial-resistant clinical pathogens.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Probióticos , Streptomyces , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Probióticos/farmacologia , Streptomyces/fisiologia , Streptomyces/classificação , Streptomyces/isolamento & purificação , Streptomyces/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/classificação , Trato Gastrointestinal/microbiologia
2.
Microb Pathog ; 191: 106677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705217

RESUMO

A novel endophytic Streptomyces griseorubens CIBA-NS1 was isolated from a salt marsh plant Salicornia sp. The antagonistic effect of S. griseorubens against Vibrio campbellii, was studied both in vitro and in vivo. The strain was validated for its endophytic nature and characterized through scanning electron microscopy, morphological and biochemical studies and 16SrDNA sequencing. The salinity tolerance experiment has shown that highest antibacterial activity was at 40‰ (16 ± 1.4 mm) and lowest was at 10 ‰ salinity (6.94 ± 0.51 mm). In vivo exclusion of Vibrio by S. griseorubens CIBA-NS1 was studied in Penaeus indicus post larvae and evaluated for its ability to improve growth and survival of P. indicus. After 20 days administration of S. griseorubens CIBA-NS1, shrimps were challenged with V. campbellii. The S. griseorubens CIBA-NS1 reduced Vibrio population in test group when compared to control, improved survival (60.5 ± 6.4%) and growth, as indicated by weight gain (1.8 ± 0.05g). In control group survival and growth were 48.4 ± 3.5% and 1.4 ± 0.03 g respectively. On challenge with V. campbellii, the S. griseorubens CIBA-NS1 administered group showed better survival (85.6 ± 10%) than positive control (64.3 ± 10%). The results suggested that S. griseorubens CIBA-NS1 is antagonistic to V. campbellii, reduce Vibrio population in the culture system and improve growth and survival. This is the first report on antagonistic activity of S. griseorubens isolated from salt marsh plant Salicornia sp, as a probiotic candidate to prevent V. campbellii infection in shrimps.


Assuntos
Chenopodiaceae , Endófitos , Probióticos , Streptomyces , Vibrio , Animais , Vibrio/efeitos dos fármacos , Vibrio/fisiologia , Chenopodiaceae/microbiologia , Probióticos/farmacologia , Endófitos/isolamento & purificação , Endófitos/fisiologia , Streptomyces/fisiologia , Streptomyces/isolamento & purificação , Streptomyces/genética , Penaeidae/microbiologia , RNA Ribossômico 16S/genética , Antibiose , Vibrioses/microbiologia , Vibrioses/veterinária , Vibrioses/prevenção & controle , Salinidade , Larva/microbiologia , DNA Bacteriano/genética , Filogenia
3.
Arch Microbiol ; 206(6): 256, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734826

RESUMO

A novel actinobacterium strain, designated HUAS 2-6 T, was isolated from the rhizosphere soil of Camellia oleifera Abel collected from Taoyuan County, Northwestern Hunan Province, South China. This strain was subjected to a polyphasic taxonomic study. Strain HUAS 2-6 T is characterized by morphology typical of members of the genus Streptomyces, with deep purplish vinaceous aerial mycelia and deep dull lavender substrate mycelia. Strain HUAS 2-6 T, based on the full-length 16S rRNA gene sequence analysis, exhibited the highest similarities to S. puniciscabiei S77T (99.31%), S. filipinensis NBRC 12860 T (99.10%), S. yaanensis CGMCC 4.7035 T (99.09%), S. fodineus TW1S1T (99.08%), S. broussonetiae CICC 24819 T (98.76%), S. achromogenes JCM 4121 T (98.69%), S. barringtoniae JA03T (98.69%), and less than 98.70% with other validly species. In phylogenomic tree, strain HUAS 2-6 T was clustered together with S. broussonetiae CICC 24819 T, suggesting that they were closely related to each other. However, average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) between them were much less than the species cutoff values (ANI 96.7% and dDDH 70%). Moreover, in phenotypic and chemotaxonomic characteristics, strain HUAS 2-6 T is distinct from S. broussonetiae CICC 24819 T. On the basis of the polyphasic data, strain HUAS 2-6 T is proposed to represent a novel species, Streptomyces camelliae sp. nov. (= MCCC 1K04729T = JCM 35918 T).


Assuntos
Camellia , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Streptomyces , Streptomyces/isolamento & purificação , Streptomyces/genética , Streptomyces/classificação , Camellia/microbiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , China , Ácidos Graxos/análise , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Composição de Bases
4.
Artigo em Inglês | MEDLINE | ID: mdl-38695864

RESUMO

A novel actinobacterium, designated strain CWNU-1T, was isolated from the rhizospheric soil of Fritillaria cirrhosa D. Don and examined using a polyphasic taxonomic approach. The organism developed pale blue aerial mycelia that was simply branched and terminated in open or closed coils of three or more volutions on International Streptomyces Project 3 agar. Spores were ellipsoidal to cylindrical with wrinkled surfaces. The strain showed high 16S rRNA gene sequence similarity to Streptomyces kurssanovii NBRC 13192T (98.8 %), Streptomyces xantholiticus NBRC 13354T (98.7 %) and Streptomyces peucetius JCM 9920T (98.6 %). The phylogenetic result based on 16S rRNA gene and genome sequences clearly demonstrated that strain CWNU-1T formed an independent phylogenetic lineage. On the basis of orthologous average nucleotide identity, CWNU-1T was most closely related to Streptomyces inusitatus NBRC 13601T with 79.3 % identity. The results of the digital DNA-DNA hybridization analysis also indicated low levels of relatedness with other species, as the highest value was observed with S. inusitatus NBRC 13601T (25.3 %). With reference to phenotypic characteristics, phylogenetic data, orthologous average nucleotide identity and digital DNA-DNA hybridization results, strain CWNU-1T was readily distinguished from its most closely related strains and classified as representing a novel species, for which the name Streptomyces albipurpureus sp. nov. is proposed. The type strain is CWNU-1T (=CGMCC 4.7758T=MCCC 1K07402T=JCM 35391T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Fritillaria , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Rizosfera , Análise de Sequência de DNA , Microbiologia do Solo , Streptomyces , Streptomyces/genética , Streptomyces/classificação , Streptomyces/isolamento & purificação , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Fritillaria/microbiologia , Vitamina K 2/análogos & derivados
5.
Artigo em Inglês | MEDLINE | ID: mdl-39264701

RESUMO

Six bacterial strains, Mut1T, Mut2, Alt1, Alt2, Alt3T, and Alt4, were isolated from soil samples collected in parks in Gothenburg, Sweden, based on their ability to utilize the insoluble polysaccharides α-1,3-glucan (mutan; Mut strains) or the mixed-linkage α-1,3/α-1,6-glucan (alternan; Alt strains). Analysis of 16S rRNA gene sequences identified all strains as members of the genus Streptomyces. The genomes of the strains were sequenced and subsequent phylogenetic analyses identified Mut2 as a strain of Streptomyces laculatispora and Alt1, Alt2 and Alt4 as strains of Streptomyces poriferorum, while Mut1T and Alt3T were most closely related to the type strains Streptomyces drozdowiczii NBRC 101007T and Streptomyces atroolivaceus NRRL ISP-5137T, respectively. Comprehensive genomic and biochemical characterizations were conducted, highlighting typical features of Streptomyces, such as large genomes (8.0-9.6 Mb) with high G+C content (70.5-72.0%). All six strains also encode a wide repertoire of putative carbohydrate-active enzymes, indicating a capability to utilize various complex polysaccharides as carbon sources such as starch, mutan, and cellulose, which was confirmed experimentally. Based on phylogenetic and phenotypic characterization, our study suggests that strains Mut1T and Alt3T represent novel species in the genus Streptomyces for which the names Streptomyces castrisilvae sp. nov. and Streptomyces glycanivorans sp. nov. are proposed, with strains Mut1T (=DSM 117248T=CCUG 77596T) and Alt3T (=DSM 117252T=CCUG 77600T) representing the respective type strains.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , Streptomyces , Streptomyces/genética , Streptomyces/classificação , Streptomyces/isolamento & purificação , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Suécia , Glucanos/metabolismo , Genoma Bacteriano , Ácidos Graxos/metabolismo , Ubiquinona
6.
Artigo em Inglês | MEDLINE | ID: mdl-38767616

RESUMO

A Gram-stain-positive actinomycete, designated REN17T, was isolated from fermented grains of Baijiu collected from Sichuan, PR China. It exhibited branched substrate mycelia and a sparse aerial mycelium. The optimal growth conditions for REN17T were determined to be 28 °C and pH 7, with a NaCl concentration of 0 % (w/v). ll-Diaminopimelic acid was the diagnostic amino acid of the cell-wall peptidoglycan and the polar lipids were composed of phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid, two unidentified lipids and four unidentified glycolipids. The predominant menaquinone was MK-9 (H2), MK-9 (H4), MK-9 (H6) and MK-9 (H8). The major fatty acids were iso-C16 : 0. The 16S rRNA sequence of REN17T was most closely related to those of Streptomyces apricus SUN 51T (99.8 %), Streptomyces liliiviolaceus BH-SS-21T (99.6 %) and Streptomyces umbirnus JCM 4521T (98.9 %). The digital DNA-DNA hybridization, average nucleotide identity and average amino acid identify values between REN17T and its closest replated strain, of S. apricus SUN 51T, were 35.9, 88.9 and 87.3 %, respectively. Therefore, REN17T represents a novel species within the genus Streptomyces, for which the name Streptomyces beigongshangae sp. nov. is proposed. The type strain is REN17T (=GDMCC 4.193T=JCM 34712T). While exploring the function of the strain, REN17T was found to possess the ability to transform major ginsenosides of Panax notoginseng (Burk.) F.H. Chen (Araliaceae) into minor ginsenoside through HPLC separation, which was due to the presence of ß-glucosidase. The recombinant ß-glucosidase was constructed and purified, which could produce minor ginsenosides of Rg3 and C-K. Finally, the enzymatic properties were characterized.


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Ácidos Graxos , Fermentação , Ginsenosídeos , Hibridização de Ácido Nucleico , Panax notoginseng , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Streptomyces , Vitamina K 2 , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Streptomyces/isolamento & purificação , Streptomyces/genética , Streptomyces/classificação , Vitamina K 2/análogos & derivados , DNA Bacteriano/genética , China , Panax notoginseng/microbiologia , Ginsenosídeos/metabolismo , Peptidoglicano , Grão Comestível/microbiologia , Ácido Diaminopimélico , Fosfolipídeos/química , Composição de Bases
7.
Artigo em Inglês | MEDLINE | ID: mdl-38713186

RESUMO

Two novel actinobacteria, designated as LP05-1T and LP11T, were isolated from the lichen Pyxine cocoes (Sw.) Nyl. collected in Bangkok, Thailand. Genotypic and phenotypic analyses revealed that both strains represented members of the genus Streptomyces. The 16S rRNA gene of LP05-1T showed the highest similarity to the genome of Streptomyces gelaticus (98.41 %), while the 16S rRNA gene of LP11T was most similar to that of Streptomyces cinerochromogenes (98.93 %). The major menaquinones in LP05-1T were MK-9(H8), MK-9(H6), MK-9(H4) and MK-9(H2), and in LP11T, they were MK-9(H8) and MK-9(H6). Both strains exhibited the major fatty acids iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0, with LP05-1T also possessing iso-C17 : 0. The polar lipids of LP05-1T included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and an unidentified lipid, while those of LP11T consisted of phosphatidylethanolamine, lyso-phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unidentified aminolipid and an unidentified glycolipid. The digital DNA-DNA hybridisation (dDDH) and average nucleotide identity (ANI) values indicated that both strains are distinct from each other with values below 70 and 95 %, respectively. dDDH, ANI by blast (ANIb) and ANI by MUMmer (ANIm) values between LP05-1T and its closely related type strains were 26.07-26.80 %, 81.24-82.01 % and 86.82-86.96 %, respectively, while those for LP11T and its closely related type strains were 30.70-31.70 %, 84.09-85.31 % and 88.02-88.39 %, respectively. The results of the taxonomic investigation, including dDDH and ANI values, indicate that LP05-1T and LP11T are novel type strains of two novel species within the genus Streptomyces. The names proposed are Streptomyces pyxinae sp. nov. for strain LP05-1T (=TBRC 15494T, =NBRC 115434T) and Streptomyces pyxinicus sp. nov. for strain LP11T (=TBRC 15493T, =NBRC 115421T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Líquens , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Streptomyces , Vitamina K 2 , Vitamina K 2/análogos & derivados , RNA Ribossômico 16S/genética , Líquens/microbiologia , Vitamina K 2/análise , DNA Bacteriano/genética , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/classificação , Ácidos Graxos/química , Tailândia , Hibridização de Ácido Nucleico , Fosfolipídeos
8.
Curr Microbiol ; 81(8): 223, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874598

RESUMO

Two endophytic actinobacteria, strains MK5T and MK7, were isolated from the surface-sterilized root of Jasmine rice (Oryza sativa KDML 105). These strains were aerobic actinobacteria with a well-developed substrate and aerial mycelia that formed spiral spore chains. The type strains that shared the high 16S rRNA gene sequence similarity with both strains were Streptomyces naganishii NBRC 12892T (99.4%), "Streptomyces griseicoloratus" TRM S81-3T (99.2%), and Streptomyces spiralis NBRC 14215T (98.9%). Strains MK5T and MK7 are the same species sharing a digital DNA-DNA hybridization (dDDH) value of 95.3% and a 16S rRNA gene sequence similarity of 100%. Chemotaxonomic data confirmed the affiliation of strains MK5T and MK7 to the genus Streptomyces. Strains MK5T and MK7 contained MK-9(H4) as a major menaquinone; the whole-cell sugar of both strains was galactose and glucose. The strain MK5T shared 93.4% average nucleotide identity (ANI)-Blast, 95.5% ANI-MUMmer, 93% average amino acid identity, and 61.3% dDDH with S. spiralis NBRC 14215T. The polyphasic approach confirmed that strain MK5T represents a novel species, and the name Streptomyces mahasarakhamensis sp. nov. is proposed. The type strain is MK5T (= TBRC 17754 = NRRL B-65683). Genome mining, using an in silico approach and searching biosynthesis gene clusters of strains MK5T and MK7, revealed that the genomes contained genes encoding proteins relating to plant growth promotion, bioactive compounds, and beneficial enzymes. Strains MK5T and MK7 could produce indole acetic acid and solubilize phosphate in vitro.


Assuntos
DNA Bacteriano , Endófitos , Oryza , Filogenia , RNA Ribossômico 16S , Streptomyces , Oryza/microbiologia , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/classificação , Streptomyces/metabolismo , RNA Ribossômico 16S/genética , Endófitos/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/metabolismo , DNA Bacteriano/genética , Raízes de Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Vitamina K 2/análogos & derivados , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Hibridização de Ácido Nucleico , Ácidos Graxos/metabolismo , Composição de Bases
9.
Curr Microbiol ; 81(10): 327, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181975

RESUMO

Application of actinobacteria has grown exponentially in recent years in sustainable agricultural. Most actinobacterial inoculants are tailored to function as either biocontrol agents or biofertilizers. Hence, there is the need to obtain and include multifunctional actinobacterial strains in inocula formulations. In this research, 90 actinobacterial isolates were isolated from rhizospheric and non-rhizospheric soils of Algerian Saharan arid regions and were screened for their activity against the phytopathogenic fungi Alternaria alternata, Aspergillus flavus, Botrytis cinerea, Fusarium oxysporum, and Fusarium solani. Five isolates that inhibited at least three of these fungi were characterized according to morphological, environmental and biochemical parameters, and were preliminarily identified as Streptomyces enissocaesilis A1, Streptomyces olivoverticillatus A5, Streptomyces erumpens A6, Streptomyces cavourensis A8, and Streptomyces microflavus A20. These strains were then screened for plant growth promoting activities. All strains produced siderophores, hydrocyanic acid, ammonia and the auxin indole-3-acetic acid (IAA) and were capable of solubilizing phosphate. The highest producer of siderophores (69.19 percent siderophore units), ammonia (70.56 µg mL-1) and IAA (148.76 µg mL-1) was strain A8, A20, and A5, respectively. These findings showed that the five actinobacteria are multipurpose strains with simultaneous antifungal and plant growth promoting activities and have the potential to be used for sustainable agricultural practices, particularly in arid regions.


Assuntos
Actinobacteria , Antifúngicos , Microbiologia do Solo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Actinobacteria/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/crescimento & desenvolvimento , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Sideróforos/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Streptomyces/classificação , Streptomyces/isolamento & purificação , Streptomyces/genética , Streptomyces/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Filogenia , Argélia , Desenvolvimento Vegetal , Antibiose , África do Norte
10.
Food Microbiol ; 122: 104557, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839221

RESUMO

To investigate the potential antifungal mechanisms of rhizosphere Actinobacteria against Ceratocystis fimbriata in sweet potato, a comprehensive approach combining biochemical analyses and multi-omics techniques was employed in this study. A total of 163 bacterial strains were isolated from the rhizosphere soil of sweet potato. Among them, strain MEPS155, identified as Streptomyces djakartensis, exhibited robust and consistent inhibition of C. fimbriata mycelial growth in in vitro dual culture assays, attributed to both cell-free supernatant and volatile organic compounds. Moreover, strain MEPS155 demonstrated diverse plant growth-promoting attributes, including the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, phosphorus solubilization, nitrogen fixation, and enzymatic activities such as cellulase, chitinase, and protease. Notably, strain MEPS155 exhibited efficacy against various sweet potato pathogenic fungi. Following the inoculation of strain MEPS155, a significant reduction (P < 0.05) in malondialdehyde content was observed in sweet potato slices, indicating a potential protective effect. The whole genome of MEPS155 was characterized by a size of 8,030,375 bp, encompassing 7234 coding DNA sequences and 32 secondary metabolite biosynthetic gene clusters. Transcriptomic analysis revealed 1869 differentially expressed genes in the treated group that cultured with C. fimbriata, notably influencing pathways associated with porphyrin metabolism, fatty acid biosynthesis, and biosynthesis of type II polyketide products. These alterations in gene expression are hypothesized to be linked to the production of secondary metabolites contributing to the inhibition of C. fimbriata. Metabolomic analysis identified 1469 potential differently accumulated metabolites (PDAMs) when comparing MEPS155 and the control group. The up-regulated PDAMs were predominantly associated with the biosynthesis of various secondary metabolites, including vanillin, myristic acid, and protocatechuic acid, suggesting potential inhibitory effects on plant pathogenic fungi. Our study underscores the ability of strain S. djakartensis MEPS155 to inhibit C. fimbriata growth through the production of secretory enzymes or secondary metabolites. The findings contribute to a theoretical foundation for future investigations into the role of MEPS155 in postharvest black rot prevention in sweet potato.


Assuntos
Ascomicetos , Ipomoea batatas , Doenças das Plantas , Rizosfera , Streptomyces , Ipomoea batatas/microbiologia , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/isolamento & purificação , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Ascomicetos/genética , Microbiologia do Solo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Multiômica
11.
Plant Dis ; 108(7): 1946-1958, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38499975

RESUMO

Tobacco bacterial wilt is a highly destructive soilborne disease caused by the Ralstonia solanacearum species complex, exhibiting a significant risk to global flue-cured tobacco cultivation and resulting in substantial economic loss. In this study, 77 isolates were collected from three prominent flue-cured tobacco cultivation areas in Fujian, China (Nanping, Sanming, and Longyan), in 2021 and 2022. The isolated strains were classified through phylotype-specific multiplex polymerase chain reaction (Pmx-PCR) and physiological tests. The analysis showed that all the strains were associated with phylotype I, race 1, and biovar III. Subsequent phylogenetic analysis using partial egl gene sequences classified the 77 isolates into 5 distinct sequevars: 13, 15, 16, 17, and 34. Notably, a remarkable predominance of sequevar 15 was observed in Fujian Province, while sequevar 16 was first reported on tobacco in China, which was identified in other plants, expanding the understanding of its host range and distribution in the country. In addition, a Streptomyces strain extracted from the rhizosphere soil of tobacco was found to inhibit the growth of multiple sequevars of tobacco R. solanacearum, indicating its broad-spectrum antagonistic properties. Furthermore, pot experiments showed that the strain St35 effectively controlled tobacco bacterial wilt. The isolate St35 was conclusively identified as Streptomyces gancidicus according to the morphological and genetic features. In summary, the present study demonstrated the genetic diversity and distribution of tobacco R. solanacearum strains in the Fujian province of China, as well as the identification of a candidate biological control agent for the management of tobacco bacterial wilt.


Assuntos
Variação Genética , Nicotiana , Filogenia , Doenças das Plantas , Ralstonia solanacearum , Streptomyces , Ralstonia solanacearum/genética , Ralstonia solanacearum/fisiologia , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , China , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/fisiologia , Agentes de Controle Biológico , Microbiologia do Solo , Rizosfera
12.
Prep Biochem Biotechnol ; 54(8): 1051-1057, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38469852

RESUMO

To investigate the biocatalytic potential of Amazonian actinomycetes for monoterpenes biotransformation. To carry out the present study, eleven actinomycetes of the genus Streptomyces isolated from inga-cipó (Inga edulis Mart.) rhizospheres were tested for their ability to bioconvert the substrates R-(+)-limonene, S-(-)-limonene, 1S-(-)-α-pinene, and (-)-ß-pinene as sole carbon and energy source. According to gas chromatography-mass spectrometry analysis, three strains, LabMicra B270, LaBMicrA B310, and LaBMicrA B314, were able to biotransform 1S-(-)-α-pinene after 96 h of growth. However, Streptomyces LaBMicrA B270 was the most promising since it converted after only 72 h all the 1S-(-)-α-pinene mainly into cis-verbenol (74.9±1.24%) and verbenone (18.2±1.20%), compounds that have important biological activities and great industrial interest as additives in foods and cosmetics. These findings can stimulate the development of natural aromas using naturally abundant monoterpenes, ratify the potential of microorganisms from almost unexplored niches such as the Amazonian rhizosphere, and reinforce the importance of preserving those niches.


Assuntos
Biotransformação , Monoterpenos , Rizosfera , Streptomyces , Streptomyces/metabolismo , Streptomyces/isolamento & purificação , Monoterpenos/metabolismo , Brasil , Florestas , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos Bicíclicos/metabolismo , Microbiologia do Solo
13.
J Sci Food Agric ; 104(12): 7514-7523, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38785324

RESUMO

BACKGROUND: Peach brown rot, caused by the pathogen Monilinia fructicola, represents a significant postharvest infectious disease affecting peach fruit. This disease is responsible for a substantial increase in fruit decay rates, leading to significant economic losses, often exceeding 50%. Currently, there is a growing interest in identifying biocontrol agents to mitigate peach brown rot, with a predominant interest in Bacillus species. RESULTS: In this investigation, we isolated 410 isolates of actinomycetes from non-farmland ecosystem soil samples. Subsequently, 27 isolates exhibiting superior inhibitory capabilities were selected. Among these, strain XDS1-5 demonstrated the most robust fungistatic effect against brown rot disease, achieving an 80% inhibition rate in vitro and a 66% inhibition rate in vivo. XDS1-5 was identified as belonging to the Streptomyces virginiae species. Furthermore, a fermentation filtrate of XDS1-5 exhibited the ability to metabolize 34.21% of the tested carbon sources and 7.37% of the tested nitrogen sources. Particularly noteworthy was its capacity to disrupt the cell membrane structure directly, leading to increased cell membrane permeability and cytoplasmic leakage. Additionally, our investigation indicated that indoline, a metabolite produced by XDS1-5, played a pivotal role in inhibiting the growth of M. fructicola. CONCLUSION: In summary, our study has identified a biocontrol actinomycete, XDS1-5, with the potential to effectively inhibit postharvest brown rot disease in peaches. This finding holds great significance for the biological control of peach brown rot, offering promising prospects for mitigating the economic losses associated with this devastating disease. © 2024 Society of Chemical Industry.


Assuntos
Antibiose , Frutas , Doenças das Plantas , Prunus persica , Streptomyces , Prunus persica/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Streptomyces/isolamento & purificação , Streptomyces/fisiologia , Streptomyces/metabolismo , Frutas/microbiologia , Microbiologia do Solo , Agentes de Controle Biológico , Micrococcaceae/isolamento & purificação , Micrococcaceae/fisiologia , Micrococcaceae/metabolismo
14.
J Assoc Physicians India ; 72(8): 83-85, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39163074

RESUMO

Mycetoma is a chronic skin and subcutaneous tissue infection characterized by a triad of localized swelling, draining sinuses, and grains or granules (composed of aggregations of the causative organism) within the sinus tracts. It is caused by filamentous higher bacteria (known as actinomycetoma) or fungus (known as eumycetoma). Usually actinomycetoma presents with white-yellow grains and majority of eumycetoma causes black grains. However, actinomycetoma caused by Streptomyces sp. produces large brown-black grain, which is often misdiagnosed as eumycetoma, therefore confirmation by culture is necessary. Here, we present a case of 28-year-old female presenting with typical features of mycetoma at cervicofacial region. On direct microscopy (40×) with potassium hydroxide (KOH) mount of discharge released from sinuses showed large and black grains, initially raising a suspicion of eumycetoma, but later, it was confirmed by culture as actinomycetoma caused by Streptomyces sp. Patient is now symptomatically better on treatment. Production of black grain by actinomycetoma is a rare clinical scenario.


Assuntos
Micetoma , Humanos , Feminino , Micetoma/diagnóstico , Micetoma/microbiologia , Adulto , Streptomyces/isolamento & purificação , Pescoço/microbiologia , Antibacterianos/uso terapêutico
15.
Artigo em Inglês | MEDLINE | ID: mdl-35085064

RESUMO

Fourteen strains of Streptomyces isolated from scab lesions on potato are described as members of a novel species based on genetic distance, morphological observation and biochemical analyses. Morphological and biochemical characteristics of these strains are distinct from other described phytopathogenic species. Strain NE06-02DT has white aerial mycelium and grey, cylindrical, smooth spores on rectus-flexibilis spore chains. Members of this species group can utilize most of the International Streptomyces Project sugars, utilize melibiose and trehalose, produce melanin, grow on 6-7 % NaCl and pH 5-5.5 media, and are susceptible to oleandomycin (100 µg ml-1), streptomycin (20 µg ml-1) and penicillin G (30 µg ml-1). Though the 16S rRNA gene sequences from several members of this novel species are identical to the Streptomyces bottropensis 16S rRNA gene sequence, whole-genome average nucleotide identity and multi-locus sequence analysis confirm that the strains are members of a novel species. Strains belonging to this novel species have been isolated from the United States, Egypt and China with the earliest known members being isolated in 1961 from common scab lesions of potato in both California, USA, and Maine, USA. The name Streptomyces caniscabiei sp. nov. is proposed for strain NE06-02DT (=DSM111602T=ATCC TSD-236T) and the other members of this novel species group.


Assuntos
Filogenia , Doenças das Plantas/microbiologia , Solanum tuberosum , Streptomyces , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solanum tuberosum/microbiologia , Streptomyces/classificação , Streptomyces/isolamento & purificação
16.
Artigo em Inglês | MEDLINE | ID: mdl-35037846

RESUMO

A novel Streptomyces strain, SUN51T, was isolated from soils sampled in Wisconsin, USA, as part of a Streptomyces biogeography survey. Genome sequencing revealed that this strain had less than 90 % average nucleotide identity (ANI) to type species of Streptomyces: SUN51T was most closely related to Streptomyces dioscori A217T (99.5 % 16S rRNA gene identity, 89.4 % ANI). Genome size was estimated at 8.81 Mb, and the genome DNA G+C content was 72 mol%. The strain possessed the cellular fatty acids anteiso-C15 : 0, iso-C16 : 0, 16 : 1 ω7c, anteiso-C17 : 0, iso-C14 : 0 and C16 : 0. The predominant menaquinones were MK-9 H4, MK-9 H6 and MK-9 H8. Strain SUN51T contained the polar lipids phosphatidic acid, phosphatidyl ethanolamine, phosphatidyl glycerol and diphosphatidyl glycerol. The cell wall contained ll-diaminopimelic acid. The strain could grow on a broad range of carbon sources and tolerate temperatures of up to 40 °C. The results of the polyphasic study confirmed that this isolate represents a novel species of the genus Streptomyces, for which the name Streptomyces apricus sp. nov. is proposed. The type strain of this species is SUN51T (=NRRL B-65543T=JCM 33736T).


Assuntos
Filogenia , Microbiologia do Solo , Streptomyces , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/classificação , Streptomyces/isolamento & purificação , Wisconsin
17.
Artigo em Inglês | MEDLINE | ID: mdl-35188884

RESUMO

Two new marine actinobacteria, designated as J2-1T and J2-2T, were isolated from a coral, Favites pentagona, collected from Rayong Province, Thailand. The taxonomic positions of the two strains were identified based on polyphasic taxonomy. Based on morphological characteristics and chemotaxonomy, strains J2-1T and J2-2T were identified as members of the genus Streptomyces and Kineosporia, respectively. Strains J2-1T and J2-2T showed the highest 16S rRNA gene sequence similarity to Streptomyces broussonetiae T44T (98.62 %) and Kineosporia babensis VN05A0415T (98.08 %), respectively. Strain J2-1T had chemotaxonomic properties resembling members of the genus Streptomyces. ll-Diaminopimelic acid, glucose and ribose were detected in the whole-cell hydrolysate. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannoside, unidentified aminolipid and five unidentified phospholipids were detected as the polar lipids. The major cellular fatty acids were C16 : 0 iso, C15 : 0 anteiso, C15 : 0 iso, C16 : 0, C17 : 0 anteiso, C14 : 0 iso and C17 : 0 iso. Strain J2-2T a showed similar cell composition to members of the genus Kineosporia. Both isomers of ll- and meso-diaminopimelic acid were detected in the peptidoglycan. Arabinose, galactose, madurose and xylose were observed in the whole-cell hydrolysate. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, phosphatidylcholine, an unidentified phospholipid and an unidentified glycolipid. The major cellular fatty acids were C16 : 0, C18 : 1 ω9c, C18 : 0 10-methyl, tuberculostearic acid, C18 : 0 and C17 : 0. Both strains could be distinguished from their closely related type strains according to their phenotypic characteristics. Comparative genome analysis indicated the delineation of two novel species based on digital DNA-DNA hybridization and average nucleotide identity values, which were below 70 and 95 %, respectively. The names proposed are Streptomyces corallincola sp. nov. (J2-1T=TBRC 13503T=NBRC 115066T) and Kineosporia corallincola sp. nov. (J2-2T=TBRC 13504T=NBRC 114885T).


Assuntos
Actinobacteria , Antozoários , Filogenia , Streptomyces , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Animais , Antozoários/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/classificação , Streptomyces/isolamento & purificação , Tailândia
18.
Artigo em Inglês | MEDLINE | ID: mdl-35038290

RESUMO

An endophytic Streptomyces-like micro-organism, designated strain PRB2-1T was isolated from root tissue of Epipremnum aureum (Linden and André) G.S. Bunting. The typical morphological and chemotaxonomic characteristics, i.e. the ability to produce straight spore chains directly on aerial mycelium and the presence of ll-diaminopimelic acid in cell-wall peptidoglycan, were consistent with its assignment to the genus Streptomyces. 16S rRNA gene analysis showed that strain PRB2-1T is a member of the genus Streptomyces with the highest similarity to Streptomyces bryophytorum DSM 42183T (98.4 %). Moreover, the draft genome sequence of strain PRB2-1T exhibited low average nucleotide identity by blast (79.9-83.8 %) and digital DNA-DNA hybridization (24.9-28.3 %) values to the reference strains, which were well below the species circumscription threshold. The DNA G+C content of genomic DNA was 73.6 mol%. Comparison of phenotypic characteristics and whole-genome sequence between strain PRB2-1T and its close relatives indicated that strain PRB2-1T could be classified as a novel species of the genus Streptomyces. Thus the name, Streptomyces epipremni sp. nov. is proposed for the strain. The type strain is PRB2-1T (=TBRC 7642T=NBRC 113169T).


Assuntos
Araceae/microbiologia , Filogenia , Streptomyces , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/classificação , Streptomyces/isolamento & purificação
19.
BMC Microbiol ; 21(1): 335, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876006

RESUMO

BACKGROUND: The native potatoes (Solanum tuberosum subsp. tuberosum L.) grown in Chile (Chiloé) represent a new, unexplored source of endophytes to find potential biological control agents for the prevention of bacterial diseases, like blackleg and soft rot, in potato crops. RESULT: The objective of this study was the selection of endophytic actinobacteria from native potatoes for antagonistic activity against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum, and their potential to suppress tissue maceration symptoms in potato tubers. This potential was determined through the quorum quenching activity using a Chromobacterium violaceaum ATCC 12472 Wild type (WT) bioassay and its colonization behavior of the potato plant root system (S. tuberosum) by means of the Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) targeting technique. The results showed that although Streptomyces sp. TP199 and Streptomyces sp. A2R31 were able to inhibit the growth of the pathogens, only the Streptomyces sp. TP199 isolate inhibited Pectobacterium sp. growth and diminished tissue maceration in tubers (p ≤ 0.05). Streptomyces sp. TP199 had metal-dependent acyl homoserine lactones (AHL) quorum quenching activity in vitro and was able to colonize the root endosphere 10 days after inoculation. CONCLUSIONS: We concluded that native potatoes from southern Chile possess endophyte actinobacteria that are potential agents for the disease management of soft rot and blackleg.


Assuntos
Actinobacteria/fisiologia , Antibiose/fisiologia , Endófitos/fisiologia , Solanum tuberosum/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Agentes de Controle Biológico/isolamento & purificação , Chile , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Pectobacterium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Tubérculos/microbiologia , Percepção de Quorum , Streptomyces/classificação , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/fisiologia
20.
BMC Microbiol ; 21(1): 116, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33865329

RESUMO

BACKGROUND: To tackle the problem of antibiotic resistance, an extensive search for novel antibiotics is one of the top research priorities. Around 60% of the antibiotics used today were obtained from the genus Streptomyces. The river sediments of Bangladesh are still an unexplored source for antibiotic-producing bacteria (APB). This study aimed to isolate novel APB from Padma and Kapotakkho river sediments having the potential to produce antibacterial compounds with known scaffolds by manipulating their self-protection mechanisms. RESULTS: The antibiotic supplemented starch-casein-nitrate agar (SCNA) media were used to isolate antibiotic-resistant APB from the river sediments. The colonies having Streptomyces-like morphology were selectively purified and their antagonistic activity was screened against a range of test bacteria using the cross-streaking method. A notable decrease of the colony-forming units (CFUs) in the antibiotic supplemented SCNA plates compared to control plates (where added antibiotics were absent) was observed. A total of three azithromycin resistant (AZR) and nine meropenem resistant (MPR) isolates were purified and their antagonistic activity was investigated against a series of test bacteria including Shigella brodie, Escherichia coli, Pseudomonas sp., Proteus sp., Staphylococcus aureus, and Bacillus cereus. All the AZR isolates and all but two MPR isolates exhibited moderate to high broad-spectrum activity. Among the isolates, 16S rDNA sequencing of NAr5 and NAr6 were performed to identify them up to species level. The analyses of the sequences revealed that both belong to the genus Streptomyces. CONCLUSIONS: The results from these studies suggest that manipulation of the self-resistance property of APB is an easy and quick method to search for novel APB having the potential to produce potentially novel antibacterial compounds with known scaffolds.


Assuntos
Antibacterianos/metabolismo , Fenômenos Fisiológicos Bacterianos , Resistência Microbiana a Medicamentos , Sedimentos Geológicos/microbiologia , Interações Microbianas/fisiologia , Streptomyces/fisiologia , Antibacterianos/farmacologia , Bangladesh , RNA Ribossômico 16S/genética , Rios/microbiologia , Streptomyces/efeitos dos fármacos , Streptomyces/genética , Streptomyces/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA