Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(32): e2311552, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38501866

RESUMO

The activation of persulfates to degrade refractory organic pollutants is a hot issue in advanced oxidation right now. Here, it is reported that single-atom Fe-incorporated carbon nitride (Fe-CN-650) can effectively activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. Through some characterization techniques and DFT calculation, it is proved that Fe single atoms in Fe-CN-650 exist mainly in the form of Fe-N3O1 coordination, and Fe-N3O1 exhibited better affinity for PMS than the traditional Fe-N4 structure. The degradation rate constant of SMX in the Fe-CN-650/PMS system reached 0.472 min-1, and 90.80% of SMX can still be effectively degraded within 10 min after five consecutive recovery cycles. The radical quenching experiment and electrochemical analysis confirm that the pollutants are mainly degraded by two non-radical pathways through 1O2 and Fe(IV)═O induced at the Fe-N3O1 sites. In addition, the intermediate products of SMX degradation in the Fe-CN-650/PMS system show toxicity attenuation or non-toxicity. This study offers valuable insights into the design of carbon-based single-atom catalysts and provides a potential remediation technology for the optimum activation of PMS to disintegrate organic pollutants.


Assuntos
Antibacterianos , Ferro , Peróxidos , Peróxidos/química , Ferro/química , Antibacterianos/química , Antibacterianos/farmacologia , Sulfametoxazol/química , Nitrilas/química , Oxirredução
2.
Environ Sci Technol ; 58(23): 10322-10333, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38822809

RESUMO

The antibiotic sulfamethoxazole (SMX) undergoes direct phototransformation by sunlight, constituting a notable dissipation process in the environment. SMX exists in both neutral and anionic forms, depending on the pH conditions. To discern the direct photodegradation of SMX at various pH levels and differentiate it from other transformation processes, we conducted phototransformation of SMX under simulated sunlight at pH 7 and 3, employing both transformation product (TP) and compound-specific stable isotope analyses. At pH 7, the primary TPs were sulfanilic acid and 3A5MI, followed by sulfanilamide and (5-methylisoxazol-3-yl)-sulfamate, whereas at pH 3, a photoisomer was the dominant product, followed by sulfanilic acid and 3A5MI. Isotope fractionation patterns revealed normal 13C, 34S, and inverse 15N isotope fractionation, which exhibited significant differences between pH 7 and 3. This indicates a pH-dependent transformation process in SMX direct phototransformation. The hydrogen isotopic composition of SMX remained stable during direct phototransformation at both pH levels. Moreover, there was no variation observed in 33S between the two pH levels, indicating that the 33S mass-independent process remains unaffected by changes in pH. The analysis of main TPs and single-element isotopic fractionation suggests varying combinations of bond cleavages at different pH values, resulting in distinct patterns of isotopic fractionation. Conversely, dual-element isotope values at different pH levels did not significantly differ, indicating cleavage of several bonds in parallel. Hence, prudent interpretation of dual-element isotope analysis in these systems is warranted. These findings highlight the potential of multielement compound-specific isotope analysis in characterizing pH-dependent direct phototransformation of SMX, thereby facilitating the evaluation of its natural attenuation through sunlight photolysis in the environment.


Assuntos
Sulfametoxazol , Sulfametoxazol/química , Concentração de Íons de Hidrogênio , Luz Solar , Fotólise
3.
Environ Sci Technol ; 58(1): 915-924, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38088029

RESUMO

Naturally occurring iron (Fe) minerals have been proved to activate persulfate (PS) to generate reactive species, but the role of soil-inherent Fe minerals in activating PS as well as the underlying mechanisms remains poorly understood. Here, we investigated sulfamethoxazole (SMX) degradation by PS in two Fe-rich soils and one Fe-poor soil. Unlike with the radical-dominant oxidation processes in Fe-poor soil, PS was effectively activated through nonradical pathways (i.e., surface electron-transfer) in Fe-rich soils, accounting for 68.4%-85.5% of SMX degradation. The nonradical mechanism was evidenced by multiple methods, including electrochemical, in situ Raman, and competition kinetics tests. Inherent Fe-based minerals, especially those containing Fe(II) were the crucial activators of PS in Fe-rich soils. Compared to Fe(III) minerals, Fe(II) minerals (e.g., ilmenite) were more liable to form Fe(II) mineral-PS* complexes to initiate the nonradical pathways, oxidizing adjacent SMX via electron transfer. Furthermore, mineral structural Fe(II) was the dominant component to coordinate such a direct oxidation process. After PS oxidation, low-crystalline Fe minerals in soils were transformed into high-crystalline Fe phases. Collectively, our study shows that soil-inherent Fe minerals can effectively activate PS in Fe-rich soils, so the addition of exogenous iron might not be required for PS-based in situ chemical oxidation. Outcomes also provide new insights into the activation mechanisms when persulfate is used for the remediation of contaminated soils.


Assuntos
Solo , Sulfametoxazol , Sulfametoxazol/análise , Sulfametoxazol/química , Compostos Férricos , Ferro/química , Minerais/química , Oxirredução , Compostos Ferrosos/química
4.
Environ Sci Technol ; 58(39): 17510-17519, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39297779

RESUMO

The application of 222 nm far-UVC irradiation for degrading organic micropollutants in water shows promise. Nitrate (NO3-), found in nearly all water bodies, can significantly impact the performance of 222 nm far-UVC-driven systems. This work was the first to investigate the effect of NO3- on sulfamethoxazole (SMX) photodegradation at 222 nm, finding that NO3- significantly enhances SMX degradation in different dissociated forms. Besides the hydroxyl radical (•OH), reactive nitrogen species (RNS) also played important roles in SMX degradation. With increasing NO3- concentration, the RNS contribution to SMX degradation decreased from 25.7 to 8.6% at pH 3 but increased from 1.5 to 24.7% at pH 7, since the deprotonated SMX with electron-rich groups reacted more easily with RNS. The transformation mechanisms of SMX involving isomerization, bond cleavage, hydroxylation, nitrosation, and nitration processes were proposed. 15N isotope labeling experiments showed that the RNS-induced nitrated products even became the major products of SMX in the 222 nm far-UVC/NO3- system at pH 7 and exhibited a higher toxicity than SMX itself. Further research is necessary to avoid or eliminate these toxic byproducts. This study provides valuable insights for guiding the utilization of 222 nm far-UVC for treating antibiotics in NO3--containing water.


Assuntos
Nitratos , Espécies Reativas de Nitrogênio , Sulfametoxazol , Sulfametoxazol/química , Nitratos/química , Espécies Reativas de Nitrogênio/química , Raios Ultravioleta , Poluentes Químicos da Água/química , Fotólise
5.
Environ Res ; 261: 119647, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032618

RESUMO

A Co3Mn-LDHs and carbon nanotube (Co3Mn-LDHs/CNT) composite catalyst was constructed for permonosulfate (PMS) activation and degrading sulfamethoxazole (SMX) under Vis light irradiation. The introduction of CNTs into Co3Mn-LDHs facilitate the exciton dissociation and carrier migration, and the e- and h+ were readily separated from Co3Mn-LDHs/CNT in the photocatalysis process, which promoted the production rate of reactive oxygen species (ROS), so the Co3Mn-LDHs + Vis + PMS system exhibited better activity with an SMX degradation ratio of 61.25% than those of Co3Mn-LDHs + Vis system (42.30%) and Co3Mn-LDHs + PMS system (48.30%). After 10 cycles, the degradation rate of SMX only decreased by 7.16%, indicating the good reusability of the Co3Mn-LDHs/CNTs catalyst. The results of electron paramagnetic resonance (EPR) analysis and radical quenching experiments demonstrated that that the SO4•- played crucial role for SMX removal in Co3Mn-LDHs/CNTs + Vis + PMS system, and both e- and h+ made an important contribution to activating PMS to produce ROS. Overall, this work provided an excellent catalyst for photo-assisted PMS activation and suggested the activation mechanism for organic pollutant remediation.


Assuntos
Nanotubos de Carbono , Sulfametoxazol , Sulfametoxazol/química , Nanotubos de Carbono/química , Catálise , Poluentes Químicos da Água/química , Hidróxidos/química , Sulfatos/química
6.
Environ Res ; 257: 119294, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823609

RESUMO

Conventional electrochemical activation of peroxymonosulfate (PMS) is not very cost-effective and practical by the excessive input of energy. The electricity generated by photosynthetic microalgae fuel cells (MFCs) is utilized to activate PMS, which would achieve the combination of green bioelectricity and advanced oxidation processes for sustainable pollutants degradation. In this study, a novel dual-chamber of MFCs was constructed by using microalgae as anode electron donor and PMS as cathode electron acceptor, which was operating under both close-circuit and open-circuit conditions. Under close-circuit condition, 1-12 mM PMS in cathode was successfully in situ activated, where 32.00%-99.83% of SMX was removed within 24 h, which was about 1.21-1.78 times of that in the open-circuit of MFCs. Meanwhile, a significant increase in bioelectricity generation in MFCs was observed after the accumulation of microalgae biomass (4.65-5.37 mg/L), which was attributed to the efficient electron separation and transfer. Furthermore, the electrochemical analysis demonstrated that SMX or its products were functioned as electronic shuttles, facilitating the electrochemical reaction and altering the electrical capacitance. The quenching experiments and voltage output results reflected that complex active radical (SO4⋅-, ⋅OH, and 1O2) were involved in SMX removal. Seven degradation products of SMX were detected and S-N bond cleavage was the main degradation pathway. Predicted toxicity values calculated by ECOSAR program showed that all the products were less toxic or nontoxic. Finally, the density functional theory (DFT) calculations revealed that the O and N atoms on SMX were more susceptible to electrophilic reactions, which were more vulnerable to be attacked by reactive species. This study provided new insights into the activation of PMS by bioelectricity for SMX degradation, proposing the mechanisms for PMS activation and degradation sites of SMX.


Assuntos
Fontes de Energia Bioelétrica , Sulfametoxazol , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Sulfametoxazol/química , Peróxidos/química , Microalgas/efeitos dos fármacos , Microalgas/química , Oxirredução
7.
Environ Res ; 259: 119532, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38960360

RESUMO

The development of effective photocatalysts for the reduction of Cr(VI) and the degradation of antibiotics remains a challenge. The present work reports the development of a novel heterojunction composite material, BiOCl/BaTiO3@Co-BDC-MOF (BOC/BTO@Co-MOF), based on solvothermal techniques. To characterize the surface and bulk features of the material, techniques such as FE-SEM, HR-TEM, BET/BJH, XPS, FT-IR, p-XRD, and UV-Vis-DRS were used. Based on the results, the BiOCl/BaTiO3 nanocomposites are uniformly dispersed on the rod-shaped Co-BDC MOF, resulting in a layered texture on the surface. A further advantage of the composite structure is the strong interfacial enhancement facilitating the separation of photoexcited electron-hole pairs. Also, compared to its pristine counterparts, the heterostructure material exhibited excellent surface area and pore properties. The photocatalytic efficiency towards reduction and degradation of Cr(VI)/SMX pollutants were evaluated by optimizing various analytical parameters, such as pH, catalytic loading concentrations, analyte concentration, and scavenger role. The specially designed BOC/BTO@Co-MOF composite achieved a 96.5% Cr(VI) reduction and 98.2% SMX degradation under 60.0-90.0 min of visible light illumination at pH 3.0. This material is highly reusable and has a six-time recycling potential. The findings of this study contribute to a better understanding of the efficient decontamination of inorganic and organic pollutants in water purification systems.


Assuntos
Cromo , Sulfametoxazol , Titânio , Poluentes Químicos da Água , Cromo/química , Titânio/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Sulfametoxazol/química , Catálise , Bismuto/química , Compostos de Bário/química , Estruturas Metalorgânicas/química , Nanocompostos/química , Processos Fotoquímicos
8.
Environ Res ; 249: 118343, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311202

RESUMO

Antibiotics and available chlorine coexist in multiple aquatic environments, and thus antibiotics and their chlorinated disinfection by-products (Cl-DBPs) have been a great concern for the nature and human health. Herein, the degradation intermediates and transformation pathways of sulfamethoxazole (SMX) Cl-DBPs in constructed wetlands (CWs) were investigated. A total of five SMX Cl-DBPs and their twenty degradation products in CWs was identified in this study. SMX and its Cl-DBPs influenced the biodegradation rather than the adsorption process in CWs. S1 atom on sulfonyl group of SMX had the strongest nucleophilicity, and was most vulnerable for nucleophilic attack. N5 and N7 on amino groups, and C17 on the methyl group had great electronegativity, and were susceptible to electrophilic reactions. S1-N5 and S1-C8 bonds of SMX are the most prone to cleavage, followed by C11-N5, C16-C17, and C12-N7. The chlorination of SMX mainly occurred at S1, N5, and N7 sites, and went through S-C cleavage, S-N hydrolysis, and desulfonation. The biodegradation of SMX Cl-DBPs in CWs mainly occurred at S1, N5, N7, C8, and C17 sites, and went through processes including oxidation of methyl, hydroxyl and amino groups, desulfonation, decarboxylation, azo bond cleavage, benzene ring cleavage, ß-oxidation of fatty acids under the action of coenzymes. Over half of the SMX Cl-DBPs had greater bioaccumulation potential than their parent SMX, but the environmental risk of SMX Cl-DBPs was effectively reduced through the degradation by CWs.


Assuntos
Desinfecção , Halogenação , Sulfametoxazol , Poluentes Químicos da Água , Áreas Alagadas , Sulfametoxazol/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Desinfetantes/química , Biodegradação Ambiental , Purificação da Água/métodos
9.
Environ Res ; 252(Pt 3): 119029, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38685299

RESUMO

Antibiotics released into water sources pose significant risks to both human health and the environment. This comprehensive review meticulously examines the ecotoxicological impacts of three prevalent antibiotics-ciprofloxacin, metronidazole, and sulfamethoxazole-on the ecosystems. Within this framework, our primary focus revolves around the key remediation technologies: adsorption and advanced oxidation processes (AOPs). In this context, an array of adsorbents is explored, spanning diverse classes such as biomass-derived biosorbents, graphene-based adsorbents, MXene-based adsorbents, silica gels, carbon nanotubes, carbon-based adsorbents, metal-organic frameworks (MOFs), carbon nanofibers, biochar, metal oxides, and nanocomposites. On the flip side, the review meticulously examines the main AOPs widely employed in water treatment. This includes a thorough analysis of ozonation (O3), the photo-Fenton process, UV/hydrogen peroxide (UV/H2O2), TiO2 photocatalysis, ozone/UV (O3/UV), radiation-induced AOPs, and sonolysis. Furthermore, the review provides in-depth insights into equilibrium isotherm and kinetic models as well as prospects and challenges inherent in these cutting-edge processes. By doing so, this review aims to empower readers with a profound understanding, enabling them to determine research gaps and pioneer innovative treatment methodologies for water contaminated with antibiotics.


Assuntos
Antibacterianos , Ciprofloxacina , Oxirredução , Sulfametoxazol , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Sulfametoxazol/química , Adsorção , Antibacterianos/química , Purificação da Água/métodos , Águas Residuárias/química , Ciprofloxacina/química , Metronidazol/química
10.
Ecotoxicol Environ Saf ; 278: 116333, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701652

RESUMO

Discharging pharmaceutically active drugs into water and wastewater has become a significant environmental threat. Traditional methods are unable to effectively remove these compounds from wastewater, so it is necessary to search for more effective methods. This study investigates the potential of MIL-101(Cr)-NH2 as a preferable and more effective adsorbent for the adsorption and removal of pharmaceutically active compounds from aqueous solutions. By utilizing its large porosity, high specific surface area, and high stability, the structural and transport properties of three pharmaceutically active compounds naproxen (NAP), diclofenac (DIC) and sulfamethoxazole (SMX)) studied using molecular dynamics simulation. The results indicate that the MIL-101(Cr)-NH2 adsorbent is suitable for removing drug molecules from aqueous solutions, with maximum adsorption capacities of 697.75 mg/g for naproxen, 704.99 mg/g for diclofenac, and 725.51 mg/g for sulfamethoxazole.


Assuntos
Diclofenaco , Estruturas Metalorgânicas , Simulação de Dinâmica Molecular , Naproxeno , Sulfametoxazol , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Naproxeno/química , Estruturas Metalorgânicas/química , Sulfametoxazol/química , Diclofenaco/química , Adsorção , Purificação da Água/métodos , Águas Residuárias/química , Preparações Farmacêuticas/química
11.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928394

RESUMO

Sulfonamides can be effectively removed from wastewater through a photocatalytic process. However, the mineralization achieved by this method is a long-term and expensive process. The effect of shortening the photocatalytic process is the partial degradation and formation of intermediates. The purpose of this study was to evaluate the sensitivity and transformation of photocatalytic reaction intermediates in aerobic biological processes. Sulfadiazine and sulfamethoxazole solutions were used in the study, which were irradiated in the presence of a TiO2-P25 catalyst. The resulting solutions were then aerated after the addition of river water or activated sludge suspension from a commercial wastewater treatment plant. The reaction kinetics were determined and fifteen products of photocatalytic degradation of sulfonamides were identified. Most of these products were further transformed in the presence of activated sludge suspension or in water taken from the river. They may have been decomposed into other organic and inorganic compounds. The formation of biologically inactive acyl derivatives was observed in the biological process. However, compounds that are more toxic to aquatic organisms than the initial drugs can also be formed. After 28 days, the sulfamethoxazole concentration in the presence of activated sludge was reduced by 66 ± 7%. Sulfadiazine was practically non-biodegradable under the conditions used. The presented results confirm the advisability of using photocatalysis as a process preceding biodegradation.


Assuntos
Biodegradação Ambiental , Sulfonamidas , Poluentes Químicos da Água , Cinética , Sulfonamidas/química , Sulfonamidas/metabolismo , Catálise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Titânio/química , Sulfametoxazol/química , Sulfametoxazol/metabolismo , Fotólise , Águas Residuárias/química , Esgotos/química , Sulfadiazina/química , Sulfadiazina/metabolismo , Purificação da Água/métodos
12.
J Environ Manage ; 369: 122382, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232326

RESUMO

The global attention towards waste management and valorization has led to significant interest in recovering valuable components from sludge incineration ash (SIA) for the synthesis of functional environmental materials. In this study, the SIA was converted to an S-doped Fe2+-zeolite type catalyst (FZA) for the treatment of emerging contaminants (ECs), exemplified by sulfamethoxazole (SMX). Results demonstrate that FZA effectively catalyzed the activation of peracetic acid (PAA), achieving a remarkable degradation of 99.8% under optimized conditions. Mechanistic investigations reveal that the FZA/PAA system can generate ·OH, 1O2, O2·ï¼, and Fe(Ⅳ), with ·OH playing a dominant role in ECs degradation. Additionally, the doped S facilitated electrochemical performance, Fe2+ regeneration and fixation in FZA. Practical application elucidated that the FZA/PAA system can work in complex environments to degrade various ECs without generating high-toxicity ingredients. Overall, valorizing SIA to FZA provides dual achievement in waste management and ECs removal.


Assuntos
Incineração , Esgotos , Sulfametoxazol , Zeolitas , Sulfametoxazol/química , Zeolitas/química , Esgotos/química , Catálise , Gerenciamento de Resíduos/métodos , Ferro/química
13.
J Environ Manage ; 358: 120742, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593733

RESUMO

The extensive use of pharmaceuticals has raised growing concerns regarding their presence in surface waters. High concentrations of sulfamethoxazole (SMX) and lincomycin (LIN), as commonly prescribed antibiotics, persist in various wastewaters and surface waters, posing risks to public health and the environment. Biochar derived from accessible biowaste, like activated sludge biomass, offers a sustainable and eco-friendly solution to mitigate antibiotic release into water systems. This study investigates the effectiveness of H3PO4-modified activated sludge-based biochar (PBC) synthesized through microwave (MW) heating for the adsorption of SMX and LIN antibiotics. The synthesis parameters of PBC were optimized using a central composite design considering MW power, time, and H3PO4 concentration. Characterization results validate the efficacy of the synthesis process creating a specific surface area of 365 m2/g, and well-developed porosity with abundant oxygen-containing functional groups. Batch and dynamic adsorption experiments were piloted to assess the adsorption performance of PBC in single and binary antibiotic systems. Results show that PBC exhibits a higher affinity for SMX rather than LIN, with maximum adsorption capacities of 45.6 mg/g and 26.6 mg/g, respectively. Based on kinetic studies chemisorption is suggested as the primary mechanism for SMX and LIN removal. Equilibrium studies show a strong agreement with the Redlich-Peterson isotherm, suggesting a composite adsorption mechanism with a greater probability of multilayer adsorption for both antibiotics. Hydrogen bonding and π-π electron sharing are suggested as the prevailing adsorption mechanisms of SMX and LIN on the modified biochar. Furthermore, a dynamic adsorption system was replicated using a fixed bed column setup, demonstrating effective removal of SMX and LIN from pure water and real wastewater samples using PBC-loaded hydrogel beads (PBC-B). These findings serve as crucial support for upcoming studies concerning the realistic application of sludge-based biochar in the removal of antibiotics from water systems.


Assuntos
Biomassa , Carvão Vegetal , Lincomicina , Esgotos , Sulfametoxazol , Lincomicina/química , Sulfametoxazol/química , Carvão Vegetal/química , Adsorção , Esgotos/química , Poluentes Químicos da Água/química , Cinética , Águas Residuárias/química , Antibacterianos/química
14.
Langmuir ; 39(16): 5679-5688, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37040602

RESUMO

Emerging pollutants, such as sulfonamide antibiotics and pharmaceuticals, have been widely detected in water and soils, posing serious environmental and human health concerns. Thus, it is urgent and necessary to develop a technology for removing them. In this work, a hydrothermal carbonization method was used to prepare the hydrochars (HCs) by pine sawdust with different temperatures. To improve the physicochemical properties of HCs, phosphoric acid (H3PO4) and hydrogen peroxide (H2O2) were used to modify these HCs, and they were referred to as PHCs and HHCs, respectively. The adsorption of sulfamethoxazole (SMX) and carbamazepine (CBZ) by pristine and modified HCs was investigated systematically. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicated that the H2O2/H3PO4 modification led to the formation of a disordered carbon structure and abundant pores. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy results suggested that carboxyl (-COOH) and hydroxyl (-OH) functional groups of HCs increased after modification, which is the main reason for the higher sorption of SMX and CBZ on H3PO4/H2O2-modified HCs when compared with pristine HCs. In addition, the positive correlation between -COOH/C=O and logKd of these two chemicals also suggested that oxygen-containing functional groups played a crucial role in the sorption of SMX and CBZ. The strong hydrophobic interaction and π-π interaction between CBZ and pristine/modified HCs resulted in its higher adsorption when compared with SMX. The results of this study provide a novel perspective on the investigation of adsorption mechanisms and environmental behaviors for organic contaminants by pristine and modified HCs.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Humanos , Sulfametoxazol/química , Peróxido de Hidrogênio , Carvão Vegetal/química , Oxigênio , Adsorção , Carbamazepina/análise , Carbamazepina/química , Poluentes Químicos da Água/análise , Cinética
15.
Environ Sci Technol ; 57(27): 10127-10134, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37315045

RESUMO

Herein, we developed an electrochemical filtration system for effective and selective abatement of nitrogenous organic pollutants via peroxymonosulfate (PMS) activation. Highly conductive and porous copper nanowire (CuNW) networks were constructed to serve simultaneously as catalyst, electrode, and filtration media. In one demonstration of the CuNW network's capability, a single pass through a CuNW filter (τ < 2 s) degraded 94.8% of sulfamethoxazole (SMX) at an applied potential of -0.4 V vs SHE. The exposed {111} crystal plane of CuNW triggered atomic hydrogen (H*) generation on sites, which contributed to effective PMS reduction. Meanwhile, with the involvement of SMX, a Cu-N bond was formed by the interactions between the -NH2 group of SMX and the Cu sites of CuNW, accompanied by the redox cycling of Cu2+/Cu+, which was facilitated by the applied potential. The different charges of the active Cu sites made it easier to withdraw electrons and promote PMS oxidation. Theoretical calculations and experimental results were combined to suggest a mechanism for pollution abatement with CuNW networks. The results showed that system efficacy for the degradation of a wide array of nitrogenous pollutants was robust across a broad range of solution pH and complex aqueous matrices. The flow-through operation of the CuNW filter outperformed conventional batch electrochemistry due to convection-enhanced mass transport. This study provides a new strategy for environmental remediation by integrating state-of-the-art material science, advanced oxidation processes, and microfiltration technology.


Assuntos
Poluentes Ambientais , Nanofios , Poluentes Químicos da Água , Cobre , Nitrogênio , Poluentes Químicos da Água/análise , Peróxidos/química , Sulfametoxazol/química
16.
Ecotoxicol Environ Saf ; 259: 115009, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182302

RESUMO

Microplastics and antibiotics are two common pollutants in the ocean. However, due to changes of salinity and temperature in the ocean, their interaction are significantly different from that of fresh water, and the mechanism remains unclear. Here, the interactions of sulfamethoxazole (SMZ) and microplastics were studied at different temperatures and salinities. The saturation adsorption capacity of SMZ in polypropylene (PP), polyethylene (PE), styrene (PS), polyvinyl chloride (PVC), and synthetic resins (ABS) were highest at the temperature of 20 °C, with 0.118 ± 0.002 mg·g-1, 0.106 ± 0.004 mg·g-1, 0.083 ± 0.002 mg·g-1, 0.062 ± 0.007 mg·g-1 and 0.056 ± 0.003 mg·g-1, respectively. The effect of temperature reduction is more significant than temperature rise. The intraparticle diffusion model is appropriate to PP, when film diffusion model suited for PS. The salinity has a more significant effect than temperature on different microplastics, due to the electrostatic adsorption and iron exchange. With the increase in salinity from 0.05% to 3.5%, the adsorption capacity of microplastics on SMZ fell by 53.3 ± 5%, and there was no discernible difference of various microplastics. The hydrogen bond and π-π conjugation of microplastics play an important role in the adsorption of SMZ. These findings further deepen the understanding of the interaction between microplastics and antibiotics in the marine environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/química , Sulfametoxazol/química , Temperatura , Salinidade , Polipropilenos/química , Polietileno/química , Antibacterianos , Adsorção , Poluentes Químicos da Água/análise
17.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446780

RESUMO

Removing antibiotics from water is critical to prevent the emergence and spread of antibiotic resistance, protect ecosystems, and maintain the effectiveness of these vital medications. The combination of ozone and electrocoagulation in wastewater treatment provides enhanced removal of contaminants, improved disinfection efficiency, and increased overall treatment effectiveness. In this work, the removal of sulfamethoxazole (SMX) from an aqueous solution using an ozone-electrocoagulation (O-EC) system was optimized and modeled. The experiments were designed according to the central composite design. The parameters, including current density, reaction time, pH, and ozone dose affecting the SMX removal efficiency of the OEC system, were optimized using a response surface methodology. The results show that the removal process was accurately predicted by the quadric model. The numerical optimization results show that the optimum conditions were a current density of 33.2 A/m2, a time of 37.8 min, pH of 8.4, and an ozone dose of 0.7 g/h. Under these conditions, the removal efficiency reached 99.65%. A three-layer artificial neural network (ANN) with logsig-purelin transfer functions was used to model the removal process. The data predicted by the ANN model matched well to the experimental data. The calculation of the relative importance showed that pH was the most influential factor, followed by current density, ozone dose, and time. The kinetics of the SMX removal process followed the first-order kinetic model with a rate constant of 0.12 (min-1). The removal mechanism involves various processes such as oxidation and reduction on the surface of electrodes, the reaction between ozone and ferrous ions, degradation of SMX molecules, formation of flocs, and adsorption of species on the flocs. The results obtained in this work indicate that the O-EC system is a potential approach for the removal of antibiotics from water.


Assuntos
Ozônio , Poluentes Químicos da Água , Sulfametoxazol/química , Ozônio/química , Ecossistema , Poluentes Químicos da Água/química , Antibacterianos , Eletrocoagulação , Redes Neurais de Computação , Água
18.
J Environ Sci (China) ; 124: 688-698, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182174

RESUMO

It has been documented that organic contaminants can be degraded by hydroxyl radicals (•OH) produced by the activation of H2O2 by Fe(II)-bearing clay. However, the interfacial electron transfer reactions between structural Fe(II) and H2O2 for •OH generation and its effects on contaminant remediation are unclear. In this study, we first investigated the relation between •OH generation sites and sulfamethoxazole (SMX) degradation by activating H2O2 using nontronite with different reduction extents. SMX (5.2-16.9 µmol/L) degradation first increased and then decreased with an increase in the reduction extent of nontronite from 22% to 62%, while the •OH production increased continually. Passivization treatment of edge sites and structural variation results revealed that interfacial electron transfer reactions between Fe(II) and H2O2 occur at both the edge and basal plane. The enhancement on basal plane interfacial electron transfer reactions in a high reduction extent rNAu-2 leads to the enhancement on utilization efficiencies of structural Fe(II) and H2O2 for •OH generation. However, the •OH produced at the basal planes is less efficient in oxidizing SMX than that of at edge sites. Oxidation of SMX could be sustainable in the H2O2/rNAu-2 system through chemically reduction. The results of this study show the importance role of •OH generation sites on antibiotic degradation and provide guidance and potential strategies for antibiotic degradation by Fe(II)-bearing clay minerals in H2O2-based treatments.


Assuntos
Peróxido de Hidrogênio , Sulfametoxazol , Antibacterianos , Argila , Elétrons , Compostos Ferrosos , Minerais/química , Oxirredução , Sulfametoxazol/química
19.
Molecules ; 27(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558093

RESUMO

The preparation of anodic TiO2 nanotube layers has been performed using electrochemical anodization of Ti foil for 4 h at different voltages (from 0 V to 80 V). In addition, a TiO2 thin layer has been also prepared using the sol-gel method. All the photocatalysts have been characterized by XRD, SEM, and DRS to investigate the crystalline phase composition, the surface morphology, and the optical properties, respectively. The performance of the photocatalyst has been assessed in versatile photocatalytic reactions including the reduction of N2O gas and the oxidation of aqueous sulfamethoxazole. Due to their high specific surface area and excellent charge carriers transport, anodic TiO2 nanotube layers have exhibited the highest N2O conversion rate (up to 10% after 22 h) and the highest degradation extent of sulfamethoxazole (about 65% after 4 h) under UVA light. The degradation mechanism of sulfamethoxazole has been investigated by analyzing its transformation products by LC-MS and the predominant role of hydroxyl radicals has been confirmed. Finally, the efficiency of the anodic TiO2 nanotube layer has been tested in real wastewater reaching up to 45% of sulfamethoxazole degradation after 4 h.


Assuntos
Nanotubos , Águas Residuárias , Sulfametoxazol/química , Catálise , Nanotubos/química , Titânio/química
20.
Water Sci Technol ; 86(3): 568-583, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960837

RESUMO

Biochar has been reported as an excellent adsorbent for antibiotics, but the application faces the challenges of complicated separation. Here, MgFe2O4-magnetic biochars (MBCs) derived from corncob were synthesized at 300 °C to remove sulfamethoxazole (SMX) and tetracycline (TC) simultaneously. The characteristics of MBC300 had a high magnetic intensity. MBC300 had the maximum adsorption capacity of SMX with 50.75 mg/g and the high adsorption amount of TC with 120.36 mg/g respectively, which were 4.49 and 6.48 times those of BC300. MBC300 had the advantage of energy conservation compared with MBC450 and MBC600. The better fitting kinetics and isotherms indicated that the SMX and TC sorption onto MBC300 were governed by chemisorption. FTIR and XPS analyses confirmed that the SMX sorption onto MBC300 was dominated by polar interactions and π-π electron donor-acceptor interactions (π-π EDA). Furthermore, the TC sorption was involved in pore filling, π-π EDA, H-bonds, and surface complexation. MBC300 presented effective adsorption of SMX and TC over a wide range of pH. The competition between antibiotics and coexisting pollutants of dissolved organic matter (DOM), Ca2+, CO32-, and PO43- significantly inhibited the sorption. The results indicate that MBC300 is an effective and promising adsorbent to treat SMX and TC simultaneously.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Adsorção , Antibacterianos/química , Carvão Vegetal/química , Cinética , Fenômenos Magnéticos , Sulfametoxazol/química , Tetraciclina , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA