Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(7): 197, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816607

RESUMO

Identifying and evaluating potential vaccine candidates has become one of the main objectives to combat tuberculosis. Among them, mannosylated Apa antigen from Mycobacterium tuberculosis and the non-mannosylated protein expressed in Escherichia coli, have been studied. Although both proteins can induce a protective response in mice, it has been considered that native protein can be dispensed. In this work, we study the protective response induced by Apa expressed in E. coli and in Streptomyces lividans. The latter, like native is secreted as a double band of 45/47 kDa, however, only its 47 kDa band is mannosylated. Both antigens and BCG were intranasal administrated in mice, and animals were then challenged by aerosol with M. tuberculosis H37Rv. The results showed that both, Apa from S. lividans and E. coli conferred statistically significantly protection to animals compared to controls. The cytokine immune response was studied by an immunoassay after animals' immunization, revealing that Apa from S. lividans induced a statistically significant proliferation of T cell, as well as the expression of IFN-γ, IL-1ß, IL-17 and IL-10. In contrast, non-proliferation was obtained with non-mannosylated protein, but induction of IL-12 and IL-17 was observed. Together, these results demonstrate that both proteins were able to modulate a specific immune response against M. tuberculosis, that could be driven by different mechanisms possibly associated with the presence or not of mannosylation. Furthermore, stimulation of cells from BCG-vaccinated animals with the proteins could be an important tool, to help define the use of a given subunit-vaccine after BCG vaccination.


Assuntos
Administração Intranasal , Citocinas , Mycobacterium tuberculosis , Streptomyces lividans , Tuberculose , Animais , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/genética , Camundongos , Citocinas/metabolismo , Tuberculose/prevenção & controle , Tuberculose/imunologia , Streptomyces lividans/genética , Streptomyces lividans/imunologia , Aerossóis , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/administração & dosagem , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA