Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 195(1): 671-684, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38345859

RESUMO

The phytohormone abscisic acid (ABA) plays a central role in regulating stomatal movements under drought conditions. The root-derived peptide CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 25 (CLE25) moves from the root to shoot for activating ABA biosynthesis under drought conditions. However, the root-to-shoot translocation of root-derived ABA and its regulation of stomatal movements in the shoot remain to be clarified. Here, we reveal that the ABA transporter ATP-binding cassette subfamily G member 25 (AtABCG25) mediates root-to-shoot translocation of ABA and ABA-glucosyl ester (ABA-GE) in Arabidopsis (Arabidopsis thaliana). Isotope-labeled ABA tracer experiments and hormone quantification in xylem sap showed that the root-to-shoot translocation of ABA and ABA-GE was substantially impaired in the atabcg25 mutant under nondrought and drought conditions. However, the contents of ABA and ABA-GE in the leaves were lower in the atabcg25 mutant than in the wild type (WT) under nondrought but similar under drought conditions. Consistently, the stomatal closure was suppressed in the atabcg25 mutant under nondrought but not under drought conditions. The transporter activity assays showed that AtABCG25 directly exported ABA and ABA-GE in planta and in yeast (Saccharomyces cerevisiae) cells. Thus, we proposed a working model in which root-derived ABA transported by AtABCG25 via xylem mediates stomatal movements in the shoot under nondrought conditions but might exhibit little effect on stomatal movements under drought conditions. These findings extend the functions of AtABCG25 and provide insights into the long-distance translocation of ABA and its role in stomatal movements.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Raízes de Plantas , Brotos de Planta , Estômatos de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácido Abscísico/metabolismo , Estômatos de Plantas/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/metabolismo , Brotos de Planta/genética , Transporte Biológico , Secas , Mutação/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Reguladores de Crescimento de Plantas/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética
2.
Plant Cell ; 33(8): 2850-2868, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34125207

RESUMO

Pollen wall assembly is crucial for pollen development and plant fertility. The durable biopolymer sporopollenin and the constituents of the tryphine coat are delivered to developing pollen grains by the highly coordinated secretory activity of the surrounding tapetal cells. The role of membrane trafficking in this process, however, is largely unknown. In this study, we used Arabidopsis thaliana to characterize the role of two late-acting endosomal sorting complex required for transport (ESCRT) components, ISTL1 and LIP5, in tapetal function. Plants lacking ISTL1 and LIP5 form pollen with aberrant exine patterns, leading to partial pollen lethality. We found that ISTL1 and LIP5 are required for exocytosis of plasma membrane and secreted proteins in the tapetal cells at the free microspore stage, contributing to pollen wall development and tryphine deposition. Whereas the ESCRT machinery is well known for its role in endosomal trafficking, the function of ISTL1 and LIP5 in exocytosis is not a typical ESCRT function. The istl1 lip5 double mutants also show reduced intralumenal vesicle concatenation in multivesicular endosomes in both tapetal cells and developing pollen grains as well as morphological defects in early endosomes/trans-Golgi networks, suggesting that late ESCRT components function in the early endosomal pathway and exocytosis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Pólen/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipídeos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Ceras/química , Ceras/metabolismo
3.
Cell Mol Life Sci ; 80(4): 105, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952129

RESUMO

ABCG46 of the legume Medicago truncatula is an ABC-type transporter responsible for highly selective translocation of the phenylpropanoids, 4-coumarate, and liquiritigenin, over the plasma membrane. To investigate molecular determinants of the observed substrate selectivity, we applied a combination of phylogenetic and biochemical analyses, AlphaFold2 structure prediction, molecular dynamics simulations, and mutagenesis. We discovered an unusually narrow transient access path to the central cavity of MtABCG46 that constitutes an initial filter responsible for the selective translocation of phenylpropanoids through a lipid bilayer. Furthermore, we identified remote residue F562 as pivotal for maintaining the stability of this filter. The determination of individual amino acids that impact the selective transport of specialized metabolites may provide new opportunities associated with ABCGs being of interest, in many biological scenarios.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Simulação de Dinâmica Molecular , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Filogenia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Mutagênese
4.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232964

RESUMO

ATP-binding cassette subfamily G (ABCG) proteins play important roles in plant growth and development by transporting metabolites across cell membranes. To date, the genetic characteristics and potential functions of pomegranate ABCG proteins (PgrABCGs) have remained largely unknown. In this study, we found that 47 PgrABCGs were divided into five groups according to a phylogenetic analysis; groups I, II, III, and IV members are half-size proteins, and group V members are full-size proteins. PgrABCG14, PgrABCG21, and PgrABCG47 were highly expressed in the inner seed coat but had very low expression levels in the outer seed coat, and the expression levels of these three PgrABCG genes in the inner seed coats of hard-seeded pomegranate 'Dabenzi' were higher than those of soft-seeded pomegranate 'Tunisia'. In addition, the expression of these three PgrABCG genes was highly correlated with the expression of genes involved in lignin biosynthesis and hormone signaling pathways. The evolution of PgrABCG14 presents a highly similar trend to the origin and evolution of lignin biosynthesis during land plant evolution. Ectopic expression of PgrABCG14 in Arabidopsis promoted plant growth and lignin accumulation compared to wild type plants; meanwhile, the expression levels of lignin biosynthesis-related genes (CAD5, C4H, and Prx71) and cytokinin response marker genes (ARR5 and ARR15) were significantly upregulated in transgenic plants, which suggests the potential role of PgrABCG14 in promoting plant growth and lignin accumulation. Taken together, these findings not only provide insight into the characteristics and evolution of PgrABCGs, but also shed a light on the potential functions of PgrABCGs in seed hardness development.


Assuntos
Arabidopsis , Punica granatum , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Lignina/metabolismo , Filogenia , Plantas Geneticamente Modificadas/metabolismo
5.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34360681

RESUMO

The function and regulation of lipid metabolic genes are essential for plant male reproduction. However, expression regulation of lipid metabolic genic male sterility (GMS) genes by noncoding RNAs is largely unclear. Here, we systematically predicted the microRNA regulators of 34 maize white brown complex members in ATP-binding cassette transporter G subfamily (WBC/ABCG) genes using transcriptome analysis. Results indicate that the ZmABCG26 transcript was predicted to be targeted by zma-miR164h-5p, and their expression levels were negatively correlated in maize B73 and Oh43 genetic backgrounds based on both transcriptome data and qRT-PCR experiments. CRISPR/Cas9-induced gene mutagenesis was performed on ZmABCG26 and another lipid metabolic gene, ZmFAR1. DNA sequencing, phenotypic, and cytological observations demonstrated that both ZmABCG26 and ZmFAR1 are GMS genes in maize. Notably, ZmABCG26 proteins are localized in the endoplasmic reticulum (ER), chloroplast/plastid, and plasma membrane. Furthermore, ZmFAR1 shows catalytic activities to three CoA substrates in vitro with the activity order of C12:0-CoA > C16:0-CoA > C18:0-CoA, and its four key amino acid sites were critical to its catalytic activities. Lipidomics analysis revealed decreased cutin amounts and increased wax contents in anthers of both zmabcg26 and zmfar1 GMS mutants. A more detailed analysis exhibited differential changes in 54 monomer contents between wild type and mutants, as well as between zmabcg26 and zmfar1. These findings will promote a deeper understanding of miRNA-regulated lipid metabolic genes and the functional diversity of lipid metabolic genes, contributing to lipid biosynthesis in maize anthers. Additionally, cosegregating molecular markers for ZmABCG26 and ZmFAR1 were developed to facilitate the breeding of male sterile lines.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Aldeído Oxirredutases/genética , Flores/metabolismo , Metabolismo dos Lipídeos , MicroRNAs/metabolismo , Zea mays/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aldeído Oxirredutases/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , RNA-Seq , Zea mays/genética , Zea mays/crescimento & desenvolvimento
6.
Proc Natl Acad Sci U S A ; 114(28): E5712-E5720, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652324

RESUMO

Plant pathogens cause huge yield losses. Plant defense often depends on toxic secondary metabolites that inhibit pathogen growth. Because most secondary metabolites are also toxic to the plant, specific transporters are needed to deliver them to the pathogens. To identify the transporters that function in plant defense, we screened Arabidopsis thaliana mutants of full-size ABCG transporters for hypersensitivity to sclareol, an antifungal compound. We found that atabcg34 mutants were hypersensitive to sclareol and to the necrotrophic fungi Alternaria brassicicola and Botrytis cinereaAtABCG34 expression was induced by Abrassicicola inoculation as well as by methyl-jasmonate, a defense-related phytohormone, and AtABCG34 was polarly localized at the external face of the plasma membrane of epidermal cells of leaves and roots. atabcg34 mutants secreted less camalexin, a major phytoalexin in Athaliana, whereas plants overexpressing AtABCG34 secreted more camalexin to the leaf surface and were more resistant to the pathogen. When treated with exogenous camalexin, atabcg34 mutants exhibited hypersensitivity, whereas BY2 cells expressing AtABCG34 exhibited improved resistance. Analyses of natural Arabidopsis accessions revealed that AtABCG34 contributes to the disease resistance in naturally occurring genetic variants, albeit to a small extent. Together, our data suggest that AtABCG34 mediates camalexin secretion to the leaf surface and thereby prevents Abrassicicola infection.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Alternaria/patogenicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Botrytis/metabolismo , Indóis/metabolismo , Doenças das Plantas/microbiologia , Tiazóis/metabolismo , Acetatos/farmacologia , Arabidopsis/metabolismo , Transporte Biológico , Ciclopentanos/farmacologia , Diterpenos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Mutação , Oxilipinas/farmacologia , Fenótipo , Filogenia , Folhas de Planta/metabolismo , Transdução de Sinais
7.
Postepy Biochem ; 66(3): 239-244, 2020 09 30.
Artigo em Polonês | MEDLINE | ID: mdl-33315312

RESUMO

ABC proteins, which include ABCG transporters, form one of the largest and most evolutionarily conserved protein families found in all systematic groups. Their function is associated with the active transport of several structurally and functionally unrelated compounds across cell membranes. All members of this protein family have a characteristic domain organization, which quantity and orientation determine their division and classification into subfamilies. ABCGs are recognized as being crucial for plant development as well as interactions with the environment. However, researchers have only just begun to discover the role of ABCG transporters as important modulators of symbioses.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Simbiose , Animais , Evolução Molecular , Humanos , Filogenia , Plantas/metabolismo
8.
Mol Carcinog ; 58(7): 1118-1133, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30834613

RESUMO

Multidrug resistance mediated by ATP-binding cassette (ABC) transporters remains a major impediment to cancer chemotherapy. In the present study, we documented that doxorubicin (Dox) or cisplatin-induced prostate cancer (PCa) chemoresistance is predominantly mediated by the induction of ABCG4 in androgen-independent PCa cells. Treatment of DU-145 or PC-3 cells with Dox significantly enhanced the expression of ABCG4 that resulted in the efflux of intracellular Dox. However, incubation of cells with ABCG4 short hairpin RNA resulted in a significant accumulation of Dox and sensitized cells to Dox-induced cytotoxicity. Interestingly, simvastatin synergistically potentiated Dox-induced cytotoxicity by inhibiting ABCG4 in DU-145 and DU-145 Doxres cells. Mechanistically, ABCG4 expression was regulated redox-dependently by intracellular glutathione (GSH) levels. Treatment of cells with N-acetylcysteine or simvastatin restored Dox-induced depletion of GSH levels that in turn inhibited ABCG4 levels. In addition, a reduction in GSH levels by Dox caused a nuclear factor-κB dependent enhancement of c-Myc expression, which led to cAMP-regulatory element-binding protein (CREB) activation. Furthermore, chromatin immunoprecipitation experiments revealed that Dox-induced CREB activation transcriptionally upregulates ABCG4 expression. These results were further confirmed in an in vivo PCa xenograft mice model. Combination of simvastatin and Dox significantly regressed the tumor growth and size with no noticeable Dox-induced cardiotoxic side effects. Intriguingly, DU-145 cells with stably depleted ABCG4 levels not only significantly delayed the development of the tumor but also greatly sensitized the tumor to a low dose of Dox that resulted in complete tumor regression. Collectively, this data reinforces a novel function of ABCG4 in Dox-mediated chemoresistance, and as a potential therapeutic target in drug-induced PCa chemoresistance.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília G de Transportadores de Cassetes de Ligação de ATP/biossíntese , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Acetilcisteína/farmacologia , Animais , Glutationa/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Interferência de RNA , RNA Interferente Pequeno/genética , Sinvastatina/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Plant Cell ; 28(5): 1163-81, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27102667

RESUMO

The sesquiterpenoid capsidiol is the major phytoalexin produced by Nicotiana and Capsicum species. Capsidiol is produced in plant tissues attacked by pathogens and plays a major role in postinvasion defense by inhibiting pathogen growth. Using virus-induced gene silencing-based screening, we identified two Nicotiana benthamiana (wild tobacco) genes encoding functionally redundant full-size ABCG (PDR-type) transporters, Nb-ABCG1/PDR1 and Nb-ABCG2/PDR2, which are essential for resistance to the potato late blight pathogen Phytophthora infestans Silencing of Nb-ABCG1/2 compromised secretion of capsidiol, revealing Nb-ABCG1/2 as probable exporters of capsidiol. Accumulation of plasma membrane-localized Nb-ABCG1 and Nb-ABCG2 was observed at the site of pathogen penetration. Silencing of EAS (encoding 5-epi-aristolochene synthase), a gene for capsidiol biosynthesis, reduced resistance to P. infestans, but penetration by P. infestans was not affected. By contrast, Nb-ABCG1/2-silenced plants showed reduced penetration defense, indicating that Nb-ABCG1/2 are involved in preinvasion defense against P. infestans Plastidic GGPPS1 (geranylgeranyl diphosphate synthase) was also found to be required for preinvasion defense, thereby suggesting that plastid-produced diterpene(s) are the antimicrobial compounds active in preinvasion defense. These findings suggest that N. benthamiana ABCG1/2 are involved in the export of both antimicrobial diterpene(s) for preinvasion defense and capsidiol for postinvasion defense against P. infestans.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Nicotiana/metabolismo , Nicotiana/microbiologia , Phytophthora infestans/patogenicidade , Proteínas de Plantas/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Nicotiana/genética
10.
Int J Mol Sci ; 20(11)2019 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-31159502

RESUMO

Several ATP-Binding Cassette (ABC) transporters, including ABCG1 and the related ABCG4, are essential regulators of cellular lipid homeostasis. ABCG1 is expressed ubiquitously and is functional in the context of atherosclerosis. However, ABCG4 is expressed almost exclusively in brain and has been linked to Alzheimer's disease (AD). These transporters are highly regulated post-translationally by E3 ubiquitin ligases, with the ligase NEDD4-1 (Neural precursor cell-expressed developmentally downregulated gene 4) implicated in their protein stability. In this study, we investigated interacting partners of ABCG1 using peptide-mass spectrometry and identified the potential adaptor protein, Alix (apoptosis-linked gene 2-interacting protein X). In this paper, we hypothesized and investigated whether Alix could facilitate the interaction between NEDD4-1 and the ABC transporters. We showed that Alix and NEDD4-1 proteins were co-expressed in several commonly used cell lines. Knockdown of Alix in cells overexpressing ABCG1 or ABCG4 increased transporter protein expression while co-immunoprecipitation experiments showed interaction between NEDD4-1, Alix, and ABC transporters. In summary, we provide evidence that Alix serves as a co-factor for the interaction between the E3-ubiquitin ligase NEDD4-1 and the ABC transporter targets, ABCG1 and ABCG4.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Animais , Células CHO , Linhagem Celular , Colesterol/metabolismo , Cricetulus , Humanos , Mapas de Interação de Proteínas
11.
Eur J Pediatr ; 177(4): 611-616, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29397417

RESUMO

The aim of this study was to assess the expression of inflammatory mediators in the affected terminal ileum and colon in pediatric Crohn disease (CD) patients with different stages of disease. Additionally, we assessed the role of efflux transporters in disease pathogenesis and their correlation with immune response. The study included 26 CD patients (10 newly diagnosed (CD-new), 8 CD-treated, and 8 CD-remission) and 15 control subjects. The terminal ileum IFN-γ, IL-6, and IL-1ß were elevated in CD-new, while in the colon, the IFN-γ, IL-17A, and IL-6 were elevated in both CD-new and CD-treated subgroups. SOCS3 expression was elevated in both subgroups with active inflammation at both ileum and colon, while SOCS1 was elevated only in CD-new ileum and CD-treated colon. MDR1 expression in ileum was reduced in both subgroups with active inflammation, while BCRP was reduced only in CD-new subgroup. CONCLUSION: New onset pediatric CD is characterized by Th1 response in ileum and mixed Th1/Th17 response in the colon, with elevated expressions of innate IL-6 and IL-1ß. SOCS1/SOCS3 expressions seem to be insufficient for the regulation of the immune response. The reduction in MDR1 expression points to its role in the disease pathogenesis. What is Known: • CD is characterized by an aberrant immune response What is New: • The immune response in new onset pediatric CD differs between terminal ileum and colon • MDR1 expression is downregulated at both terminal ileum and colon irrespective of the disease activity.


Assuntos
Doença de Crohn/metabolismo , Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Células Th1/imunologia , Células Th17/imunologia , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adolescente , Criança , Colo/metabolismo , Doença de Crohn/imunologia , Feminino , Humanos , Íleo/metabolismo , Masculino , Reação em Cadeia da Polimerase em Tempo Real
12.
Mol Plant Microbe Interact ; 30(4): 325-333, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28398838

RESUMO

The phytohormone cytokinin (CK) is not only essential for plant growth and development but also impacts plant immunity. A mutant screen in a constitutively active plant immune receptor mutant snc1 (suppressor of npr1, constitutive1) identified a suppressor mutation of SNC1-induced defense responses in an ABC transporter coding gene ABCG14. ABCG14 transports CK from roots to the shoots, and the suppression of the SNC1-mediated defense response by the loss of ABCG14 is due to a deficiency of trans-zeatin (tZ)-type CK in the shoot. In addition, exogenous application of the tZ-type CK enhances disease resistance associated with increased expression of the plant immune receptor gene SNC1. Taken together, this study further established the role of tZ-type CK in disease resistance and suggests a new intersection of CKs with plant immunity at the expression regulation of a plant immune receptor gene.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Imunidade Vegetal , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Autoimunidade , Transporte Biológico , Clonagem Molecular , Citocininas/metabolismo , Citocininas/farmacologia , Resistência à Doença , Genes de Plantas , Mutação com Perda de Função/genética , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Supressão Genética
13.
J Exp Bot ; 68(12): 3231-3241, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369642

RESUMO

The ABCG10 protein of the model legume Medicago truncatula is required for efficient de novo production of the phenylpropanoid-derived phytoalexin medicarpin. Silencing the expression of MtABCG10 results, inter alia, in a lower accumulation of medicarpin and its precursors. In this study, we demonstrate that the impairment of medicarpin biosynthesis can be partially averted by the exogenous application of 4-coumarate, an early precursor of the core phenylpropanoid pathway, and the deoxyisoflavonoid formononetin. Experiments conducted using HPLC/MS in a heterologous system as well as in vitro transport assays with labelled substrate revealed that MtABCG10 is responsible for the membrane translocation of 4-coumarate and liquiritigenin, molecules representing key branching points in the phenylpropanoid pathway. The identification of transporters participating in the distribution of precursors is an important step in understanding phenylpropanoid biosynthesis.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Flavanonas/metabolismo , Medicago truncatula/genética , Proteínas de Plantas/genética , Propionatos/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Vias Biossintéticas , Ácidos Cumáricos , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Pterocarpanos/metabolismo
14.
Ecotoxicol Environ Saf ; 143: 6-11, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28486145

RESUMO

Florfenicol (FLR) is the most commonly used antibacterial agent in aquaculture because of its wide spectrum of activity and few side-effects. We characterized the toxicokinetics of FLR in the swimming crab (Portunus trituberculatus) after intravenous (IV) dosing (20, 40 and 80mg/kg). The results showed that FLR significantly suppressed the antioxidant system of the hepatopancreas. FLR induced transcriptional expression of phase I and phase II detoxification genes (CYP3 and GST, respectively) in a dose- and clearance time-dependent manner and altered the expression of their corresponding enzymes (erythromycin N-demethylase and glutathione S-transferase, respectively). Moreover, FLR induced the transcription of ATP-binding cassette (ABC) transporter subfamily B (ABCB) and subfamily G (ABCG), although ABCG transcription was not induced by FLR at 20mg/kg. Additionally, higher FLR doses caused significant biomolecule damage during the first 48h after delivery. This study will provide an improved understanding of the exact mechanism underlying toxicity in aquatic organisms.


Assuntos
Antibacterianos/toxicidade , Antioxidantes/metabolismo , Braquiúros/efeitos dos fármacos , Braquiúros/enzimologia , Dano ao DNA , Hepatopâncreas/efeitos dos fármacos , Tianfenicol/análogos & derivados , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Aquicultura , Braquiúros/genética , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Relação Dose-Resposta a Droga , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Hepatopâncreas/enzimologia , Inativação Metabólica , Peroxidação de Lipídeos/efeitos dos fármacos , Frutos do Mar , Natação , Tianfenicol/uso terapêutico
15.
Plant Cell Rep ; 35(9): 1863-73, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27271688

RESUMO

KEY MESSAGE: Two Arabidopsis ABC transporters, ABCG1 and ABCG16, are expressed in the tapetal layer, specifically after postmeiotic microspore release, and play important roles in pollen surface development. The male gametophytic cells of terrestrial plants, the pollen grains, travel far before fertilization, and thus require strong protective layers, which take the form of a pollen coat and a pollen wall. The protective surface structures are generated by the tapetum, the tissue surrounding the developing gametophytes. Many ABC transporters, including Arabidopsis thaliana ABCG1 and ABCG16, have been shown to play essential roles in the development of such protective layers. However, the details of the mechanism of their function remain to be clarified. In this study, we show that ABCG1 and ABCG16 are localized at the plasma membrane of tapetal cells, specifically after postmeiotic microspore release, and play critical roles in the postmeiotic stages of male gametophyte development. Consistent with this stage-specific expression, the abcg1 abcg16 double knockout mutant exhibited defects in pollen development after postmeiotic microspore release; their microspores lacked intact nexine and intine layers, exhibited defects in pollen mitosis I, displayed ectopic deposits of arabinogalactan proteins, failed to complete cytokinesis, and lacked sperm cells. Interestingly, the double mutant exhibited abnormalities in the internal structures of tapetal cells, too; the storage organelles of tapetal cells, tapetosomes and elaioplasts, were morphologically altered. Thus, this work reveals that the lack of ABCG1 and ABCG16 at the tapetal cell membrane causes a broad range of defects in pollen, as well as in tapetal cells themselves. Furthermore, these results suggest that normal pollen surface development is necessary for normal development of the pollen cytoplasm.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Meiose , Proteínas de Membrana/metabolismo , Pólen/citologia , Pólen/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Membrana Celular/metabolismo , Parede Celular/metabolismo , Mitose , Mucoproteínas/metabolismo , Mutação/genética , Proteínas de Plantas/metabolismo , Pólen/ultraestrutura
16.
Mol Plant ; 17(3): 478-495, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38327051

RESUMO

ATP-binding cassette (ABC) transporters are integral membrane proteins that have evolved diverse functions fulfilled via the transport of various substrates. In Arabidopsis, the G subfamily of ABC proteins is particularly abundant and participates in multiple signaling pathways during plant development and stress responses. In this study, we revealed that two Arabidopsis ABCG transporters, ABCG16 and ABCG25, engage in ABA-mediated stress responses and early plant growth through endomembrane-specific dimerization-coupled transport of ABA and ABA-glucosyl ester (ABA-GE), respectively. We first revealed that ABCG16 contributes to osmotic stress tolerance via ABA signaling. More specifically, ABCG16 induces cellular ABA efflux in both yeast and plant cells. Using FRET analysis, we showed that ABCG16 forms obligatory homodimers for ABA export activity and that the plasma membrane-resident ABCG16 homodimers specifically respond to ABA, undergoing notable conformational changes. Furthermore, we demonstrated that ABCG16 heterodimerizes with ABCG25 at the endoplasmic reticulum (ER) membrane and facilitates the ER entry of ABA-GE in both Arabidopsis and tobacco cells. The specific responsiveness of the ABCG16-ABCG25 heterodimer to ABA-GE and the superior growth of their double mutant support an inhibitory role of these two ABCGs in early seedling establishment via regulation of ABA-GE translocation across the ER membrane. Our endomembrane-specific analysis of the FRET signals derived from the homo- or heterodimerized ABCG complexes allowed us to link endomembrane-biased dimerization to the translocation of distinct substrates by ABCG transporters, providing a prototypic framework for understanding the omnipotence of ABCG transporters in plant development and stress responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Dimerização , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Desenvolvimento Vegetal , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/metabolismo
17.
J Mol Neurosci ; 74(2): 49, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668787

RESUMO

The pathogenesis of Alzheimer's disease (AD) is complex and involves an imbalance between production and clearance of amyloid-ß peptides (Aß), resulting in accumulation of Aß in senile plaques. Hypercholesterolemia is a major risk factor for developing AD, with cholesterol shown to accumulate in senile plaques and increase production of Aß. ABCG4 is a member of the ATP-binding cassette transporters predominantly expressed in the CNS and has been suggested to play a role in cholesterol and Aß efflux from the brain. In this study, we bred Abcg4 knockout (KO) with the APPSwe,Ind (J9) mouse model of AD to test the hypothesis that loss of Abcg4 would exacerbate the AD phenotype. Unexpectedly, no differences were observed in novel object recognition (NOR) and novel object placement (NOP) behavioral tests, or on histologic examinations of brain tissues for senile plaque numbers. Furthermore, clearance of radiolabeled Aß from the brains did not differ between Abcg4 KO and control mice. Metabolic testing by indirect calorimetry, glucose tolerance test (GTT), and insulin tolerance test (ITT) were also mostly similar between groups with only a few mild metabolic differences noted. Overall, these data suggest that the loss of ABCG4 did not exacerbate the AD phenotype.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP , Doença de Alzheimer , Animais , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos Endogâmicos C57BL , Placa Amiloide/patologia
18.
J Adv Res ; 49: 15-30, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36130683

RESUMO

INTRODUCTION: ATP Binding Cassette G (ABCG) transporters are associated with plant male reproduction, while their regulatory mechanisms underlying anther and pollen development remain largely unknown. OBJECTIVES: Identify and characterize a male-sterility gene ZmMs13 encoding an ABCG transporter in modulating anther and pollen development in maize. METHODS: Phenotypic, cytological observations, and histochemistry staining were performed to characterize the ms13-6060 mutant. Map-based cloning and CRISPR/Cas9 gene editing were used to identify ZmMs13 gene. RNA-seq data and qPCR analyses, phylogenetic and microsynteny analyses, transient dual-luciferase reporter and EMSA assays, subcellular localization, and ATPase activity and lipidomic analyses were carried out to determine the regulatory mechanisms of ZmMs13 gene. RESULTS: Maize ms13-6060 mutant displays complete male sterility with delayed callose degradation, premature tapetal programmed cell death (PCD), and defective pollen exine and anther cuticle formation. ZmMs13 encodes a plasm membrane (PM)- and endoplasmic reticulum (ER)-localized half-size ABCG transporter (ZmABCG2a). The allele of ZmMs13 in ms13-6060 mutant has one amino acid (I311) deletion due to a 3-bp deletion in its fourth exon. The I311 and other conserved amino acid K99 are essential for the ATPase and lipid binding activities of ZmMS13. ZmMs13 is specifically expressed in anthers with three peaks at stages S5, S8b, and S10, which are successively regulated by transcription factors ZmbHLH122, ZmMYB84, and ZmMYB33-1/-2 at these three stages. The triphasic regulation of ZmMs13 is sequentially required for callose dissolution, tapetal PCD and pollen exine development, and anther cuticle formation, corresponding to transcription alterations of callose-, ROS-, PCD-, sporopollenin-, and anther cuticle-related genes in ms13-6060 anthers. CONCLUSION: ms13-6060 mutation with one key amino acid (I311) deletion greatly reduces ZmMS13 ATPase and lipid binding activities and displays multiple effects during maize male reproduction. Our findings provide new insights into molecular mechanisms of ABCG transporters controlling anther and pollen development and male fertility in plants.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Zea mays , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Solubilidade , Pólen/genética , Pólen/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Lipídeos
19.
Curr Opin Plant Biol ; 66: 102184, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217474

RESUMO

Many lipophilic metabolites produced by terrestrial plants are deposited on plant surfaces to protect them from abiotic and biotic stresses. Plant-derived lipophilic metabolites include apoplastic biopolymers, such as wax, cutin, sporopollenin, suberin, and lignin, as well as low-molecular-weight secondary metabolites. These secreted molecules confer adaptive toughness and robustness on plants. The mechanisms responsible for the secretion of these lipophilic metabolites remain unclear, although two pathways, mediated by transporters and vesicles, have been proposed. Recent genetic and biochemical studies have shown that G-type ATP-binding cassette (ABCG) transporters and membrane trafficking factors are involved in the apoplastic accumulation of lipophilic metabolites in plants. These two distinctive modes of secretion may be either exclusive or collaborative. This review describes these transporter-dependent and vesicle-mediated mechanisms underlying the secretion of lipophilic metabolites.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Arabidopsis , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/genética , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Plantas/metabolismo
20.
Toxins (Basel) ; 14(1)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35051029

RESUMO

Ostrinia furnacalis is an important borer on maize. Long-term and large-scale planting of transgenic corn has led O. furnacalis evolving resistance and reducing the control effect. Recently, high levels of resistance to Bt Cry1 toxins have been reported to be genetically linked to the mutation or down-regulation of ABC transporter subfamily G gene ABCG4 in O. furnacalis. In order to further determine the relationship between ABCG4 gene and the resistance to Cry1 toxins in O. furnacalis, the novel CRISPR/Cas9 genome engineering system was utilized to successfully construct ABCG4-KO knockout homozygous strain. Bioassay results indicated that an ABCG4-KO strain had a higher resistance to Cry1 proteins compared with a susceptible strain (ACB-BtS). The result indicates that the ABCG4 gene may act as a receptor of the Bt Cry1 toxin in O. furnacalis. Furthermore, the development time was significantly changed in the early stage ABCG4-KO larvae, and the population parameters were also significantly changed. In summary, our CRISPR/Cas9-mediated genome editing study presents evidence that ABCG4 gene is a functional receptor for Bt Cry1 toxins, laying the foundation for further clarification of the Bt resistance mechanism.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Toxinas de Bacillus thuringiensis , Endotoxinas , Proteínas Hemolisinas , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Mariposas/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Controle de Insetos , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Controle Biológico de Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA