Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.211
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 71(3): 332-342, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38709251

RESUMO

An increased intracellular Ca2+ concentration ([Ca2+]i) is a key trigger for pulmonary arterial smooth muscle cell (PASMC) proliferation and contributes greatly to pulmonary hypertension (PH). Extracellular Ca2+ influx via a store-operated Ca2+ channel, termed store-operated Ca2+ entry (SOCE), is a crucial mechanism for [Ca2+]i increase in PASMCs. Calcium release-activated calcium modulator (Orai) proteins, consisting of three members (Orai1-3), are the main components of the store-operated Ca2+ channel. Sodium houttuyfonate (SH) is a product of the addition reaction of sodium bisulfite and houttuynin and has antibacterial, antiinflammatory, and other properties. In this study, we assessed the contributions of Orai proteins to monocrotaline (MCT)-enhanced SOCE, [Ca2+]i, and cell proliferation in PASMCs and determined the effect of SH on MCT-PH and the underlying mechanism, focusing on Orai proteins, SOCE, and [Ca2+]i in PASMCs. Our results showed that: 1) Orai1 and Orai2 were selectively upregulated in the distal pulmonary arteries and the PASMCs of MCT-PH rats; 2) knockdown of Orai1 or Orai2 reduced SOCE, [Ca2+]i, and cell proliferation without affecting their expression in PASMCs in MCT-PH rats; 3) SH significantly normalized the characteristic parameters in a dose-dependent manner in the MCT-PH rat model; and 4) SH decreased MCT-enhanced SOCE, [Ca2+]i, and PASMC proliferation via Orai1 or Orai2. These results indicate that SH likely exerts its protective role in MCT-PH by inhibiting the Orai1,2-SOCE-[Ca2+]i signaling pathway.


Assuntos
Proliferação de Células , Hipertensão Pulmonar , Monocrotalina , Miócitos de Músculo Liso , Proteína ORAI1 , Proteína ORAI2 , Artéria Pulmonar , Sulfitos , Animais , Monocrotalina/toxicidade , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/tratamento farmacológico , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Sulfitos/farmacologia , Ratos , Masculino , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Proteína ORAI2/metabolismo , Ratos Sprague-Dawley , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Alcanos
2.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33624017

RESUMO

Whole genome bisulfite sequencing is currently at the forefront of epigenetic analysis, facilitating the nucleotide-level resolution of 5-methylcytosine (5mC) on a genome-wide scale. Specialized software have been developed to accommodate the unique difficulties in aligning such sequencing reads to a given reference, building on the knowledge acquired from model organisms such as human, or Arabidopsis thaliana. As the field of epigenetics expands its purview to non-model plant species, new challenges arise which bring into question the suitability of previously established tools. Herein, nine short-read aligners are evaluated: Bismark, BS-Seeker2, BSMAP, BWA-meth, ERNE-BS5, GEM3, GSNAP, Last and segemehl. Precision-recall of simulated alignments, in comparison to real sequencing data obtained from three natural accessions, reveals on-balance that BWA-meth and BSMAP are able to make the best use of the data during mapping. The influence of difficult-to-map regions, characterized by deviations in sequencing depth over repeat annotations, is evaluated in terms of the mean absolute deviation of the resulting methylation calls in comparison to a realistic methylome. Downstream methylation analysis is responsive to the handling of multi-mapping reads relative to mapping quality (MAPQ), and potentially susceptible to bias arising from the increased sequence complexity of densely methylated reads.


Assuntos
Benchmarking/métodos , Metilação de DNA/genética , Epigenômica/métodos , Fragaria/genética , Genoma de Planta , Poaceae/genética , Software , Sulfitos/farmacologia , Thlaspi/genética , Mapeamento Cromossômico/métodos , DNA de Plantas/efeitos dos fármacos , DNA de Plantas/genética , Epigênese Genética , Alinhamento de Sequência/métodos , Sequenciamento Completo do Genoma/métodos
3.
Food Microbiol ; 109: 104121, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309433

RESUMO

In oenology, there is a growing demand by consumers for wines produced with less inputs (such as sulphite, frequently used for microbial control). Emerging control methods for managing microorganisms in wine are widely studied. In this study, the efficiency of pulsed light (PL) treatment was investigated. A drop-platted system was used to evaluate the impact of three PL operational parameters: the fluence per flash, the total fluence and the flash frequency. Fluence per flash appeared to be a key parameter prior to total fluence, thus demonstrating the importance of the effect of peak voltage during PL treatments. The efficiency of PL treatment was assessed on 198 strains distributed amongst fourteen yeast species related to wine environment, and an important variability in PL response was observed. Brettanomyces bruxellensis strains were strongly sensitive to PL, with intraspecific variation. PL was then applied to red wines inoculated with 9 strains of B. bruxellensis, Saccharomyces cerevisiae and Lachancea thermotolerans. Results confirmed interspecific response variability and a higher sensitivity of B. bruxellensis species to PL. Wine treatments with a total fluence of 22.8 J cm-2 resulted in more than 6 log reduction for different B. bruxellensis strains. These results highlight the potential of PL for wine microbial stabilization.


Assuntos
Brettanomyces , Vinho , Vinho/análise , Microbiologia de Alimentos , Saccharomyces cerevisiae , Sulfitos/farmacologia
4.
Neurochem Res ; 47(11): 3331-3343, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35895153

RESUMO

In this study, the effects of different doses of sulfite on learning, memory, and long term potentiation as well as the relationship of these effects with acetylcholine pathways, Arc and synapsin 1 levels were investigated. Sixty male Wistar albino rats were randomly divided into three groups as control, S100, and S260. Sodiummetabisulfite (S100;100 mg/kg/day, S260;260 mg/kg/day) was given by oral administration. Behavioral changes were evaluated. After long term potentiation recordings from the perforant pathway-dentate gyrus synapses, animals were sacrificed. Acetylcholinesterase activity, choline acetyltransferase activity, acetylcholine level as well as Arc and Synapsin 1 expressions were analyzed on the hippocampi. The total distance and average velocity values in the open field and Morris water maze tests increased in the sulfite groups, while the discrimination index in the novel object recognition test decreased compared to controls. Acetylcholine levels and choline acetyltransferase activity were also increased in the sulfite groups, while acetylcholinesterase activity was decreased compared to controls. Sulfite intake attenuated long term potentiation in the hippocampus. It has been observed that the excitatory postsynaptic potential slope and population spike amplitude of the field potentials obtained in sulfite groups decreased. This impairment was accompanied by a decrease in Arc and synapsin 1 expressions. In conclusion, it has been shown that sulfite intake in adults impairs learning and memory, possibly mediated by the cholinergic pathway. It is considered that the decrement in Arc and synapsin expressions may play a role in the mechanism underlying the impairment in long term potentiation caused by toxicity.


Assuntos
Acetilcolina , Giro Denteado , Acetilcolina/farmacologia , Acetilcolinesterase , Animais , Colina O-Acetiltransferase , Colinérgicos/farmacologia , Hipocampo , Potenciação de Longa Duração , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Wistar , Sulfitos/farmacologia , Sinapsinas
5.
Cell Mol Neurobiol ; 41(8): 1707-1714, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32804313

RESUMO

The present study explored the modulating apoptosis effect of hydrogen sulfide (H2S) in subarachnoid hemorrhage (SAH) rats and its exact mechanism. A rat SAH model established by intravascular puncturing was used for the present study. After giving NaHS (donor of H2S), an L-type calcium channel opener (Bay K8644), or a calcium channel agonist (nifedipine), the neurological function of the rats, associated pathological changes, and expression of apoptosis-related proteins (Bcl-2, Bax, and caspase-3) and microtubule-associated protein (MAP-2) were examined. The concentration of H2S and expression of cystathionine beta synthase in the hippocampus changed upon early brain injury (EBI) after SAH. Compared with the SAH group, the neurological function of the rats and microstructure observed by electron microscopy were better in the SAH + NaHS group and SAH + Bay K8644 group. It was observed that apoptosis was more obvious in the SAH group than in the control group and was alleviated in the SAH + NaHS group. Furthermore, the alleviating effect of NaHS was partially weakened by nifedipine, indicating that the effect of anti-apoptosis in H2S might be correlated with the calcium channel. The expression of Bax and caspase-3 was elevated, while the expression of Bcl-2 decreased in the SAH group but improved in the SAH + NaHS and SAH + Bay K8644 group. Compared with the SAH + NaHS group, the expression of pro-apoptotic proteins was higher in the SAH + NaHS + nifedipine group. Therefore, upon EBI following SAH, the H2S system plays an important neurological protective effect by modulating the function of the L-type calcium channel and inhibiting apoptosis.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sulfeto de Hidrogênio/metabolismo , Neuroproteção/fisiologia , Hemorragia Subaracnóidea/metabolismo , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Lesões Encefálicas/prevenção & controle , Agonistas dos Canais de Cálcio/farmacologia , Masculino , Neuroproteção/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/prevenção & controle , Sulfitos/farmacologia
6.
J Biochem Mol Toxicol ; 35(9): e22850, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34405489

RESUMO

Sodium houttuyfonate (SH) is a chemical compound synthesized by houttuynin and sodium bisulfite. As it has antinflammatory effects, SH has been widely used to treat autoimmune diseases, including post events following traumatic brain injury (TBI). Meanwhile, NOD-like receptor with pyrin domain containing-3 (NLRP3) inflammasomes in microglia may play a central role in TBI. But to date, the intracellular mechanisms involved in the anti-inflammatory effects of SH in TBI remain unknown, especially whether regulating NLRP3. To gain an insight into this possibility, we conducted cell culture and biochemical studies on the effect of SH on NLRP3 inflammasome in microglia. The results showed that SH inhibited TLR4 and NLRP3 inflammasome activation in the microglia cell. In parallel, phosphorylation of ERK and NF-κB p65, which play a key role in NLRP3 inflammasome formation, was decreased. Intraperitoneal injection of SH into TBI mice significantly reduced the modified neurological severity score (mNSS), as well as the degree of microglia apoptosis post-controlled cortical impact (CCI). Immunohistochemistry, Western blot analysis, and reverse-transcription polymerase chain reaction (RT-PCR) revealed that SH markedly reduced NLRP3 inflammasome activation, TLR4 activity, phosphorylation of ERK and NF-κB. Moreover, SH significantly inhibited microglia activation post-CCI, but effectively promoted the astrocyte activation and angiopoiesis. Taken together, our research provides evidence that SH attenuated neurological deficits post TBI through inhibiting NLRP3 inflammasome activation, via influencing the TLR4/NF-κB signaling pathway. These findings explain the intracellular mechanism of the anti-inflammatory activity caused by SH treatment following TBI.


Assuntos
Alcanos/farmacologia , Lesões Encefálicas Traumáticas , Inflamassomos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sulfitos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo
7.
Mediators Inflamm ; 2021: 8817698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34188608

RESUMO

OBJECTIVE: Our research is designed to explore the function of sodium houttuyfonate (SH) on Alzheimer's disease (AD) and its potential molecular mechanisms. METHODS: In our study, the Morris water maze (MWM) test was used to assess the role of SH on spatial learning and memory deficiency in amyloid-ß peptide (Aß)1-42-induced AD mice. We explored the functions of SH on proinflammatory cytokines, neuron apoptosis, and damage in vivo and in vitro by using an enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), flow cytometry, western blot, and Nissl staining. Moreover, the effect of SH on oxidative stress in vivo and in vitro was also detected. To explore the underlying molecular mechanisms of SH on AD, the expressions of proteins and mRNA involved in the NOD-like receptor pyrin domain containing-3/gasdermin D (NLRP3/GSDMD) pathway were determined using western blot, immunofluorescence staining, and qRT-PCR. RESULTS: Our data demonstrated that SH ameliorated spatial learning and memory deficiency in Aß 1-42-induced AD mice. Moreover, SH significantly improved hippocampal neuron damage and inhibited oxidative stress, neuroinflammation, and neuron apoptosis in Aß 1-42-induced AD mice and PC12 cells. The results also revealed that SH protected Aß 1-42-induced AD through inhibiting the NLRP3/GSDMD pathway. CONCLUSION: The present study demonstrated that SH could ameliorate Aß 1-42-induced memory impairment neuroinflammation and pyroptosis through inhibiting the NLRP3/GSDMD pathway in AD, suggesting that SH may be a potential candidate for AD treatment.


Assuntos
Alcanos/farmacologia , Doença de Alzheimer/sangue , Peptídeos beta-Amiloides , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fragmentos de Peptídeos , Proteínas de Ligação a Fosfato/metabolismo , Sulfitos/farmacologia , Animais , Apoptose , Encéfalo/metabolismo , Sobrevivência Celular , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Neurônios/metabolismo , Células PC12 , RNA Mensageiro/metabolismo , Ratos
8.
J Sci Food Agric ; 101(10): 4099-4107, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33368384

RESUMO

BACKGROUND: The potential of onion juice, as well as extracts of waste (tunic) (5%) and fleshy scale leaves (25%), to inhibit enzymatic browning of frozen Agaricus bisporus was investigated. The onion materials were used for blanching and their effectiveness in conserving integrity and appearance of mushroom fruiting bodies was compared with the currently accepted method of blanching in a sodium metabisulfite (SM) solution. RESULTS: It was observed that l-phenylalanine content may be a useful indicator of the changes in enzymatic activity during frozen storage, and l-tyrosine may be an indicator of a loss of lightness in color (parameter L*). The enzymes responsible for color changes were mainly monophenolase (MON) and, to a lesser degree, diphenolase (DIP). After being stored frozen for 8 months, these enzymes were detected at a 29:1 (DIP:MON) ratio in untreated mushrooms and a 2:1 (DIP:MON) ratio in mushrooms treated with onion juice. CONCLUSION: Onion products may be a good alternative to an SM solution. The most effective method to conserve the light color of fruiting bodies was blanching in juice or in an extract of the fleshy scale leaves. The least effective inhibitor of MON was tunic extract, which did, however, cause a favourable increase in the reducing capacity (total polyphenols) and flavonoids. Although the onion waste (tunic) extract changed the color of mushrooms from white to creamy orange, the color of these products was attractive and positively evaluated by panellists. © 2020 Society of Chemical Industry.


Assuntos
Agaricus/enzimologia , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Proteínas Fúngicas/metabolismo , Cebolas/química , Extratos Vegetais/farmacologia , Agaricus/química , Agaricus/efeitos dos fármacos , Cor , Proteínas Fúngicas/química , Sulfitos/farmacologia
9.
J Cell Mol Med ; 24(17): 9890-9897, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32790060

RESUMO

Methionine restrictive diet may alleviate ischaemia/reperfusion (I/R)-induced myocardial injury, but its underlying mechanism remains unclear. HE staining was performed to evaluate the myocardial injury caused by I/R and the effect of methionine-restricted diet (MRD) in I/R mice. IHC and Western blot were carried out to analyse the expression of CSE, CHOP and active caspase3 in I/R mice and hypoxia/reoxygenation (H/R) cells. TUNEL assay and flow cytometry were used to assess the apoptotic status of I/R mice and H/R cells. MTT was performed to analyse the proliferation of H/R cells. H2S assay was used to evaluate the concentration of H2S in the myocardial tissues and peripheral blood of I/R mice. I/R-induced mediated myocardial injury and apoptosis were partially reversed by methionine-restricted diet (MRD) via the down-regulation of CSE expression and up-regulation of CHOP and active caspase3 expression. The decreased H2S concentration in myocardial tissues and peripheral blood of I/R mice was increased by MRD. Accordingly, in a cellular model of I/R injury established with H9C2 cells, cell proliferation was inhibited, cell apoptosis was increased, and the expressions of CSE, CHOP and active caspase3 were dysregulated, whereas NaHS treatment alleviated the effect of I/R injury in H9C2 cells in a dose-dependent manner. This study provided a deep insight into the mechanism underlying the role of MRD in I/R-induced myocardial injury.


Assuntos
Injúria Renal Aguda/metabolismo , Diabetes Mellitus Experimental/dietoterapia , Metionina/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Injúria Renal Aguda/complicações , Injúria Renal Aguda/dietoterapia , Animais , Apoptose/genética , Caspase 3/genética , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Humanos , Rim , Metionina/genética , Camundongos , Camundongos Endogâmicos NOD/genética , Camundongos Endogâmicos NOD/metabolismo , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/dietoterapia , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/dietoterapia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/genética , Sulfitos/farmacologia , Fator de Transcrição CHOP/genética
10.
Biochem Biophys Res Commun ; 524(4): 916-922, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32057367

RESUMO

Macrophage-mediated inflammation is a key pathophysiological component of cardiovascular diseases, but the underlying mechanisms by which the macrophage regulates inflammation have been unclear. In our study, we, for the first time, showed an endogenous sulfur dioxide (SO2) production in RAW267.4 macrophages by using HPLC and SO2-specific fluorescent probe assays. Moreover, the endogenous SO2 generating enzyme aspartate aminotransferase (AAT) was found to be expressed by the macrophages. Furthermore, we showed that AAT2 knockdown triggered spontaneous macrophage-mediated inflammation, as represented by the increased TNF-α and IL-6 levels and the enhanced macrophage chemotaxis; these effects could be reversed by the treatment with a SO2 donor. Mechanistically, AAT2 knockdown activated the NF-κB signaling pathway in macrophages, while SO2 successfully rescued NF-κB activation. In contrast, forced AAT2 expression reversed AngII-induced NF-κB activation and subsequent macrophage inflammation. Moreover, treatment with a SO2 donor also alleviated macrophage infiltration in AngII-treated mouse hearts. Collectively, our data suggest that macrophage-derived SO2 is an important regulator of macrophage activation and it acts as an endogenous "on-off switch" in the control of macrophage activation. This knowledge might enable a new therapeutic strategy for cardiovascular diseases.


Assuntos
Aspartato Aminotransferases/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , NF-kappa B/genética , Dióxido de Enxofre/farmacologia , Angiotensina II/farmacologia , Animais , Aspartato Aminotransferases/antagonistas & inibidores , Aspartato Aminotransferases/imunologia , Linhagem Celular , Quimiotaxia/efeitos dos fármacos , Regulação da Expressão Gênica , Inflamação , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Miócitos Cardíacos/imunologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/imunologia , NF-kappa B/imunologia , Células RAW 264.7 , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais , Sulfitos/química , Sulfitos/farmacologia , Dióxido de Enxofre/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
11.
Microb Pathog ; 144: 104178, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32240768

RESUMO

The antimicrobial activity of sulfur nanoparticles (SNPs) was compared with elemental sulfur and sulfur-containing salts (sodium thiosulfate and sodium metabisulfite) against bacteria (Escherichia coli, Staphylococcus aureus) and fungi (Aspergillus flavus, Candida albicans) using the paper disc, broth microdilution, and time-kill assay methods. The results of the paper disc and MIC tests showed stronger antimicrobial activity of SNPs compared to the elemental sulfur and sulfur-containing salts. SNPs showed more potent activity against bacteria than fungi. Among the test microorganisms, E. coli (Gram-negative) was the most susceptible to SNPs, followed by S. aureus (Gram-positive), C. albicans (yeast), and A. flavus (mold). Scanning electron micrographs of microorganisms treated with SNPs showed different cell disruption patterns depending on the type of microorganisms.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Enxofre/farmacologia , Quitosana/farmacologia , Testes de Sensibilidade Microbiana , Nanopartículas , Sulfitos/farmacologia , Tiossulfatos/farmacologia
12.
FASEB J ; 33(4): 4688-4702, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30592646

RESUMO

Folate deficiency in early development leads to disturbance in multiple processes, including neurogenesis during which fibroblast growth factor (FGF) pathway is one of the crucial pathways. Whether folic acid (FA) directly affects FGF pathways to influence neurodevelopment and the possible mechanism remains unclear. In this study, we presented evidence that in human FA-insufficient encephalocele, the FGF pathway was interfered. Furthermore, in Brachyury knockout mice devoid of such T-box transcription factors regulating embryonic neuromesodermal bipotency and a key component of FGF pathway, change in expression of Brachyury downstream targets, activator Fgf8 and suppressor dual specificity phosphatase 6 was detected, along with the reduction in expression of other key FGF pathway genes. By using a FA-deficient cell model, we further demonstrated that decrease in Brachyury expression was through alteration in hypermethylation at the Brachyury promoter region under FA deficiency conditions, and suppression of Brachyury promoted the inactivation of the FGF pathway. Correspondingly, FA supplementation partially reverses the effects seen in FA-deficient embryoid bodies. Lastly, in mice with maternal folate-deficient diets, aberrant FGF pathway activity was found in fetal brain dysplasia. Taken together, our findings highlight the effect of FA on FGF pathways during neurogenesis, and the mechanism may be due to the low expression of Brachyury gene via hypermethylation under FA-insufficient conditions.-Chang, S., Lu, X., Wang, S., Wang, Z., Huo, J., Huang, J., Shangguan, S., Li, S., Zou, J., Bao, Y., Guo, J., Wang, F., Niu, B., Zhang, T., Qiu, Z., Wu, J., Wang, L. The effect of folic acid deficiency on FGF pathway via Brachyury regulation in neural tube defects.


Assuntos
Proteínas Fetais/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Deficiência de Ácido Fólico/metabolismo , Ácido Fólico/uso terapêutico , Defeitos do Tubo Neural/tratamento farmacológico , Defeitos do Tubo Neural/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Imunoprecipitação da Cromatina , Encefalocele/metabolismo , Feminino , Deficiência de Ácido Fólico/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos , Sulfitos/farmacologia
13.
FEMS Yeast Res ; 20(4)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32436567

RESUMO

In wine production, sulfites are widely used as antimicrobials and antioxidants, whereas copper is associated with fungicides and wine fining treatments. Therefore, wine yeasts are constantly exposed to these agents. Copper tolerance is related to the copy number of the CUP1 gene, encoding for a metallothionein involved in copper detoxification. In wine yeasts, sulfite resistance mainly depends on the presence of the translocation t(XVI;VIII) in the promoter region of the SSU1 gene. This gene encodes for a plasma membrane sulfite pump involved in sulfite metabolism and detoxification. Recently, a new translocation, t(XVI;VIII), was identified. In this work, 253 Saccharomyces cerevisiae strains, representing three vineyard populations from two different continents, were analyzed, along with 20 industrial starters. Copper and sulfites tolerance as well as distribution of CUP1 gene copy-number, t(XVI;VIII)and t(XVI;XV) of SSU1 gene were studied to evaluate the impact of these genomic variations on population phenotypes. The CUP1 gene copy-number was found to be highly variable, ranging from zero to 79 per strain. Moreover it differently impacted the copper tolerance in the populations of the two continents. The diffusion of t(XVI;VIII) and, for the first time, t(XVI;XV) was determined in the three vineyard populations. The correlation between the presence of the translocation and strain sulfite tolerance levels was significant only for the t(XVI;VIII).


Assuntos
Cobre/metabolismo , Dosagem de Genes , Metalotioneína/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sulfitos/metabolismo , Translocação Genética , Proteínas de Transporte de Ânions/genética , Cobre/farmacologia , Fermentação , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/efeitos dos fármacos , Sulfitos/farmacologia , Vinho
14.
Appl Microbiol Biotechnol ; 104(16): 7105-7115, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32592028

RESUMO

The ability to genetically manipulate microorganisms has been essential for understanding their biology and metabolism. Targeted genome editing relies on highly efficient homologous recombination, and while this is readily observed in the yeast Saccharomyces cerevisiae, most non-conventional yeast species do not display this trait and remain recalcitrant to targeted editing methods. CRISPR-based editing can bypass the requirement for high levels of native homologous recombination, enabling targeted modification to be more broadly implemented. While genetic transformation has been reported previously in Brettanomyces bruxellensis, a yeast with broad biotechnological potential and responsible for significant economic losses during the production of fermented beverages, targeted editing approaches have not been reported. Here, we describe the use of an expression-free CRISPR-Cas9 system, in combination with gene transformation cassettes tailored for B. bruxellensis, to provide the means for targeted gene deletion in this species. Deletion efficiency was shown to be dependent on homologous flanking DNA length, with higher targeting efficiencies observed with cassettes containing longer flanking regions. In a diploid strain, it was not possible to delete multiple alleles in one step, with heterozygous deletants only obtained when using DNA cassettes with long flanking regions. However, stepwise transformations (using two different marker genes) were successfully used to delete both wild-type alleles. Thus, the approach reported here will be crucial to understand the complex physiology of B. bruxellensis. Key points • The use of CRISPR-Cas9 enables targeted gene deletion in Brettanomyces bruxellensis. • Homozygous diploid deletions are possible with step-wise transformations. • Deletion of SSU1 confirmed the role of this gene in sulphite tolerance.


Assuntos
Biotecnologia/métodos , Brettanomyces/genética , Sistemas CRISPR-Cas , Deleção de Genes , Genoma Fúngico , Alelos , Brettanomyces/efeitos dos fármacos , Brettanomyces/metabolismo , Sulfitos/farmacologia , Transformação Genética
15.
Int J Med Sci ; 17(12): 1833-1839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714086

RESUMO

Catheter-related bloodstream infections (CRBSIs) due to pathogenic microorganisms pose a major threat to patients requiring parenteral nutrition (PN). Additives contained in medicines and foods have antiproliferative and bacteriostatic effects on pathogenic microorganisms. Therefore, PN solutions containing additives may also have an antibacterial effect. However, so far, there have been no reports on or observations of a PN solution with bactericidal activity. In this study, we assessed several nutrition solutions with antimicrobial activities and investigated their effects on pathogenic microorganisms colonizing catheter lumens. We selected the highly acidic Plas-Amino® (PA), which contains a large amount of sodium bisulfite as a preservative and potentially has an antimicrobial effect. In this study, we used the following pathogenic bacteria as the main causatives of CRBSIs: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Serratia marcescens, Pseudomonas aeruginosa, and Candida albicans. We then created a catheter lumen microorganism contamination model and evaluated the antibacterial effect of PA; we found that all bacteria in the control group grew significantly in the catheter lumen in a time-dependent manner at 48 and 72 h. On the other hand, we demonstrated that PA has bactericidal effects on S. aureus, S. epidermidis, B. cereus, S. marcescens, and P. aeruginosa in the catheter lumen and confirmed that it has a remarkable antiproliferative effect on C. albicans. Hence, we concluded that highly acidic PN solutions that contain a preservative like sodium bisulfite have bactericidal and growth inhibition effects on microorganisms in the catheter lumens of patients with CRBSIs and patients with totally implantable central venous access devices, in whom it is difficult to remove the catheter.


Assuntos
Antibacterianos/farmacologia , Infecções Relacionadas a Cateter/tratamento farmacológico , Soluções de Nutrição Parenteral/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/patologia , Catéteres/microbiologia , Proliferação de Células/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/patogenicidade , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/patogenicidade , Sulfitos/farmacologia
16.
Biofouling ; 36(3): 319-331, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32410461

RESUMO

Traditional herbal monomers (THMs) are widely distributed in many traditional Chinese formulas (TCFs) and decoctions (TCDs) and are frequently used for the prevention and treatment of fungal infections. The antifungal activities of five common THMs, including sodium houttuyfonate (SH), berberine (BER), palmatine (PAL), jatrorrhizine (JAT) and cinnamaldehyde (CIN), and their potential for inducing cell wall remodeling (CWR), were evaluated against Candida albicans SC5314 and Candida auris 12372. SH/CIN plus BER/PAL/JAT showed synergistic antifungal activity against both Candida isolates. Furthermore, SH-associated combinations (SH plus BER/PAL/JAT) induced stronger exposure of ß-glucan and chitin than their counterparts, while CIN triggered more marked exposure compared with CIN-associated combinations (CIN plus BER/PAL/JAT). Collectively, this study demonstrated the anti-Candida effect and the CWR induction potential of the five THMs and their associated combinations, providing a possibility of their in vivo application against fungal-associated infections.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Acroleína/análogos & derivados , Acroleína/farmacologia , Alcanos/farmacologia , Berberina/análogos & derivados , Berberina/farmacologia , Alcaloides de Berberina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Sulfitos/farmacologia
17.
Am J Respir Cell Mol Biol ; 61(4): 417-428, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31264905

RESUMO

DNA methylation represents a fundamental epigenetic mark that is associated with transcriptional repression during development, maintenance of homeostasis, and disease. In addition to methylation-sensitive PCR and targeted deep-amplicon bisulfite sequencing to measure DNA methylation at defined genomic loci, numerous unsupervised techniques exist to quantify DNA methylation on a genome-wide scale, including affinity enrichment strategies and methods involving bisulfite conversion. Both affinity-enriched and bisulfite-converted DNA can serve as input material for array hybridization or sequencing using next-generation technologies. In this practical guide to the measurement and analysis of DNA methylation, the goal is to convey basic concepts in DNA methylation biology and explore genome-scale bisulfite sequencing as the current gold standard for assessment of DNA methylation. Bisulfite conversion chemistry and library preparation are discussed in addition to a bioinformatics approach to quality assessment, trimming, alignment, and methylation calling of individual cytosine residues. Bisulfite-converted DNA presents challenges for standard next-generation sequencing library preparation protocols and data-processing pipelines, but these challenges can be met with elegant solutions that leverage the power of high-performance computing systems. Quantification of DNA methylation, data visualization, statistical approaches to compare DNA methylation between sample groups, and examples of integrating DNA methylation data with other -omics data sets are also discussed. The reader is encouraged to use this article as a foundation to pursue advanced topics in DNA methylation measurement and data analysis, particularly the application of bioinformatics and computational biology principles to generate a deeper understanding of mechanisms linking DNA methylation to cellular function.


Assuntos
5-Metilcitosina/análise , Metilação de DNA , 5-Metilcitosina/imunologia , 5-Metilcitosina/isolamento & purificação , Sequência de Bases , Biologia Computacional/métodos , Ilhas de CpG , DNA/química , DNA/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Imunoprecipitação , Metilação , Estrutura Molecular , Hibridização de Ácido Nucleico , Controle de Qualidade , Alinhamento de Sequência , Sulfitos/farmacologia
18.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552183

RESUMO

The addition of SO2 is practiced in the wine industry to mitigate the risk of microbial spoilage and to extend wine shelf-life. Generally, this strategy does not interfere with primary alcoholic fermentation, as wine strains of Saccharomyces cerevisiae exhibit significant SO2 tolerance, largely driven by the efflux pump Ssu1p. One of the key yeast species responsible for wine spoilage is Brettanomyces bruxellensis, which also exhibits strain-dependent SO2 tolerance, although this occurs via unknown mechanisms. To evaluate the factors responsible for the differential sulfite tolerance observed in B. bruxellensis strains, we employed a multifaceted approach to examine both expression and allelic differences in the BbSSU1 gene. Transcriptomic analysis following exposure to SO2 highlighted different inducible responses in two B. bruxellensis strains. It also revealed disproportionate transcription of one putative BbSSU1 haplotype in both genetic backgrounds. Here, we confirm the functionality of BbSSU1 by complementation of a null mutant in a S. cerevisiae wine strain. The expression of four distinct BbSSU1 haplotypes in the S. cerevisiae ΔSSU1 mutant revealed up to a 3-fold difference in conferred SO2 tolerance. Substitution of key amino acids distinguishing the encoded proteins was performed to evaluate their relative contribution to SO2 tolerance. Protein modeling of two haplotypes which differed in two amino acid residues suggested that these substitutions affect the binding of Ssu1p ligands near the channel opening. Taken together, preferential transcription of a BbSSU1 allele that encodes a more efficient Ssu1p transporter may represent one mechanism that contributes to differences in sulfite tolerances between B. bruxellensis strains.IMPORTANCEBrettanomyces bruxellensis is one of the most important wine spoilage microorganisms, with the use of sulfite being the major method to control spoilage. However, this species displays a wide intraspecies distribution in sulfite tolerance, with some strains capable of tolerating high concentrations of SO2, with relatively high concentrations of this antimicrobial needed for their control. Although SO2 tolerance has been studied in several organisms and particularly in S. cerevisiae, little is known about the mechanisms that confer SO2 tolerance in B. bruxellensis Here, we confirmed the functionality of the sulfite efflux pump encoded by BbSSU1 and determined the efficiencies of four different BbSSU1 haplotypes. Gene expression analysis showed greater expression of the haplotype conferring greater SO2 tolerance. Our results suggest that a combination of BbSSU1 haplotype efficiency, copy number, and haplotype expression levels likely contributes to the diverse SO2 tolerances observed for different B. bruxellensis strains.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Brettanomyces/efeitos dos fármacos , Tolerância a Medicamentos/fisiologia , Haplótipos/efeitos dos fármacos , Sulfitos/farmacologia , Alelos , Substituição de Aminoácidos , Proteínas de Transporte de Ânions/classificação , Proteínas de Transporte de Ânions/genética , Brettanomyces/genética , Fermentação , Microbiologia de Alimentos , Regulação Bacteriana da Expressão Gênica , Interações Microbianas , Simulação de Acoplamento Molecular , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma , Vinho/microbiologia
19.
Plant Cell Environ ; 42(2): 437-447, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30014483

RESUMO

Plants closing stomata in the presence of harmful gases is believed to be a stress avoidance mechanism. SO2 , one of the major airborne pollutants, has long been reported to induce stomatal closure, yet the mechanism remains unknown. Little is known about the stomatal response to airborne pollutants besides O3 . SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) and OPEN STOMATA 1 (OST1) were identified as genes mediating O3 -induced closure. SLAC1 and OST1 are also known to mediate stomatal closure in response to CO2 , together with RESPIRATORY BURST OXIDASE HOMOLOGs (RBOHs). The overlaying roles of these genes in response to O3 and CO2 suggested that plants share their molecular regulators for airborne stimuli. Here, we investigated and compared stomatal closure event induced by a wide concentration range of SO2 in Arabidopsis through molecular genetic approaches. O3 - and CO2 -insensitive stomata mutants did not show significant differences from the wild type in stomatal sensitivity, guard cell viability, and chlorophyll content revealing that SO2 -induced closure is not regulated by the same molecular mechanisms as for O3 and CO2 . Nonapoptotic cell death is shown as the reason for SO2 -induced closure, which proposed the closure as a physicochemical process resulted from SO2 distress, instead of a biological protection mechanism.


Assuntos
Dióxido de Carbono/farmacologia , Morte Celular/efeitos dos fármacos , Ozônio/farmacologia , Estômatos de Plantas/efeitos dos fármacos , Dióxido de Enxofre/farmacologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Clorofila/metabolismo , Proteínas de Membrana/fisiologia , Estômatos de Plantas/citologia , Proteínas Quinases/fisiologia , Sulfitos/farmacologia
20.
Mol Biol Rep ; 46(1): 471-477, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30511304

RESUMO

Biofilm dispersion is the last step in the development of biofilms, and allows bacteria to spawn novel biofilms in new locales. In the previous studies, we found that sodium houttuyfonate (SH) is effective at inhibiting biofilm formation and motility of Pseudomonas aeruginosa. Here, we investigated the effect of SH against the biofilm dispersion of P. aeruginosa by an in vitro model. The results show that the plant derivative, SH, could effectively inhibit both biofilm dispersion of P. aeruginosa, and gene and protein expression of the key biofilm regulator BdlA in a dose-dependent manner. Furthermore, our presented results suggest that SH can penetrate into the biofilm of P. aeruginosa to repress the biofilm life cycle. Therefore, these results indicate that the antimicrobial activity of SH may be partially due to its ability to disrupt biofilm dispersion in P. aeruginosa.


Assuntos
Alcanos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Sulfitos/farmacologia , Alcanos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Pseudomonas aeruginosa/metabolismo , Sulfitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA