Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(3): e0218421, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133860

RESUMO

Enzymatic degradation of collagen is of great industrial and environmental significance; however, little is known about thermophile-derived collagenolytic proteases. Here, we report a novel collagenolytic protease (TSS) from thermophilic Brevibacillus sp. WF146. The TSS precursor comprises a signal peptide, an N-terminal propeptide, a subtilisin-like catalytic domain, a ß-jelly roll (ßJR) domain, and a prepeptidase C-terminal (PPC) domain. The maturation of TSS involves a stepwise autoprocessing of the N-terminal propeptide and the PPC domain, and the ßJR rather than the PPC domain is necessary for correct folding of the enzyme. Purified mature TSS displayed optimal activity at 70°C and pH 9.0, a half-life of 1.5 h at 75°C, and an increased thermostability as the NaCl concentration increased up to 4 M. TSS possesses an increased number of surface acidic residues and ion pairs, as well as four Ca2+-binding sites, which contribute to its high thermostability and halotolerance. At high temperatures, TSS exhibited high activity toward insoluble type I collagen and azocoll but showed a low gelatinolytic activity, with a strong preference for Arg and Gly at the P1 and P1' positions, respectively. Both the ßJR and PPC domains could bind but not swell collagen, and thus facilitate TSS-mediated collagenolysis via improving the accessibility of the enzyme to the substrate. Additionally, TSS has the ability to efficiently degrade fish scale collagen at high temperatures. IMPORTANCE Proteolytic degradation of collagen at high temperatures has the advantages of increasing degradation efficiency and minimizing the risk of microbial contamination. Reports on thermostable collagenolytic proteases are limited, and their maturation and catalytic mechanisms remain to be elucidated. Our results demonstrate that the thermophile-derived TSS matures in an autocatalytic manner and represents one of the most thermostable collagenolytic proteases reported so far. At elevated temperatures, TSS prefers hydrolyzing insoluble heat-denatured collagen rather than gelatin, providing new insight into the mechanism of collagen degradation by thermostable collagenolytic proteases. Moreover, TSS has the potential to be used in recycling collagen-rich wastes such as fish scales.


Assuntos
Endopeptidases , Subtilisina , Sequência de Aminoácidos , Animais , Domínio Catalítico , Endopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Subtilisina/química
2.
Phys Chem Chem Phys ; 23(22): 12780-12794, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34048523

RESUMO

Colloidal protein-protein interactions (PPIs) of attractive and repulsive nature modulate the solubility of proteins, their aggregation, precipitation and crystallization. Such interactions are very important for many biotechnological processes, but are complex and hard to control, therefore, difficult to be understood in terms of measurements alone. In diluted protein solutions, PPIs can be estimated from the osmotic second virial coefficient, B22, which has been calculated using different methods and levels of theory. The most popular approach is based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and its extended versions, i.e. xDLVO. Despite much efforts, these models are not fully quantitative and must be fitted to experiments, which limits their predictive value. Here, we report an extended xDLVO-CG model, which extends existing models by a coarse-grained representation of proteins and the inclusion of an additional ion-protein dispersion interaction term. We demonstrate for four proteins, i.e. lysozyme (LYZ), subtilisin (Subs), bovine serum albumin (BSA) and immunoglobulin (IgG1), that semi-quantitative agreement with experimental values without the need to fit to experimental B22 values. While most likely not the final step in the nearly hundred years of research in PPIs, xDLVO-CG is a step towards predictive PPIs calculations that are transferable to different proteins.


Assuntos
Imunoglobulinas/química , Muramidase/química , Soroalbumina Bovina/química , Subtilisina/química , Animais , Bovinos , Coloides/química , Humanos , Modelos Moleculares , Muramidase/metabolismo , Ligação Proteica , Solubilidade
3.
Biochem J ; 477(2): 525-540, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31942933

RESUMO

Subtilisin-like serine peptidases (subtilases) play important roles in the life cycle of many organisms, including the protozoan parasites that are the causative agent of malaria, Plasmodium spp. As with other peptidases, subtilase proteolytic activity has to be tightly regulated in order to prevent potentially deleterious uncontrolled protein degradation. Maturation of most subtilases requires the presence of an N-terminal propeptide that facilitates folding of the catalytic domain. Following its proteolytic cleavage, the propeptide acts as a transient, tightly bound inhibitor until its eventual complete removal to generate active protease. Here we report the identification of a stand-alone malaria parasite propeptide-like protein, called SUB1-ProM, encoded by a conserved gene that lies in a highly syntenic locus adjacent to three of the four subtilisin-like genes in the Plasmodium genome. Template-based modelling and ab initio structure prediction showed that the SUB1-ProM core structure is most similar to the X-ray crystal structure of the propeptide of SUB1, an essential parasite subtilase that is discharged into the parasitophorous vacuole (PV) to trigger parasite release (egress) from infected host cells. Recombinant Plasmodium falciparum SUB1-ProM was found to be a fast-binding, potent inhibitor of P. falciparum SUB1, but not of the only other essential blood-stage parasite subtilase, SUB2, or of other proteases examined. Mass-spectrometry and immunofluorescence showed that SUB1-ProM is expressed in the PV of blood stage P. falciparum, where it may act as an endogenous inhibitor to regulate SUB1 activity in the parasite.


Assuntos
Malária Falciparum/genética , Plasmodium falciparum/genética , Serina Proteases/química , Subtilisina/genética , Sequência de Aminoácidos/genética , Animais , Eritrócitos/parasitologia , Genoma/genética , Humanos , Estágios do Ciclo de Vida/genética , Malária Falciparum/enzimologia , Malária Falciparum/parasitologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Plasmodium falciparum/patogenicidade , Proteólise , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Serina Proteases/genética , Subtilisina/química , Vacúolos/parasitologia
4.
Biotechnol Lett ; 43(2): 479-494, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33047274

RESUMO

Here we report heterologous expression, enzymatic characterization and structure homology modeling of a subtilisin-like alkaline serine protease (ASP) from Bacillus halodurans C-125. Encoding gene was successfully obtained by PCR and cloned into pMA0911 shuttle vector under the control of strong HpaII promoter and expressed extracellularly. ASP enzyme was successfully expressed in B. subtilis WB800 cell line lacking eight extracellular proteases and produced extracellularly in the culture medium. Km, Vmax and specific activity parameters of the recombinantly produced ASP were identified as 0.2899 mg/ml, 76.12 U/ml and 9500 U/mg, respectively. The purified enzyme revealed remarkable proteolytic activity at highly alkaline conditions with a pH optimum 12.0 and notable thermostability with temperature optimum at 60 °C. Furthermore, substrate-free enzyme revealed remarkable pH stability at pH 12.0 and maintained 93% of its initial activity when incubated at 37 °C for 24 h and 60% of its initial activity upon incubation at 60 °C for 1 h. Theoretically calculated molecular mass of ASP protein was confirmed through SDS-PAGE and western blot analysis (Mw: 28.3 kDa). The secondary and tertiary structures of ASP protein were also identified through homology modeling and further examined in detail. ASP harbors a typical S8/S53 peptidase domain comprising 17 ß-sheets and 9 α-helixes within its secondary structure. The structure dynamics analysis of modeled 3D structure further revealed that transient inactivating propeptide chain is the most dynamic region of ASP enzyme with 8.52 Å2 ß-Factor value. Additional residue-dependent fluctuation plot analysis also confirmed the elevated structure dynamics patterning of ASP N-terminus which could be the potential prerequisite for the autonomous propeptide removal of alkaline serine peptidases. Yet the functional domain of ASP becomes quite stable after autonomous exclusion of its propeptide. Although the sequence homology between ASP and commercial detergent additive B. lentus protease (PDB ID:1GCI) was moderate (65.4% sequence similarity), their overlaid 3D structures revealed much higher similarity (98.14%) within 0.80 Å RMSD. In conclusions, with remarkable pH stability, notable thermostability and particularly high specific activity at extreme alkaline conditions, the unveiled ASP protein stands out as a novel protease candidate for various industrial sectors such as textile, detergent, leather, feed, waste, pharmaceutical and others.


Assuntos
Bacillus/ultraestrutura , Modelos Moleculares , Serina Proteases/ultraestrutura , Subtilisina/genética , Bacillus/química , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Clonagem Molecular , Estabilidade Enzimática/genética , Regulação Bacteriana da Expressão Gênica/genética , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Proteólise , Serina Proteases/química , Especificidade por Substrato , Subtilisina/química , Temperatura
5.
Proc Natl Acad Sci U S A ; 115(26): 6578-6583, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29895685

RESUMO

Membraneless organelles are aggregates of disordered proteins that form spontaneously to promote specific cellular functions in vivo. The possibility of synthesizing membraneless organelles out of cells will therefore enable fabrication of protein-based materials with functions inherent to biological matter. Since random copolymers contain various compositions and sequences of solvophobic and solvophilic groups, they are expected to function in nonbiological media similarly to a set of disordered proteins in membraneless organelles. Interestingly, the internal environment of these organelles has been noted to behave more like an organic solvent than like water. Therefore, an adsorbed layer of random copolymers that mimics the function of disordered proteins could, in principle, protect and enhance the proteins' enzymatic activity even in organic solvents, which are ideal when the products and/or the reactants have limited solubility in aqueous media. Here, we demonstrate via multiscale simulations that random copolymers efficiently incorporate proteins into different solvents with the potential to optimize their enzymatic activity. We investigate the key factors that govern the ability of random copolymers to encapsulate proteins, including the adsorption energy, copolymer average composition, and solvent selectivity. The adsorbed polymer chains have remarkably similar sequences, indicating that the proteins are able to select certain sequences that best reduce their exposure to the solvent. We also find that the protein surface coverage decreases when the fluctuation in the average distance between the protein adsorption sites increases. The results herein set the stage for computational design of random copolymers for stabilizing and delivering proteins across multiple media.


Assuntos
Simulação por Computador , Composição de Medicamentos/métodos , Modelos Químicos , Polímeros/química , Proteínas/química , Adsorção , Proteínas de Bactérias/química , Hidrolases de Éster Carboxílico/química , Desenho de Fármacos , Proteínas Fúngicas/química , Interações Hidrofóbicas e Hidrofílicas , Lipase/química , Modelos Moleculares , Compostos Orgânicos , Elastase Pancreática/química , Conformação Proteica , Solubilidade , Solventes , Subtilisina/química , Ubiquitina/química
6.
J Biol Chem ; 294(48): 18398-18407, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31615894

RESUMO

Rational design-guided improvement of protein thermostability typically requires identification of residues or regions contributing to instability and introduction of mutations into these residues or regions. One popular method, B-FIT, utilizes B-factors to identify unstable residues or regions and combines them with other strategies, such as directed evolution. Here, we performed structure-based engineering to improve the thermostability of the subtilisin E-S7 (SES7) peptidase. The B-value of each residue was redefined in a normalized B-factor calculation, which was implemented with a refined bioinformatics analysis strategy to identify the critical area (loop 158-162) related to flexibility and to screen for suitable thermostable motif sequences in the Protein Data Bank that can act as transplant loops. In total, we analyzed 445 structures and identified 29 thermostable motifs as candidates. Using these motifs as a starting point, we performed iterative homologous modeling to obtain a desirable chimera loop and introduced five different mutations into this loop to construct thermostable SES7 proteins. Differential scanning fluorimetry revealed increases of 7.3 °C in the melting temperature of an SES7 variant designated M5 compared with the WT. The X-ray crystallographic structure of this variant was resolved at 1.96 Å resolution. The crystal structure disclosed that M5 forms more hydrogen bonds than the WT protein, consistent with design and molecular dynamics simulation results. In summary, the modified B-FIT strategy reported here has yielded a subtilisin variant with improved thermostability and promising industrial applications, supporting the notion that this modified method is a powerful tool for protein engineering.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Proteínas de Bactérias/genética , Estabilidade Enzimática/genética , Mutação , Subtilisina/genética , Temperatura , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Algoritmos , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica , Subtilisina/química , Subtilisina/metabolismo
7.
Adv Exp Med Biol ; 1276: 137-156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32705598

RESUMO

Plasma levels of cholesterol, especially low-density lipoprotein cholesterol (LDL-C), are positively correlated with the risk of cardiovascular disease. Buildup of LDL in the intima promotes the formation of foam cells and consequently initiates atherosclerosis, one of the main underlying causes of cardiovascular disease. Hepatic LDL receptor (LDLR) is mainly responsible for the clearance of plasma LDL. Mutations in LDLR cause familiar hypercholesterolemia and increase the risk of premature coronary heart disease. Proprotein convertase subtilisin/kexin-type 9 (PCSK9) promotes LDLR degradation and thereby plays a critical role in the regulation of plasma cholesterol metabolism. PCSK9 can bind to LDLR and reroute the receptor to lysosomes for degradation, increasing both circulating LDL-C levels and the risk of cardiovascular disease. PCSK9 is mainly regulated by sterol response element binding protein 2 (SREBP2) at the transcriptional level. Furthermore, many proteins have been identified as interacting with PCSK9, regulating plasma cholesterol levels. Pharmacotherapeutic inhibition of PCSK9 dramatically reduces plasma levels of LDL cholesterol and significantly reduces cardiovascular events. In this article, we summarize the latest advances in PCSK9, mainly focusing on the structure, function, and regulation of the protein, the underlying molecular mechanisms, and its pharmacotherapeutic applications.


Assuntos
Metabolismo dos Lipídeos , Pró-Proteína Convertase 9/metabolismo , Subtilisina/metabolismo , Humanos , Pró-Proteína Convertase 9/química , Receptores de LDL/metabolismo , Subtilisina/química
8.
Extremophiles ; 23(5): 529-547, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31236718

RESUMO

The present study investigates the purification and biochemical characterization of a novel extracellular serine alkaline protease, subtilisin (called SAPN) from Melghiribacillus thermohalophilus Nari2AT. The highest yield of protease (395 IU/g) with white shrimp shell by-product (40 g/L) as a unique source of nutriments in the growth medium was achieved after 52 h at 55 °C. The monomeric enzyme of about 30 kDa was purified to homogeneity by ammonium sulfate fractionation, heat treatment, followed by sequential column chromatographies. The optimum pH and temperature values for subtilisin activity were pH 10 and 75 °C, respectively, and half lives of 9 and 5 h at 80 and 90 °C, respectively. The sequence of the 25 NH2-terminal residues pertaining of SAPN exhibited a high homology with those of Bacillus subtilisins. The inhibition by DFP and PMSF indicates that this enzyme belongs to the serine proteases family. SAPN was found to be effective in the deproteinization (DDP %) of blue swimming crab (Portunus segnis) and white shrimp (Metapenaeus monoceros) by-products, with a degree of 65 and 82%, respectively. The commercial and the two chitins obtained in this work showed a similar peak pattern in Fourier-Transform Infrared (FTIR) analysis, suggesting that SAPN is suitable for the bio-production of chitin from shell by-products.


Assuntos
Bacillaceae/enzimologia , Proteínas de Bactérias/química , Quitina/química , Tolerância ao Sal , Subtilisina/química , Termotolerância , Exoesqueleto/química , Animais , Proteínas de Bactérias/metabolismo , Crustáceos/química , Estabilidade Enzimática , Hidrólise , Subtilisina/metabolismo
9.
Chemistry ; 24(11): 2767-2775, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29282778

RESUMO

The functions of metal-containing proteins (metalloproteins) are determined by the reactivities of transition metal ions at their active sites. Because protein macromolecular structures have several molecular degrees of freedom, global structural flexibility may also regulate the properties of metalloproteins. However, the influence of this factor has not been fully delineated in mechanistic studies of metalloproteins. Accordingly, we have investigated the relationship between global protein flexibility and the characteristics of a transition metal ion in the protein core using thiol-subtilisin (tSTL) with a Cys-coordinated Cu2+ ion as a model system. Although tSTL has two Ca2+ -binding sites, the Ca2+ -binding status hardly affects its secondary structure. Nevertheless, guanidinium-induced denaturation and amide H/D exchange indicated the increase in the structural flexibility of tSTL by the removal of bound Ca2+ ions. Electron paramagnetic resonance and absorption spectral changes have revealed that the protein flexibility determines the characteristics of a Cu2+ ion in tSTL. Therefore, global protein flexibility should be recognized as an important factor that regulates the properties of metalloproteins.


Assuntos
Subtilisina/química , Compostos de Sulfidrila/química , Elementos de Transição/química , Bacillus licheniformis/metabolismo , Sítios de Ligação , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Medição da Troca de Deutério , Espectroscopia de Ressonância de Spin Eletrônica , Íons/química , Metaloproteínas/química , Metaloproteínas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Subtilisina/metabolismo , Compostos de Sulfidrila/metabolismo , Elementos de Transição/metabolismo
10.
Appl Environ Microbiol ; 83(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003199

RESUMO

Pyrolysin from the hyperthermophilic archaeon Pyrococcus furiosus is the prototype of the pyrolysin family of the subtilisin-like serine protease superfamily (subtilases). It contains four inserts (IS147, IS29, IS27, and IS8) of unknown function in the catalytic domain. We performed domain deletions and showed that three inserts are either essential (IS147 and IS27) or important (IS8) for efficient maturation of pyrolysin at high temperatures, whereas IS29 is dispensable. The large insert IS147 contains Ca3 and Ca4, two calcium-binding Dx[DN]xDG motifs that are conserved in many pyrolysin-like proteases. Mutagenesis revealed that the Ca3 site contributes to enzyme thermostability and the Ca4 site is necessary for pyrolysin to fold into a maturation-competent conformation. Mature insert-deletion variants were characterized and showed that IS29 and IS8 contribute to enzyme activity and stability, respectively. In the presence of NaCl, pyrolysin undergoes autocleavage at two sites: one within IS29 and the other in IS27 Disrupting the ion pairs in IS27 and IS8 induces autocleavage in the absence of salts. Interestingly, autocleavage products combine noncovalently to form an active, nicked enzyme that is resistant to SDS and urea denaturation. Additionally, a single mutation in IS29 increases resistance to salt-induced autocleavage and further increases enzyme thermostability. Our results suggest that these extra structural elements play a crucial role in adapting pyrolysin to hyperthermal environments.IMPORTANCE Pyrolysin-like proteases belong to the subtilase superfamily and are characterized by large inserts and long C-terminal extensions; however, the role of the inserts in enzyme function is unclear. Our results demonstrate that four inserts in the catalytic domain of hyperthermostable pyrolysin contribute to the folding, maturation, stability, and activity of the enzyme at high temperatures. The modification of extra structural elements in pyrolysin-like proteases is a promising strategy for modulating global structure stability and enzymatic activity of this class of protease.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/genética , Domínio Catalítico/genética , Estabilidade Enzimática/genética , Temperatura Alta , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Serina Endopeptidases/química , Serina Endopeptidases/genética , Sequência de Aminoácidos , Proteínas Arqueais/efeitos dos fármacos , Sítios de Ligação , Cálcio/química , Elementos de DNA Transponíveis , Ativação Enzimática , Ensaios Enzimáticos , Escherichia coli/genética , Deleção de Genes , Genes Arqueais , Cinética , Modelos Moleculares , Mutagênese , Alinhamento de Sequência , Análise de Sequência de Proteína , Serina Endopeptidases/efeitos dos fármacos , Serina Proteases/química , Cloreto de Sódio/farmacologia , Subtilisina/química
11.
Anal Biochem ; 534: 86-90, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28732585

RESUMO

The use of enzymes in organic solvents has considerably widened their repertoire of applications. Such low water containing media also offer the possibility of carrying out enzymatic reactions at higher temperatures and enhancing reaction yields. The utility of such preparations is limited by the damage caused to the protein structure during freeze-drying. This work investigates the result of exposing the proteolytic enzyme subtilisin to high temperature in low water containing n-octane on its activity in aqueous and non-aqueous media. Exposing subtilisin at 90 °C for 5 h led to 18-fold improvement in its transesterification activity even at the normal assay temperature (37 °C) when compared with the untreated enzyme. The use of n-octane as the reaction medium was important as it helped to retain the three-dimensional architecture of the enzyme and should be considered while designing strategies for obtaining high activity preparations of other enzymes. Structural analysis using differential scanning fluorimetry showed that the enzyme lost its structure after heating in aqueous medium but retained it when heated in organic solvent. The simplicity and general applicability of the strategy should make it useful for obtaining highly active preparations of other enzymes as well.


Assuntos
Octanos/química , Subtilisina/metabolismo , Temperatura , Estabilidade Enzimática , Subtilisina/química
12.
Drug Discov Today Technol ; 26: 11-16, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29249237

RESUMO

The recent advancement of peptide macrocycles as promising therapeutics creates a need for novel methodologies for their efficient synthesis and (large scale) production. Within this context, due to the favorable properties of biocatalysts, enzyme-mediated methodologies have gained great interest. Enzymes such as sortase A, butelase 1, peptiligase and omniligase-1 represent extremely powerful and valuable enzymatic tools for peptide ligation, since they can be applied to generate complex cyclic peptides with exquisite biological activity. Therefore, the use of enzymatic strategies will effectively supplement the scope of existing chemical methodologies and will accelerate the development of future cyclic peptide therapeutics. The advantages and disadvantages of the different enzymatic methodologies will be discussed in this review.


Assuntos
Peptídeos/química , Catálise , Ciclização , Cisteína Endopeptidases/química , Subtilisina/química
13.
J Biol Chem ; 290(41): 24806-15, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26283788

RESUMO

Plants lack aspartate-specific cell death proteases homologous to animal caspases. Instead, a subtilisin-like serine-dependent plant protease named phytaspase shown to be involved in the accomplishment of programmed death of plant cells is able to hydrolyze a number of peptide-based caspase substrates. Here, we determined the substrate specificity of rice (Oryza sativa) phytaspase by using the positional scanning substrate combinatorial library approach. Phytaspase was shown to display an absolute specificity of hydrolysis after an aspartic acid residue. The preceding amino acid residues, however, significantly influence the efficiency of hydrolysis. Efficient phytaspase substrates demonstrated a remarkable preference for an aromatic amino acid residue in the P3 position. The deduced optimum phytaspase recognition motif has the sequence IWLD and is strikingly hydrophobic. The established pattern was confirmed through synthesis and kinetic analysis of cleavage of a set of optimized peptide substrates. An amino acid motif similar to the phytaspase cleavage site is shared by the human gastrointestinal peptide hormones gastrin and cholecystokinin. In agreement with the established enzyme specificity, phytaspase was shown to hydrolyze gastrin-1 and cholecystokinin at the predicted sites in vitro, thus destroying the active moieties of the hormones.


Assuntos
Oryza/enzimologia , Subtilisina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Morte Celular , Colecistocinina/metabolismo , Gastrinas/metabolismo , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Cinética , Oryza/citologia , Ligação Proteica , Especificidade por Substrato , Subtilisina/química
14.
Microb Cell Fact ; 15: 80, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27176475

RESUMO

BACKGROUND: Purified from the supernatant of Bacillus subtilis QK02 culture broth, Subtilisin QK-2 is a type of effective thrombolytic reagent that has great exploitable potential. However, the unbearable flavor that occurs with fermentation and the complicated methods that are required to obtain pure products limit the application of this enzyme. Lactic acid bacteria (LAB)-based delivery vehicles are promising as cheap and safe options for medicinal compounds. The secretory expression and surface display using LAB may popularize Subtilisin QK-2 more easily and conveniently with minimal adverse effects. RESULTS: Subtilisin QK-2 was expressed successfully in two forms using lactic acid bacteria. For the secretory expression in Lactococcus lactis, Subtilisin QK-2 was efficiently secreted into the culture using the promoter P nisA and signal peptide SPUsp. The expression levels were not different in L. lactis NZ9000 and NZ3900 without the effect of different selection markers. However, leaky expression was only detected in L. lactis NZ3900. The biological activity of this secreted Subtilisin QK-2 was enhanced by modulating the pH of medium to slightly alkaline during induction and by codon optimization of either the entire gene sequence (qk') or only the propeptide gene sequence (qkpro'). For surface display onto gram-positive enhancer matrix (GEM) particles, n LysM repeats from the C-terminal region of the major autolysin AcmA of L. lactis were fused to either the C-terminus (n = 1, 3, 5) or the N-terminus (n = 1) of the Subtilisin QK-2. These fusion proteins were secreted into the culture medium, and the QK-3LysM was able to bind to the surface of various LAB GEM particles without a loss of fibrinolytic activity. Furthermore, the binding capacity significantly increased with a higher concentration of QK-3LysM. Compared to the free-form Subtilisin QK-2, the QK-3LysM displayed on the surface of GEM particles was more stable in the simulated gastric juice. CONCLUSIONS: Combined with the safety and popularity of LAB, Subtilisin QK-2 may be easily applied worldwide to prevent and control thrombosis diseases.


Assuntos
Regulação Bacteriana da Expressão Gênica , Lactococcus lactis/enzimologia , Lactococcus lactis/genética , Subtilisina/genética , Subtilisina/metabolismo , Western Blotting , Códon , Fibrinólise , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas/genética , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Subtilisina/química
15.
J Pept Sci ; 22(10): 642-646, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27580849

RESUMO

Detailed studies comparing solid-supported l- or d-amino acid adhesion peptides based on the sequence KLHRIRA were performed. Stability towards proteases and levels of cellular adhesion to the otherwise inert surface of PEGA resin were compared by using fluorescently labelled peptides. A clear difference in the peptide stability towards cleavage by subtilisin, trypsin, or papain was observed. However, all of the on-bead peptides provided an optimal surface for cell adhesion and proliferation. In long-term experiments, these properties were still found to be similar on the resins modified either with l- or with d-amino acids and unaffected by the nature of their fluorescence labelling at either terminus. These results support that the more accessible l-amino acids can be utilized for cell adhesion experiments and confirm the nonspecific interaction mechanism of cell binding to these peptides on the bead surface. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Adesivos/síntese química , Aminoácidos/química , Peptídeos/síntese química , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Adesivos/farmacologia , Sequência de Aminoácidos , Aminoácidos/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Humanos , Papaína/química , Peptídeos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Estabilidade Proteica , Proteólise , Técnicas de Síntese em Fase Sólida , Coloração e Rotulagem , Estereoisomerismo , Subtilisina/química , Tripsina/química
16.
J Biol Chem ; 289(9): 6041-53, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24429289

RESUMO

Collagen is an insoluble protein that widely distributes in the extracellular matrix of marine animals. Collagen degradation is an important step in the marine nitrogen cycle. However, the mechanism of marine collagen degradation is still largely unknown. Here, a novel subtilisin-like collagenolytic protease, myroicolsin, which is secreted by the deep sea bacterium Myroides profundi D25, was purified and characterized, and its collagenolytic mechanism was studied. Myroicolsin displays low identity (<30%) to previously characterized subtilisin-like proteases, and it contains a novel domain structure. Protein truncation indicated that the Pro secretion system C-terminal sorting domain in the precursor protein is involved in the cleavage of the N-propeptide, and the linker is required for protein folding during myroicolsin maturation. The C-terminal ß-jelly roll domain did not bind insoluble collagen fiber, suggesting that myroicolsin may degrade collagen without the assistance of a collagen-binding domain. Myroicolsin had broad specificity for various collagens, especially fish-insoluble collagen. The favored residue at the P1 site was basic arginine. Scanning electron microscopy and atomic force microscopy, together with biochemical analyses, confirmed that collagen fiber degradation by myroicolsin begins with the hydrolysis of proteoglycans and telopeptides in collagen fibers and fibrils. Myroicolsin showed strikingly different cleavage patterns between native and denatured collagens. A collagen degradation model of myroicolsin was proposed based on our results. Our study provides molecular insight into the collagen degradation mechanism and structural characterization of a subtilisin-like collagenolytic protease secreted by a deep sea bacterium, shedding light on the degradation mechanism of deep sea sedimentary organic nitrogen.


Assuntos
Proteínas de Bactérias/química , Colágeno/química , Flavobacteriaceae/enzimologia , Água do Mar/microbiologia , Subtilisina/química , Microbiologia da Água , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Colágeno/metabolismo , Flavobacteriaceae/genética , Dados de Sequência Molecular , Subtilisina/genética , Subtilisina/metabolismo
17.
PLoS Pathog ; 9(2): e1003165, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23408892

RESUMO

Spores are the major transmissive form of the nosocomial pathogen Clostridium difficile, a leading cause of healthcare-associated diarrhea worldwide. Successful transmission of C. difficile requires that its hardy, resistant spores germinate into vegetative cells in the gastrointestinal tract. A critical step during this process is the degradation of the spore cortex, a thick layer of peptidoglycan surrounding the spore core. In Clostridium sp., cortex degradation depends on the proteolytic activation of the cortex hydrolase, SleC. Previous studies have implicated Csps as being necessary for SleC cleavage during germination; however, their mechanism of action has remained poorly characterized. In this study, we demonstrate that CspB is a subtilisin-like serine protease whose activity is essential for efficient SleC cleavage and C. difficile spore germination. By solving the first crystal structure of a Csp family member, CspB, to 1.6 Å, we identify key structural domains within CspB. In contrast with all previously solved structures of prokaryotic subtilases, the CspB prodomain remains tightly bound to the wildtype subtilase domain and sterically occludes a catalytically competent active site. The structure, combined with biochemical and genetic analyses, reveals that Csp proteases contain a unique jellyroll domain insertion critical for stabilizing the protease in vitro and in C. difficile. Collectively, our study provides the first molecular insight into CspB activity and function. These studies may inform the development of inhibitors that can prevent clostridial spore germination and thus disease transmission.


Assuntos
Clostridioides difficile/química , Clostridioides difficile/fisiologia , Infecções por Clostridium/microbiologia , Clostridium perfringens/química , Clostridium perfringens/fisiologia , Serina Proteases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Clostridium perfringens/enzimologia , Clostridium perfringens/genética , Humanos , Modelos Moleculares , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína , Serina Proteases/química , Serina Proteases/genética , Esporos Bacterianos/enzimologia , Esporos Bacterianos/fisiologia , Subtilisina/química , Subtilisina/genética , Subtilisina/metabolismo
18.
J Bone Miner Metab ; 33(1): 30-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24557631

RESUMO

Estrogenic compounds include endogenous estrogens such as estradiol as well as soybean isoflavones, such as daidzein and its metabolite equol, which are known phytoestrogens that prevent osteoporosis in postmenopausal women. Indeed, mineralization of MC3T3-E1 cells, a murine osteoblastic cell line, was significantly decreased in medium containing fetal bovine serum treated with charcoal-dextran to deplete endogenous estrogens, but estradiol and these soybean isoflavones dose-dependently restored the differentiation of MC3T3-E1 cells; equol was tenfold more effective than daidzein. These differentiation-promoting effects were inhibited by the addition of fulvestrant, which is a selective downregulator of estrogen receptors. Analysis of the expression pattern of bone-related genes by reverse transcription PCR (RT-PCR)/quantitative real-time PCR (qRT-PCR), which focused on responsiveness to the estrogen stimuli, revealed that the transcription of PACE4, a subtilisin-like proprotein convertase, was tightly linked with the differentiation of MC3T3-E1 cells induced by estrogen stimuli. Moreover, treatment with RNAi of PACE4 in MC3T3-E1 cells resulted in a drastic decrease of mineralization in the presence of estrogen stimuli. These results strongly suggest that PACE4 participates in bone formation at least in osteoblast differentiation, and estrogen receptor-mediated stimuli induce osteoblast differentiation through the upregulation of PACE4 expression.


Assuntos
Estrogênios/metabolismo , Osteoblastos/citologia , Pró-Proteína Convertases/metabolismo , Subtilisina/química , Células 3T3 , Animais , Osso e Ossos/metabolismo , Diferenciação Celular , Carvão Vegetal/química , Condrócitos/citologia , Meios de Cultura/química , Dextranos/química , Estradiol/análogos & derivados , Estradiol/química , Feminino , Fulvestranto , Isoflavonas/química , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glycine max , Transcrição Gênica
19.
J Enzyme Inhib Med Chem ; 30(6): 867-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25643757

RESUMO

Can one infer the amino acids of the enzymes that are responsible for the stability or the level of the catalytic activity by computationally experimenting on the inhibited enzyme in the enzyme-inhibitor complex? In this article, we answer this question positively both by designing molecular dynamics simulations and by devising coarse-grained methodologies on the subtilisin serine protease. Both methodologies are based on the cross-correlations of the fluctuations of the residues, obtained either by monitoring the trajectories from the simulation or by constructing the inverse Laplacian of the elastic network model, of the complex. A perturbation scanning is applied to the complex using these correlations. The results indicate that the two methods almost point out the same regions on the flexible of the enzyme. These regions are: (i) 50-61, (ii) 155-164 and (iii) 192-194, all of which are designated to be important by experimental studies in the literature.


Assuntos
Simulação de Dinâmica Molecular , Subtilisina/química , Subtilisina/metabolismo , Estabilidade Enzimática , Subtilisina/antagonistas & inibidores
20.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1115-23, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699655

RESUMO

A microcrystalline suspension of Bacillus lentus subtilisin (Savinase) produced during industrial large-scale production was analysed by X-ray powder diffraction (XRPD) and X-ray single-crystal diffraction (MX). XRPD established that the bulk microcrystal sample representative of the entire production suspension corresponded to space group P212121, with unit-cell parameters a = 47.65, b = 62.43, c = 75.74 Å, equivalent to those for a known orthorhombic crystal form (PDB entry 1ndq). MX using synchrotron beamlines at the Diamond Light Source with beam dimensions of 20 × 20 µm was subsequently used to study the largest crystals present in the suspension, with diffraction data being collected from two single crystals (∼20 × 20 × 60 µm) to resolutions of 1.40 and 1.57 Å, respectively. Both structures also belonged to space group P2(1)2(1)2(1), but were quite distinct from the dominant form identified by XRPD, with unit-cell parameters a = 53.04, b = 57.55, c = 71.37 Šand a = 52.72, b = 57.13, c = 65.86 Å, respectively, and refined to R = 10.8% and Rfree = 15.5% and to R = 14.1% and Rfree = 18.0%, respectively. They are also different from any of the forms previously reported in the PDB. A controlled crystallization experiment with a highly purified Savinase sample allowed the growth of single crystals of the form identified by XRPD; their structure was solved and refined to a resolution of 1.17 Šwith an R of 9.2% and an Rfree of 11.8%. Thus, there are at least three polymorphs present in the production suspension, albeit with the 1ndq-like microcrystals predominating. It is shown how the two techniques can provide invaluable and complementary information for such a production suspension and it is proposed that XRPD provides an excellent quality-control tool for such suspensions.


Assuntos
Bacillus/enzimologia , Difração de Pó/métodos , Subtilisina/química , Microscopia de Força Atômica , Modelos Moleculares , Estrutura Terciária de Proteína , Subtilisina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA