Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.468
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 120, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664812

RESUMO

BACKGROUND: The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS: Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION: Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.


Assuntos
Esterases , Metionina , Esterases/metabolismo , Esterases/genética , Metionina/metabolismo , Xilanos/metabolismo , Sulfato de Amônio/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Hypocreales/metabolismo , Hypocreales/enzimologia , Hypocreales/genética , Lignina/metabolismo , Acetilação
2.
Nature ; 556(7699): 89-94, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29620730

RESUMO

The formation of condensed (compacted) protein phases is associated with a wide range of human disorders, such as eye cataracts, amyotrophic lateral sclerosis, sickle cell anaemia and Alzheimer's disease. However, condensed protein phases have their uses: as crystals, they are harnessed by structural biologists to elucidate protein structures, or are used as delivery vehicles for pharmaceutical applications. The physiochemical properties of crystals can vary substantially between different forms or structures ('polymorphs') of the same macromolecule, and dictate their usability in a scientific or industrial context. To gain control over an emerging polymorph, one needs a molecular-level understanding of the pathways that lead to the various macroscopic states and of the mechanisms that govern pathway selection. However, it is still not clear how the embryonic seeds of a macromolecular phase are formed, or how these nuclei affect polymorph selection. Here we use time-resolved cryo-transmission electron microscopy to image the nucleation of crystals of the protein glucose isomerase, and to uncover at molecular resolution the nucleation pathways that lead to two crystalline states and one gelled state. We show that polymorph selection takes place at the earliest stages of structure formation and is based on specific building blocks for each space group. Moreover, we demonstrate control over the system by selectively forming desired polymorphs through site-directed mutagenesis, specifically tuning intermolecular bonding or gel seeding. Our results differ from the present picture of protein nucleation, in that we do not identify a metastable dense liquid as the precursor to the crystalline state. Rather, we observe nucleation events that are driven by oriented attachments between subcritical clusters that already exhibit a degree of crystallinity. These insights suggest ways of controlling macromolecular phase transitions, aiding the development of protein-based drug-delivery systems and macromolecular crystallography.


Assuntos
Aldose-Cetose Isomerases/química , Cristalização/métodos , Nanopartículas/química , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/ultraestrutura , Sulfato de Amônio/química , Sulfato de Amônio/farmacologia , Sítios de Ligação , Microscopia Crioeletrônica , Géis/química , Géis/farmacologia , Microscopia Eletrônica de Transmissão , Mutagênese Sítio-Dirigida , Nanopartículas/ultraestrutura , Transição de Fase/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Streptomyces/enzimologia
3.
Environ Res ; 247: 118194, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224934

RESUMO

To attenuate the risk of Cadmium(Cd) contamination and the deterioration of soil quality caused by excessive nitrogen fertilizer application in greenhouse, a composite organic amendment (spend mushroom substrate and its biochar) was prepared to remedy Cd(II) ions contaminated soil (0.6 mg/kg) under different N fertilizer levels. The results showed that in the absence of a composite organic amendment, the soil pH decreased by 0.15 when the N level increased from 0.1 to 0.8 g N⋅kg-1. However, the pH increased by 0.86-0.91, the exchangeable Cd(II) ions content decreased by 26.0%-26.7%, the microbial biomass increased by 34.34%-164.46%, and the number of copies of the AOB gene increased by 13-20 times with the application of composite organic amendment and the increase of N level. Both Pearson correlation analysis and Mantel test demonstrated the reduction in Cd(II) ions availability, the restoration of soil properties and the increase in microbial biomass all contributed to the composite organic amendment, which is of importance for soil remediation under excessive N fertilizer.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Sulfato de Amônio/análise , Sulfatos , Fertilizantes/análise , Poluentes do Solo/análise , Solo/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-38632039

RESUMO

The mutant strain Halomonas bluephagenesis (TDH4A1B5P) was found to produce PHA under low-salt, non-sterile conditions, but the yield was low. To improve the yield, different nitrogen sources were tested. It was discovered that urea was the most effective nitrogen source for promoting growth during the stable stage, while ammonium sulfate was used during the logarithmic stage. The growth time of H. bluephagenesis (TDH4A1B5P) and its PHA content were significantly prolonged by the presence of sulfate ions. After 64 hr in a 5-L bioreactor supplemented with sulfate ions, the dry cell weight (DCW) of H. bluephagenesis weighed 132 g/L and had a PHA content of 82%. To promote the growth and PHA accumulation of H. bluephagenesis (TDH4A1B5P), a feeding regimen supplemented with nitrogen sources and sulfate ions with ammonium sodium sulfate was established in this study. The DCW was 124 g/L, and the PHA content accounted for 82.3% (w/w) of the DCW, resulting in a PHA yield of 101 g/L in a 30-L bioreactor using the optimized culture strategy. In conclusion, stimulating H. bluephagenesis (TDH4A1B5P) to produce PHA is a feasible and suitable strategy for all H. bluephagenesis.


Assuntos
Reatores Biológicos , Meios de Cultura , Halomonas , Nitrogênio , Poli-Hidroxialcanoatos , Sulfatos , Halomonas/metabolismo , Halomonas/crescimento & desenvolvimento , Halomonas/genética , Sulfatos/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Meios de Cultura/química , Nitrogênio/metabolismo , Sulfato de Amônio/metabolismo , Ureia/metabolismo , Fermentação
5.
Pestic Biochem Physiol ; 199: 105804, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458671

RESUMO

Chemical fertilizer and pesticide are necessary in agriculture, which have been frequently used, sometimes even at the same time or in combination. To understand the interactions of them could be of significance for better use of these agrochemicals. In this study, the influence of chemical fertilizers (urea, potassium sulfate, ammonium sulfate and superphosphate) on the control efficacy and environmental behavior of abamectin was investigated, which could be applied in soil for controlling nematodes. In laboratory assays, ammonium sulfate at 1 and 2 g/L decreased the LC50 values of abamectin to Meloidogyne incognita from 0.17 mg/L to 0.081 and 0.043 mg/L, indicating it could increase the contact toxicity. In greenhouse trial, ammonium sulfate at 1000 mg/kg increased the control efficacy of abamectin by 1.37 times. Meanwhile, the combination of abamectin with ammonium sulfate could also promote the tomato seedling growth as well as the defense-related enzyme activity under M. incognita stress. The persistence and mobility of abamectin in soil were significantly elevated by ammonium sulfate, which could prolong and promote the control efficacy against nematodes. These results could provide reference for reasonable use of abamectin and fertilizers so as to increase the control efficacy and minimize the environmental risks.


Assuntos
Fertilizantes , Ivermectina/análogos & derivados , Tylenchoidea , Animais , Solo , Sulfato de Amônio
6.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611831

RESUMO

In addition to traditional use in fermented dairy products, S. thermophilus also exhibits anti-inflammatory properties both in live and heat-inactivated form. Recent studies have highlighted that some hydrolysates from surface proteins of S. thermophilus could be responsible partially for overall anti-inflammatory activity of this bacterium. It was hypothesized that anti-inflammatory activity could also be attributed to peptides resulting from the digestion of intracellular proteins of S. thermophilus. Therefore, total intracellular proteins (TIP) from two phenotypically different strains, LMD-9 and CNRZ-21N, were recovered by sonication followed by ammonium sulphate precipitation. The molecular masses of the TIP of both strains were very close to each other as observed by SDS-PAGE. The TIP were fractionated by size exclusion fast protein liquid chromatography to obtain a 3-10 kDa intracellular protein (IP) fraction, which was then hydrolysed with pancreatic enzyme preparation, Corolase PP. The hydrolysed IP fraction from each strain exhibited anti-inflammatory activity by modulating pro-inflammatory mediators, particularly IL-1ß in LPS-stimulated THP-1 macrophages. However, a decrease in IL-8 secretion was only observed with hydrolysed IP fraction from CNRZ-21N, indicating that strain could be an important parameter in obtaining active hydrolysates. Results showed that peptides from the 3-10 kDa IP fraction of S. thermophilus could therefore be considered as postbiotics with potential beneficial effects on human health. Thus, it can be used as a promising bioactive ingredient for the development of functional foods to prevent low-grade inflammation.


Assuntos
Proteínas de Membrana , Streptococcus thermophilus , Humanos , Sulfato de Amônio , Interleucina-1beta , Macrófagos
7.
Prep Biochem Biotechnol ; 54(1): 115-125, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37652437

RESUMO

Aqueous two-phase extraction (ATPE) has been extensively utilized for the extraction and separation of tiny-molecule substances as a new system (system with short-chain ethanol and inorganic salts). In this study, an innovative method of extracting anthocyanins from mulberry was developed, employing microwave-assisted extraction with ethanol/ammonium sulfate as a biphasic extractant. Response surface methodology (RSM) was utilized to optimize anthocyanin extraction conditions: 39% ethanol (w/w), 13% ammonium sulfate (w/w), and liquid-to-solid ratio of 45:1, microwave duration 3 min, microwave temperature 32 °C, and microwave power 480 Watt (W). High-performance liquid chromatography (HPLC) analysis demonstrated no significant differences in the structure of mulberry anthocyanins before and after MAATPE treatment, furthermore. The extraction behavior of MAATPE was due to hydrogen bonding, according to Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy analysis found that MAATPE damaged the cell structure via a microwave enhancement effect, which was more favorable to anthocyanin dissolution than standard extraction methods. The DPPH free radical scavenging rate of mulberry extracts at 0.5 mg/mL was higher than that of vitamin C (96.4 ± 0.76%), and the ABTS free radical scavenging rate (82.52 ± 2.13%) was close to that of vitamin C, indicating that MAATPE-derived mulberry extracts have good antioxidant activity.


Assuntos
Produtos Biológicos , Morus , Antocianinas/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Micro-Ondas , Frutas/química , Sulfato de Amônio , Água/química , Etanol/análise , Ácido Ascórbico , Radicais Livres/análise , Extratos Vegetais/química
8.
Molecules ; 29(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893489

RESUMO

Recovering valuable active substances from the by-products of agricultural processing is a crucial concern for scientific researchers. This paper focuses on the enrichment of soybean trypsin inhibitor (STI) from soybean whey wastewater using either ammonium sulfate salting or ethanol precipitation, and discusses their physicochemical properties. The results show that at a 60% ethanol content, the yield of STI was 3.983 mg/mL, whereas the yield was 3.833 mg/mL at 60% ammonium sulfate saturation. The inhibitory activity of STI obtained by ammonium sulfate salting out (A-STI) was higher than that obtained by ethanol precipitation (E-STI). A-STI exhibited better solubility than E-STI at specific temperatures and pH levels, as confirmed by turbidity and surface hydrophobicity measurements. Thermal characterization revealed that both A-STI and E-STI showed thermal transition temperatures above 90 °C. Scanning electron microscopy demonstrated that A-STI had a smooth surface with fewer pores, while E-STI had a rough surface with more pores. In conclusion, there was no significant difference in the yield of A-STI and E-STI (p < 0.05); however, the physicochemical properties of A-STI were superior to those of E-STI, making it more suitable for further processing and utilization. This study provides a theoretical reference for the enrichment of STI from soybean whey wastewater.


Assuntos
Glycine max , Inibidores da Tripsina , Águas Residuárias , Soro do Leite , Glycine max/química , Águas Residuárias/química , Soro do Leite/química , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Sulfato de Amônio/química , Precipitação Química , Concentração de Íons de Hidrogênio , Solubilidade , Interações Hidrofóbicas e Hidrofílicas , Temperatura
9.
BMC Biotechnol ; 23(1): 48, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924095

RESUMO

BACKGROUND: A lot of kitchen waste oil is produced every day worldwide, leading to serious environmental pollution. As one of the environmental protection methods, microorganisms are widely used treating of various wastes. Lipase, as one of the cleaning agents can effectively degrade kitchen waste oil. The composting process of pig carcasses produces many lipase producing microorganisms, rendering compost products an excellent source for isolating lipase producing microorganisms. To our knowledge, there are no reports isolating of lipase producing strains from the high temperature phase of pig carcass compost. METHODOLOGY: Lipase producing strains were isolated using a triglyceride medium and identified by 16S rRNA gene sequencing. The optimal fermentation conditions for maximum lipase yield were gradually optimized by single-factor tests. The extracellular lipase was purified by ammonium sulfate precipitation and Sephadex G-75 gel isolation chromatography. Amino acid sequence analysis, structure prediction, and molecular docking of the purified protein were performed. The pure lipase's enzymatic properties and application potential were evaluated by characterizing its biochemical properties. RESULTS: In this study, a lipase producing strain of Bacillus sp. ZF2 was isolated from pig carcass compost products, the optimal fermentation conditions of lipase: sucrose 3 g/L, ammonium sulfate 7 g/L, Mn2+ 1.0 mmol/L, initial pH 6, inoculum 5%, temperature 25 ℃, and fermentation time 48 h. After purification, the specific activity of the purified lipase reached 317.59 U/mg, a 9.78-fold improvement. Lipase had the highest similarity to the GH family 46 chitosanase and molecular docking showed that lipase binds to fat via two hydrogen bonds at Gln146 (A) and Glu203 (A). Under different conditions (temperature, metal ions, organic solvents, and surfactants), lipase can maintain enzymatic activity. Under different types of kitchen oils, lipase has low activity only for 'chicken oil', in treating other substrates, the enzyme activity can exceed 50%. CONCLUSIONS: This study reveals the potential of lipase for waste oil removal, and future research will be devoted to the application of lipase.


Assuntos
Compostagem , Suínos , Animais , Sulfato de Amônio , RNA Ribossômico 16S/genética , Simulação de Acoplamento Molecular , Concentração de Íons de Hidrogênio , Lipase/química , Temperatura
10.
Planta ; 257(3): 62, 2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36808312

RESUMO

MAIN CONCLUSION: Ammonium sulfate is well known to salt out proteins at high concentrations. The study revealed that it can serve to increase by 60% the total number of identified carbonylated proteins by LC-MS/MS. Protein carbonylation is a significant post-translational modification associated with reactive oxygen species signaling in animal and plant cells. However, the detection of carbonylated proteins involved in signaling is still challenging, as they only represent a small subset of the proteome in the absence of stress. In this study, we investigated the hypothesis that a prefractionation step with ammonium sulphate will improve the detection of the carbonylated proteins in a plant extract. For this, we extracted total protein from the Arabidopsis thaliana leaves and subjected the extract to stepwise precipitation with ammonium sulfate to 40%, 60%, and 80% saturation. The protein fractions were then analyzed by liquid chromatography-tandem mass spectrometry for protein identification. We found that all the proteins identified in the non-fractionated samples were also found in the prefractionated samples, indicating no loss was incurred during the prefractionation. About 45% more proteins were identified in the fractionated samples compared to the non-fractionated total crude extract. When the prefractionation steps were combined with the enrichment of carbonylated proteins labeled with a fluorescent hydrazide probe, several carbonylated proteins, which were unseen in the non-fractionated samples, became visible in the prefractionated samples. Consistently, the prefractionation method allowed to identify 63% more carbonylated proteins by mass spectrometry compared to the number of carbonylated proteins identified from the total crude extract without prefractionation. These results indicated that the ammonium sulfate-based proteome prefractionation can be used to improve proteome coverage and identification of carbonylated proteins from a complex proteome sample.


Assuntos
Arabidopsis , Proteoma , Animais , Sulfato de Amônio , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos
11.
Environ Sci Technol ; 57(48): 20074-20084, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37974434

RESUMO

Efflorescence of ammonium nitrate (AN) aerosols significantly impacts atmospheric secondary aerosol formation, climate, and human health. We investigated the effect of representative water-soluble organic compounds (WSOCs) (sucralose (SUC), glycerol (GLY), and citric acid (CA) on AN:WSOC aerosol efflorescence using vacuum Fourier transform infrared spectroscopy. Combining efflorescence relative humidity (ERH) measurements, heterogeneous nucleation rates, and model predictions, we found that aerosol viscosity, correlating with molecular diffusion, effectively predicted ERH variations among the AN:WSOC aerosols. WSOCs with higher viscosity (SUC and CA) hindered efflorescence, while GLY with a lower viscosity showed a minor effect. At a low AN:CA molar ratio (10:1), CA promoted ERH, likely due to CA crystallization. Increasing the droplet pH inhibited AN:CA aerosol efflorescence. In contrast, for AN:SUC and AN:GLY aerosols, efflorescence is pH-insensitive. With the addition of trivial sulfate, AN:SUC droplets exhibited two-stage efflorescence, coinciding with ammonium sulfate and AN efflorescence. Given the atmospheric abundance, the morphology, phase, and mixing state of nitrate aerosols are significant for atmospheric chemistry and physics. Our results suggest that AN:WSOCs aerosols can exist in the amorphous phase in the atmosphere, with efflorescence behavior depending on the aerosol composition, viscosity, pH, and the cation and anion interactions in a complex manner.


Assuntos
Nitratos , Água , Humanos , Nitratos/química , Água/química , Umidade , Sulfato de Amônio/química , Aerossóis , Concentração de Íons de Hidrogênio
12.
Mar Drugs ; 21(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37888454

RESUMO

Euglena gracilis is one of the few permitted edible microalgae. Considering consumer acceptance, E. gracilis grown heterotrophically with yellow appearances have wider food industrial applications such as producing meat analogs than green cells. However, there is much room to improve the protein content of heterotrophic culture cells. In this study, the effects of nitrogen sources, temperature, initial pH, and C/N ratios on the protein production of E. gracilis were evaluated under heterotrophic cultivation. These results indicated that ammonium sulfate was the optimal nitrogen source for protein production. The protein content of E. gracilis cultured by ammonium sulfate increased by 113% and 44.7% compared with that cultured by yeast extract and monosodium glutamate, respectively. The manipulation of the low C/N ratio further improved E. gracilis protein content to 66.10% (w/w), which was 1.6-fold of that in the C/N = 25 group. Additionally, amino acid analysis revealed that the nitrogen-to-protein conversion factor (NTP) could be affected by nitrogen sources. A superior essential amino acid index (EAAI) of 1.62 and a balanced amino acid profile further confirmed the high nutritional value of E. gracilis protein fed by ammonium sulfate. This study highlighted the vast potency of heterotrophic cultured E. gracilis as an alternative dietary protein source.


Assuntos
Euglena gracilis , Microalgas , Euglena gracilis/metabolismo , Microalgas/metabolismo , Sulfato de Amônio/metabolismo , Proteínas/metabolismo , Aminoácidos/metabolismo , Nitrogênio/metabolismo
13.
Pestic Biochem Physiol ; 197: 105681, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072538

RESUMO

Rhizoctonia solani is a widespread and devastating plant pathogenic fungus that infects many important crops. This pathogen causes tobacco target spot, a disease that is widespread in many tobacco-growing countries and is destructive to tobacco. To identify antagonistic microorganisms with biocontrol potential against this disease, we isolated Streptomyces strains from forest inter-root soil and screened a promising biocontrol strain, ZZ-21. Based on in vitro antagonism assays, ZZ-21 showed a significant inhibitory effect on R. solani and various other phytopathogens. ZZ-21 was identified as Streptomyces olivoreticuli by its phenotypic, genetic, physiological and biochemical properties. Complete genome sequencing revealed that ZZ-21 harbored numerous antimicrobial biosynthesis gene clusters. ZZ-21 significantly reduced the lesion length in detached inoculated leaf assays and reduced the disease index under greenhouse and field conditions. Based on an in vitro antagonistic assay of ZZ-21 culture, the strain exhibited an antifungal activity against R. solani in a dose-dependent manner. The culture filtrate could impair membrane integrity, possibly through membrane lipid peroxidation. ZZ-21 could secrete multiple extracellular enzymes and siderophores. According to a series of antifungal assays, the extracellular metabolites of ZZ-21 contained antimicrobial bioactive compounds composed of proteins/peptides extracted using ammonium sulfate precipitation, which were stable under stress caused by high temperature and protease K. The EC50 value for ammonium sulfate precipitation was determined to be 21.11 µg/mL in this study. Moreover, the proteins/peptides also exhibited biocontrol ability and were observed to alter the plasma membrane integrity of R. solani which were evaluated by biocontrol efficacy assays on detached tobacco leaves and PI staining. Overall, strain ZZ-21 shows the potential to be developed into a biopesticide against tobacco target spot disease.


Assuntos
Antifúngicos , Streptomyces , Antifúngicos/farmacologia , Sulfato de Amônio/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Rhizoctonia , Nicotiana , Peptídeos/farmacologia
14.
Bioprocess Biosyst Eng ; 46(9): 1303-1318, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392219

RESUMO

In this study, the cellular metabolic mechanisms regarding ammonium sulfate supplementation on erythromycin production were investigated by employing targeted metabolomics and metabolic flux analysis. The results suggested that the addition of ammonium sulfate stimulates erythromycin biosynthesis. Targeted metabolomics analysis uncovered that the addition of ammonium sulfate during the late stage of fermentation resulted in an augmented intracellular amino acid metabolism pool, guaranteeing an ample supply of precursors for organic acids and coenzyme A-related compounds. Therefore, adequate precursors facilitated cellular maintenance and erythromycin biosynthesis. Subsequently, an optimal supplementation rate of 0.02 g/L/h was determined. The results exhibited that erythromycin titer (1311.1 µg/mL) and specific production rate (0.008 mmol/gDCW/h) were 101.3% and 41.0% higher than those of the process without ammonium sulfate supplementation, respectively. Moreover, the erythromycin A component proportion increased from 83.2% to 99.5%. Metabolic flux analysis revealed increased metabolic fluxes with the supplementation of three ammonium sulfate rates.


Assuntos
Saccharopolyspora , Saccharopolyspora/metabolismo , Sulfato de Amônio , Fermentação , Eritromicina/farmacologia , Suplementos Nutricionais
15.
J Environ Manage ; 347: 119075, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769474

RESUMO

This study evaluated two pathways to recover the nitrogen-content of wastewater sludges as ammonium sulfate (AmS) for use as fertilizer. The first pathway entails sludge stabilization by hydrothermal liquefaction (HTL) followed by recovery of AmS from the resulting aqueous product by gas permeable membrane (GPM) separation. The second one entails stabilization of the sludges by anaerobic digestion (AD) followed by recovery of AmS from the resulting centrate by GPM separation. A bench-scale GPM reactor is shown to be capable of recovering >90% of N in the feed. Recoveries of NH3-N in the HTL-pathway ranged 96-100% in 5.5-7.5 h at mass removal rates of 0.2-0.3 g N/day, yielding 3.3-6.0 g AmS/L of feed. Recoveries of 98% were noted in the AD-pathway in 4 h at mass removal rates of 0.06-0.97 g N/day and a yield of 1.7-2.1 g AmS/L of feed. Inductively coupled plasma optical emission spectrometer analysis confirmed that both pathways yielded AmS meeting the US EPA and European region guidelines for land application. The GPM reactor enabled higher nitrogen-recoveries in the HTL-pathway than those reported for current practice of AD followed by ammonia stripping, ion exchange, reverse osmosis, and/or struvite precipitation (96-100% vs. 50-90%). A process model for the GPM reactor is validated using performance data on three different feedstocks.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Sulfato de Amônio , Estudos de Viabilidade , Nitrogênio , Reatores Biológicos
16.
Anal Biochem ; 659: 114925, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181866

RESUMO

Urease is an enzyme of historical importance in the field of biochemistry, generally microbial and plant urease is the primary sources of urease. The significant applications of urease enzyme are found to be foremost in food industry, medical equipment's and biosensors. In this work, urease has been extracted from Jack bean meal using ammonium sulphate and acetone precipitation. A significant amount of urease was precipitated and concentrated at 60% saturated solution of ammonium sulphate. The obtained precipitates were dissolved in 50 mM phosphate buffer (pH 8) after centrifugation, and subjected to sodium dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to determine the molecular weight of urease. Results obtained from the SDS-PAGE were validated using Zymography. Anion exchange chromatography was used to separate the desired protein at different pH (7.0, 7.5 and 8.0). The eluted fractions were assessed for urease activity using phenol-nitroprusside dependent ammonia release assay. Under these assay conditions, one unit of urease activity was calibrated as the amount of enzyme liberating 1 µM of NH3 from urea per unit time. The eluted fraction and Zymography analysis show the purified urease observed at 90 kDa and activity of purified urease, respectively. The obtained results for specific activity (173.67Units mg) and % purification (99.71%) for urease has been compared with the available literature, which are found to be in close relation with existing results. The proposed method is a novel approach which has recorded highest % purification and specific activity. Furthermore, it can be suitable for extracting urease from jack bean source for various industrial applications.


Assuntos
Plantas , Urease , Urease/química , Sulfato de Amônio , Eletroforese em Gel de Poliacrilamida , Plantas/metabolismo , Ureia
17.
Arch Microbiol ; 204(7): 383, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689128

RESUMO

The control of a pyrimidine ribonucleotide salvage pathway in the bacterium Pseudomonas oleovorans ATCC 8062 was studied. This bacterium is important for its ability to synthesize polyesters as well as for its increasing clinical significance in humans. The pyrimidine salvage pathway enzymes pyrimidine nucleotide N-ribosidase and cytosine deaminase were investigated in P. oleovorans ATCC 8062 under selected culture conditions. Initially, the effect of carbon source on the two pyrimidine salvage enzymes in ATCC 8062 cells was examined and it was observed that cell growth on the carbon source succinate generally produced higher enzyme activities than did glucose or glycerol as a carbon source when ammonium sulfate served as the nitrogen source. Using succinate as a carbon source, growth on dihydrouracil as nitrogen source caused a 1.9-fold increase in the pyrimidine nucleotide N-ribosidase activity and a 4.8-fold increase in cytosine deaminase activity compared to the ammonium sulfate-grown cells. Growth of ATCC 8062 cells on cytosine or dihydrothymine as a nitrogen source elevated deaminase activity by more than double that observed for ammonium sulfate-grown cells. The findings indicated a relationship between this pyrimidine salvage pathway and the pyrimidine reductive catabolic pathway since growth on dihydrouracil appeared to increase the degradation of the pyrimidine ribonucleotide monophosphates to uracil. The uracil produced could be degraded by the pyrimidine base reductive catabolic pathway to ß-alanine as a source of nitrogen. This investigation could prove helpful to future work examining the metabolic relationship between pyrimidine salvage pathways and pyrimidine reductive catabolism in pseudomonads.


Assuntos
Nucleosídeo Desaminases , Pseudomonas oleovorans , Sulfato de Amônio , Carbono , Citosina Desaminase , Humanos , Nitrogênio , Nucleosídeo Desaminases/metabolismo , Nucleotídeos de Pirimidina , Pirimidinas/metabolismo , Ribonucleotídeos , Ácido Succínico/metabolismo , Uracila/metabolismo
18.
Arch Microbiol ; 204(11): 673, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255493

RESUMO

A lectin PCL, from Purpureocillium lilacinum a saprophytic, filamentous fungus was purified from the crude extract of the mycelia using 70% ammonium sulphate precipitation followed by affinity chromatography on mucin-Sepharose 4 B column. PCL is a monomer with an apparent molecular mass of 18.5 kDa as revealed by SDS-PAGE under both reducing and non-reducing conditions. PCL is a blood group non-specific lectin and has highest affinity towards chitin, mucin, asialomucin, fetuin with a MIC of 0.15 µg/mL and also recognizes L-fucose, galactose, lactose, N-acetyl galactosamine, hyaluronic acid. PCL is stable up to 60 °C and within the pH range 4-8. To understand its role in pathogenesis, effect of PCL was evaluated on human corneal epithelial cells (HCECs). PCL showed strong glycan mediated binding to HCECs and PCL showed proinflammatory response at lower concentrations by stimulating secretion of IL-6, 8. In contrast PCL at higher concentrations revealed opposite effect of HCECs growth inhibition. All these results collectively support the involvement of PCL in mediating host pathogen interactions possibly leading to pathogenesis. In addition, considering the entomopathogenic effect of Purpureocillium lilacinum, PCL may be attributed for this beneficiary effect, which needs to be explored.


Assuntos
Antígenos de Grupos Sanguíneos , Ceratite , Humanos , Lectinas , Fucose , Galactose , Lactose , Sulfato de Amônio/metabolismo , Sefarose , Ácido Hialurônico , Interleucina-6 , Ceratite/microbiologia , Quitina/metabolismo , Fetuínas , Mucinas/metabolismo , Misturas Complexas , Galactosamina
19.
Environ Sci Technol ; 56(7): 3941-3951, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312301

RESUMO

Brown carbon aerosol in the atmosphere contain light-absorbing chromophores that influence the optical scattering properties of the particles. These chromophores may be hydrophobic, such as PAHs, or water soluble, such as nitroaromatics, imidazoles, and other conjugated oxygen-rich molecules. Water-soluble chromophores are expected to exist in aqueous solution in the presence of sufficient water and will exhibit physical properties (e.g., size, refractive index, and phase morphology) that depend on the environmental relative humidity (RH). In this work, we characterize the RH-dependent properties of 4-nitrocatechol (4-NC) and its mixtures with ammonium sulfate, utilizing a single-particle levitation platform coupled with Mie resonance spectroscopy to probe the size, real part of the complex refractive index (RI), and phase morphology of individual micron-sized particles. We measure the hygroscopic growth properties of pure 4-NC and apply mixing rules to characterize the growth of mixtures with ammonium sulfate. We report the RI at 589 nm for these samples as a function of RH and explore the wavelength dependence of the RI at non-absorbing wavelengths. The real part of the RI at 589 nm was found to vary in the range 1.54-1.59 for pure 4-NC from 92.5 to 75% RH, with an estimated pure component RI of 1.70. The real part of the RI was also measured for mixtures of AS and 4-NC and ranged from 1.39 to 1.51 depending on the component ratio and RH. We went on to characterize phase transitions in mixed particles, identifying the onset RH of liquid-liquid phase separation (LLPS) and efflorescence transitions. Mixtures showed LLPS in the range of 85-76% RH depending on the molar ratio, while efflorescence typically fell between 22 and 42% RH. Finally, we characterized the imaginary part of the complex RI using an effective oscillator model to capture the wavelength-dependent absorption properties of the system.


Assuntos
Carbono , Água , Aerossóis/química , Sulfato de Amônio/química , Água/química , Molhabilidade
20.
Environ Sci Technol ; 56(22): 15398-15407, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36306431

RESUMO

Inorganic species always coexist with organic materials in atmospheric particles and may influence the heterogeneous oxidation of organic aerosols. However, very limited studies have explored the role of the inorganics in the chemical evolution of organic species in mixed aerosols. This study examines the heterogeneous oxidation of glutaric acid-ammonium sulfate and 1,2,6-hexanetriol-ammonium sulfate aerosols by hydroxyl radicals (OH) under varied organic mass fractions (forg) and relative humidity in a flow tube reactor. Coupling the oxidation kinetics and product measurements with kinetic model simulations, we found that under both low relative humidity (RH, 30-35%) and high RH conditions (85%), the decreased forg from 0.7 to 0.2 accelerates the oxidation of the organic materials by a factor of up to 11. We suggest that the faster oxidation kinetics under low-RH conditions is due to full or partial phase separation, with the organics greatly enriched at the particle outer region, while enhanced "salting-out" of the organics and OH adsorption caused by higher inorganics could explain the observations under high-RH conditions. Analysis of the oxidation products reveals that the dilution of organics by the inorganic salts and corresponding water uptake under high-RH conditions will favor alkoxy radical fragmentation by a factor of 3-4 and inhibit its secondary chain propagation chemistry. Our results suggest that atmospheric organic aerosol oxidation lifetime and composition are strongly impacted by the coexistent inorganic salts.


Assuntos
Sais , Cinética , Sulfato de Amônio/química , Umidade , Sais/química , Aerossóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA