Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 107(5): 2748-2759, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38101746

RESUMO

A novel ratiometric electrochemical aptasensor based on split aptamer and Au-reduced graphene oxide (Au-rGO) nanomaterials was proposed to detect aflatoxin M1 (AFM1). In this work, Au-rGO nanomaterials were coated on the electrode through the electrodeposition method to increase the aptamer enrichment. We split the aptamer of AFM1 into 2 sequences (S1 and S2), where S1 was immobilized on the electrode due to the Au-S bond, and S2 was tagged with methylene blue (MB) and acted as a response signal. A complementary strand to S1 (CS1) labeled with ferrocene (Fc) was introduced as another reporter. In the presence of AFM1, CS1 was released from the electrode surface due to the formation of the S1-AFM1-S2 complex, leading to a decrease in Fc and an increase in the MB signal. The developed ratiometric aptasensor exhibited a linear range of 0.03 µg L-1 to 2.00 µg L-1, with a detection limit of 0.015 µg L-1 for AFM1 detection. The ratiometric aptasensor also showed a linear relationship from 0.2 µg L-1 to 1.00 µg L-1, with a detection limit of 0.05 µg L-1 in natural milk after sample pretreatment, indicating the successful application of the developed ratiometric aptasensor. Our proposed strategy provides a new way to construct aptasensors with high sensitivity and selectivity.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Compostos Ferrosos , Grafite , Metalocenos , Animais , Aflatoxina M1/análise , Aptâmeros de Nucleotídeos/química , Grafite/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/veterinária , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/veterinária , Limite de Detecção
2.
J Dairy Sci ; 105(7): 5545-5560, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35534270

RESUMO

The non-systematic evolution of ligands by the exponential enrichment (non-SELEX) method was used in the present study for the selection of ß-casomorphin-7 (BCM-7)-specific aptamers. These aptamers were tested to evaluate their ability to detect BCM-7 peptide in the human urine sample. The method did not employ aptamer amplification and counterselection as used in conventional SELEX but included a negative round of selection. The selection was performed in a single day, and after 5 rounds, a total of 16 numbers of aptamer were identified through Sanger sequencing. Newly selected aptamers named sequence ID no. 3 have performed better than other aptamers in detecting the BCM-7 peptide. Sequence ID no. 3 was also compared with previously selected aptamers through the SELEX method and its performance was found to be better than old aptamers. The sensing experiment was tried on different platforms from magnetic beads to the membrane. In each strategy, satisfactory results were obtained with aptamers that recognized BCM-7 spiked in a human urine sample at a very low amount. The non-SELEX method is an easy and time-saving process for aptamer selection. Selection of viable aptamers from a large pool of sequences for sensing experiments is a tedious job; however, an attempt has been made to select aptamers on the basis of In Silico (http://www.unafold.org/, https://bioinformatics.ramapo.edu/QGRS/index.php) information, observing DNA band intensity on agarose gel and colorimetric results obtained on magnetic beads and membrane. These aptamers have the potential in biosensor making for detecting BCM-7 peptide in urine samples of autistic patients.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Animais , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/veterinária , Endorfinas , Humanos , Ligantes , Técnica de Seleção de Aptâmeros/métodos , Técnica de Seleção de Aptâmeros/veterinária
3.
J Dairy Sci ; 105(4): 2895-2907, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35181133

RESUMO

Salmonella, as a common foodborne pathogen in dairy products, poses a great threat to human health. We studied a new detection method based on quantum dots (QD). A fluorescent biosensor with multiple fluorescent signal amplification based on a streptavidin (SA) biotin system and the polyamino linear polymer poly-l-lysine (PLL) were established to detect Salmonella in milk. First, Salmonella was captured on a black 96-well plate with paired Salmonella mAb to form a double-antibody sandwich. Second, SA was immobilized on biotin-modified mAb by SA-biotin specific bond. Then, the biotin-modified polylysine (BT-PLL) was bound on SA and specifically bonded again through the SA-biotin system. Finally, water-soluble CdSe/ZnS QD-labeled SA was added to a black 96-well plate for covalent coupling with BT-PLL. The fluorescent signal was amplified in a dendritic manner by the layer-by-layer overlap of SA and biotin and the covalent coupling of biotinylated PLL. Under optimal conditions, the detection limit was 4.9 × 103 cfu/mL in PBS. The detection limit was 10 times better than that of the conventional sandwich ELISA. In addition, the proposed biosensor was well specific and could be used for detecting Salmonella in milk samples.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Animais , Técnicas Biossensoriais/veterinária , Biotina/química , Leite , Polilisina , Salmonella , Estreptavidina/química
4.
J Dairy Sci ; 105(3): 2108-2118, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34998563

RESUMO

Foods contaminated by foodborne pathogens have always been a great threat to human life. Herein, we constructed an electrochemical immunosensor for Salmonella detection by using a Fe3O4@graphene modified electrode. Because of the excellent electrical conductivity and mechanical stability of graphene and the large specific surface area of Fe3O4, the Fe3O4@graphene nanocomposite exhibits an excellent electrical signal, which greatly increased the sensitivity of the immunosensor. Gold nanoparticles were deposited on Fe3O4@graphene nanocomposite by electrochemical technology for the immobilization of the antibody. Cyclic voltammetry was selected to electrochemically characterize the construction process of immunosensors. The microstructure and morphology of related nanocomposites were analyzed by scanning electron microscopy. Under optimized experimental conditions, a good linear relationship was achieved in the Salmonella concentration range of 2.4 × 102 to 2.4 × 107 cfu/mL, and the limit of detection of the immunosensor was 2.4 × 102 cfu/mL. Additionally, the constructed immunosensor exhibited acceptable selectivity, reproducibility, and stability and provides a new reference for detecting pathogenic bacteria in milk.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Nanocompostos , Animais , Técnicas Biossensoriais/veterinária , Carbono , Técnicas Eletroquímicas/veterinária , Eletrodos , Ouro/química , Grafite/química , Imunoensaio/veterinária , Limite de Detecção , Nanopartículas Metálicas/química , Leite , Nanocompostos/química , Reprodutibilidade dos Testes , Salmonella
5.
J Dairy Sci ; 105(3): 1966-1977, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34955267

RESUMO

Aflatoxin M1 (AFM1) is a common toxin in dairy products that causes acute and chronic human health disorders. Thus, the development of a rapid and accurate AFM1 detection method is of vital importance for food safety monitoring. This work was to develop a novel electrochemical aptasensor for sensitive and specific determination of AFM1. The dendritic-like nanostructure was formed on the gold electrode surface by layer-by-layer assembly of gold-silver core-shell nanoparticles modified with DNA conjugates. In the presence of AFM1, the specific recognition between AFM1 and Apt caused the disassociation of the DNA controlled dual Au@Ag conjugates from the surface of the electrode, causing less methylene blue to bind to the surface and weakening the electrochemical signal. The more AFM1 there is, the weaker the electrochemical signal. Transmission electron microscope results showed that the successfully synthesized Au@Ag nanoparticles exhibited a core-shell structure with Au as core and Ag as shell, and their average diameter was about 30 nm. Under optimal conditions, the electrochemical aptasensor showed a wide detection ranging from 0.05 ng mL-1 to 200 ng mL-1, and a low detection limit of 0.02 ng mL-1. Moreover, the proposed strategy has been successfully applied to the detection of AFM1 in cow, goat, and sheep milk samples with satisfactory recoveries ranging from 91.10% to 104.05%. This work can provide a novel rapid detection method for AFM1, and also provide a new sensing platform for the detection of other toxins.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Aflatoxina M1/análise , Animais , Aptâmeros de Nucleotídeos/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/veterinária , DNA/análise , Limite de Detecção , Nanopartículas Metálicas/química , Leite/química , Ovinos , Prata
6.
Arch Virol ; 166(10): 2763-2778, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34342747

RESUMO

White spot syndrome virus (WSSV) is a significant threat to the aquaculture sector, causing mortality among crabs and shrimps. Currently available diagnostic tests for WSSV are not rapid or cost-effective, and a new detection method is therefore needed. This study demonstrates the development of a biosensor by functionalization of magnetosomes with VP28-specific antibodies to detect WSSV in seafood. The magnetosomes (1 and 2 mg/ml) were conjugated with VP28 antibody (0.025-10 ng/µl), as confirmed by spectroscopy. The magnetosome-antibody conjugate was used to detect the VP28 antigen. The binding of antigen to the magnetosome-antibody complex resulted in a change in absorbance. The magnetosome-antibody-antigen complex was then concentrated and brought near a screen-printed carbon electrode by applying an external magnetic field, and the antigen concentration was determined using impedance measurements. The VP28 antigen (0.025 ng/µl) bound more efficiently to the magnetosome-VP28 antibody complex (0.025 ng/µl) than to the VP28 antibody (0.1 ng/µl) alone. The same assay was repeated to detect the VP28 antigen (0.01 ng/µl) in WSSV-infected seafood samples using the magnetosome-VP28 antibody complex (0.025 ng/µl). The WSSV in the seafood sample was also drawn toward the electrode due to the action of magnetosomes controlled by the external magnetic field and detected using impedance measurement. The presence of WSSV in seafood samples was verified by Western blot and RT-PCR. Cross-reactivity assays with other viruses confirmed the specificity of the magnetosome-based biosensor. The results indicate that the use of the magnetosome-based biosensor is a sensitive, specific, and rapid way to detect WSSV in seafood samples.


Assuntos
Técnicas Biossensoriais/veterinária , Magnetossomos , Alimentos Marinhos/virologia , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação , Animais , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Aquicultura , Reações Cruzadas , Espectroscopia Dielétrica , Ensaio de Imunoadsorção Enzimática , Microbiologia de Alimentos , Magnetossomos/química , Magnetossomos/imunologia , Penaeidae/virologia , Reprodutibilidade dos Testes , Proteínas do Envelope Viral/análise , Proteínas do Envelope Viral/imunologia , Vírus da Síndrome da Mancha Branca 1/imunologia
7.
J Dairy Sci ; 104(12): 12295-12302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34538487

RESUMO

Salmonella is a foodborne pathogen that has contributed to numerous food safety accidents worldwide, making it necessary to detect contamination at an early stage. A pair of specific primers based on the invA gene of Salmonella was designed for PCR. Target double-stranded DNA (dsDNA) from PCR was purified and denatured at high temperature to obtain target single-stranded DNA (ssDNA). Two carboxyfluorescein-labeled hairpin probes (H1-FAM and H2-FAM) were designed with complementary portions to the ssDNA sequence so that binding could trigger H1-FAM and H2-FAM hybridization chain reaction (HCR) to produce a long dsDNA complex. In this study, graphene oxide (GO) was used in the development of a homogeneous fluorescence detection platform for Salmonella. Using this HCR-GO assay platform, Salmonella detection was completed in 3.5 h. Salmonella was reliably and specifically detected with a limit of detection (LOD) of 4.2 × 101 cfu/mL in pure culture. Moreover, this new HCR-GO assay platform was successfully applied to the detection of Salmonella in artificially contaminated milk with a LOD of 4.2 × 102 cfu/mL.


Assuntos
Técnicas Biossensoriais , Grafite , Animais , Técnicas Biossensoriais/veterinária , Leite , Salmonella/genética
8.
J Dairy Sci ; 104(11): 11486-11498, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34454766

RESUMO

Rapid and sensitive detection of foodborne pathogens is of great importance for food safety. Here, a set of nuclear magnetic resonance (NMR) biosensors based on a O-carboxymethyl chitosan target gadolinium (Gd) probe was developed to quickly detect Salmonella in milk by combining NMR technology and bioimmunotechnology with membrane filtration technology. First, O-carboxymethyl chitosan (O-CMC) was biotinylated to prepare biotinylated O-carboxymethyl chitosan (biotin-O-CMC) through amide reaction, and biotinylated magnetic complexes (biotin-O-CMC-Gd) were obtained by using O-CMC, which has strong chelating adsorption on Gd. The target probe was obtained by combining biotin-O-CMC-Gd with the biotinylated antibody (biotin-antibody) via streptavidin (SA) by introducing the SA-biotin system. Then, Salmonella was captured by the target probe through antigen-antibody interaction. Finally, NMR was used to measure the longitudinal relaxation time (T1) of the filtrate collected by membrane filtration. This NMR biosensor with good specificity and high efficiency can detect Salmonella with the sensitivity of 1.8 × 103 cfu/mL within 2 h; in addition, it can realize the detection of complex samples because of its strong anti-interference capability and may open up a new method for rapid detection of Salmonella, which has a great application potential.


Assuntos
Técnicas Biossensoriais , Biotina , Animais , Técnicas Biossensoriais/veterinária , Quitosana/análogos & derivados , Gadolínio , Espectroscopia de Ressonância Magnética , Leite , Salmonella , Estreptavidina
9.
J Dairy Sci ; 104(8): 8506-8516, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34053767

RESUMO

Effective testing tools for Escherichia coli O157:H7 can prevent outbreaks of foodborne illness. In this paper, a smartphone-based colorimetric aptasensor was developed using functionalized gold nanoparticles (GNP) and multi-walled carbon nanotubes (MWCNT) for monitoring E. coli O157:H7 in milk. The maximum absorption peak of GNP bonded with aptamer (Apt) generated evident transformation from 518 to 524 nm. The excess GNP-Apt was removed by functionalized MWCNT magnetized with carbonyl iron powder (CIP) and hybridized with a DNA probe, whereas the GNP-Apt immobilized on E. coli O157:H7 remained in the system. In the presence of a high-salt solution, the GNP-Apt that captured E. coli O157:H7 remained red, but the free GNP-Apt aggregated and appeared blue. The chromogenic results were analyzed by a smartphone-based colorimetric device that was fabricated using acrylic plates, a light-emitting diode, and a mobile power pack. To our knowledge, this was the first attempt to use a smartphone-based colorimetric aptasensor employing the capture of GNP-Apt coupled with separation of MWCNT@CIP probe to detect E. coli O157:H7. The aptasensor exhibited good reproducibility and no cross-reaction for other bacteria. A concentration of 8.43 × 103 cfu/mL of E. coli O157:H7 could be tested in pure culture, and 5.24 × 102 cfu/mL of E. coli O157:H7 could be detected in artificially contaminated milk after 1 h of incubation. Therefore, the smartphone-based colorimetric aptasensor was an efficient tool for the detection of E. coli O157:H7 in milk.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Nanopartículas Metálicas , Nanotubos de Carbono , Animais , Técnicas Biossensoriais/veterinária , Colorimetria/veterinária , Microbiologia de Alimentos , Ouro , Leite , Reprodutibilidade dos Testes , Smartphone
10.
J Dairy Sci ; 104(6): 6944-6960, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33814150

RESUMO

The aim of this study was to develop and evaluate a method for detecting Mycobacterium avium ssp. paratuberculosis (MAP) bacteria in bovine fecal, milk, and colostrum samples using immunomagnetic beads (IMB) and a rhodamine hydrazone immunosensor. Immunomagnetic beads were prepared by using purified antibodies from hyperimmunized sera that were coupled to Fe nanoparticles with diethylene triamine pentaacetic acid (DTPA) or ethyl (dimethyl aminopropyl) carbodiimide (EDC)-N-hydroxy succinimide (NHS) as linkers. Rhodamine hydrazone particles were synthesized and coupled to IgY anti-MAP antibodies using DTPA or EDC-NHS linkers. Separation efficiency of the IMB was tested on bovine fecal, milk, and colostrum samples experimentally contaminated with MAP. The studied methods were evaluated on their ability to detect MAP and separate bacteria in complex mediums. The ELISA results indicated 95% efficacy in antibody coupling to IMB, with the DTPA-IMB method being more efficient than the EDC-NHS-IMB method. By using the DTPA-IMB method, MAP bacteria were successfully recovered from fecal, milk, and colostrum samples. The DTPA-IMB method used in combination with the rhodamine hydrazone immunosensor had a limit of detection equal to 30 and 30,000 MAP cells/mL using chromogenic and fluorescent properties, respectively. Combining the DTPA-IMB separation method with the rhodamine hydrazone immunosensor provides a fast, sensitive, and cost-beneficial method for detecting MAP in bovine feces, milk, and colostrum.


Assuntos
Técnicas Biossensoriais , Doenças dos Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Técnicas Biossensoriais/veterinária , Bovinos , Doenças dos Bovinos/diagnóstico , Colostro , Fezes , Feminino , Hidrazinas , Imunoensaio/veterinária , Leite , Gravidez , Rodaminas
11.
J Dairy Sci ; 103(8): 7585-7597, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32505394

RESUMO

Commonly used lactose assays [enzymatic spectrophotometric absorbance (EZA) and HPLC] for dairy ingredients are relatively expensive and time consuming. A blood glucose meter (BGM)-based method has successfully been documented as a rapid lactose assay in milk. However, the BGM-based method has not been evaluated in dairy ingredients. The objective of this study was to evaluate the BGM-based lactose analysis method in whey-derived (WD) and skim milk-derived (SMD) ingredients. The study was carried out in 4 phases. In phase 1, the effect of pH and lactose concentrations on the BGM reading was investigated using a factorial design with 2 factors: pH (6.02-7.50) and lactose (0.2 or 0.4%). We found that BGM readings were significantly affected by lower pH values at both lactose levels. In phase 2, the effect of total solids and ingredient type was investigated using a factorial design with 2 factors: ingredient type (WD or SMD) and total solids (0-8%). It was observed that the BGM reading was significantly affected by ingredient type and total solids. Phase 3 involved developing a linear relationship between the BGM reading and the EZA reference method to ascertain the accuracy of the proposed BGM method. Different ingredient types (WD or SMD) and non-lactose solids (0.5-27%) model ingredient dilutions prepared over a range of lactose contents (0.08-0.62%) were measured using the BGM and EZA methods. The average absolute percentage bias difference between the BGM method and EZA reference method results for these model dilutions was found to be between 2.2 and 7.3%. In phase 4, 15 samples procured from commercial sources ranging from 0.01 to 81.9% lactose were evaluated using the BGM method and EZA reference method. The average absolute percentage bias difference for lactose results between the 2 methods ranged from 3.6 to 5.0% and 5.3 to 9.7% for well-performing and poorly performing meters, respectively. Overall, the BGM method is a promising tool for rapid and low-cost analysis of lactose in both high-lactose and low-lactose dairy ingredients.


Assuntos
Técnicas Biossensoriais/veterinária , Laticínios/análise , Lactose/análise , Animais , Glicemia , Bovinos , Leite/química , Soro do Leite/química , Proteínas do Soro do Leite/química
12.
Sensors (Basel) ; 20(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197444

RESUMO

The recent trend in electrocardiogram (ECG) device development is towards wireless body sensors applied for patient monitoring. The ultimate goal is to develop a multi-functional body sensor that will provide synchronized vital bio-signs of the monitored user. In this paper, we present an ECG sensor for long-term monitoring, which measures the surface potential difference between proximal electrodes near the heart, called differential ECG lead or differential lead, in short. The sensor has been certified as a class IIa medical device and is available on the market under the trademark Savvy ECG. An improvement from the user's perspective-immediate access to the measured data-is also implemented into the design. With appropriate placement of the device on the chest, a very clear distinction of all electrocardiographic waves can be achieved, allowing for ECG recording of high quality, sufficient for medical analysis. Experimental results that elucidate the measurements from a differential lead regarding sensors' position, the impact of artifacts, and potential diagnostic value, are shown. We demonstrate the sensors' potential by presenting results from its various areas of application: medicine, sports, veterinary, and some new fields of investigation, like hearth rate variability biofeedback assessment and biometric authentication.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletrocardiografia/instrumentação , Frequência Cardíaca/fisiologia , Monitorização Fisiológica/instrumentação , Telemedicina , Animais , Identificação Biométrica/instrumentação , Identificação Biométrica/métodos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/veterinária , Cardiotocografia/instrumentação , Eletrocardiografia/métodos , Eletrocardiografia/veterinária , Eletrodos/veterinária , Desenho de Equipamento , Feminino , Cavalos , Humanos , Aplicativos Móveis , Monitorização Ambulatorial/instrumentação , Monitorização Ambulatorial/métodos , Monitorização Ambulatorial/veterinária , Monitorização Fisiológica/métodos , Monitorização Fisiológica/veterinária , Valor Preditivo dos Testes , Gravidez , Cuidado Pré-Natal/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Medicina Esportiva/instrumentação , Medicina Esportiva/métodos , Telemedicina/instrumentação , Telemedicina/métodos , Telemetria/instrumentação , Telemetria/métodos , Telemetria/veterinária , Fatores de Tempo , Medicina Veterinária/instrumentação , Medicina Veterinária/métodos , Tecnologia sem Fio/instrumentação
13.
J Fish Biol ; 97(6): 1644-1650, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32889736

RESUMO

Metabolic rates are one of many measures that are used to explain species' response to environmental change. Static respirometry is used to calculate the standard metabolic rate (SMR) of fish, and when combined with exhaustive chase protocols it can be used to measure maximum metabolic rate (MMR) and aerobic scope (AS) as well. While these methods have been tested in comparison to swim tunnels and chambers with circular currents, they have not been tested in comparison with a no-chase control. We used a repeated-measures design to compare estimates of SMR, MMR and AS in European perch Perca fluviatilis following three protocols: (a) a no-chase control; (b) a 3-min exhaustive chase; and (c) a 3-min exhaustive chase followed by 1-min air exposure. We found that, contrary to expectations, exhaustive chase protocols underestimate MMR and AS at 18°C, compared to the no-chase control. This suggests that metabolic rates of other species with similar locomotorty modes or lifestyles could be similarly underestimated using chase protocols. These underestimates have implications for studies examining metabolic performance and responses to climate change scenarios. To prevent underestimates, future experiments measuring metabolic rates should include a pilot with a no-chase control or, when appropriate, an adjusted methodology in which trials end with the exhaustive chase instead of beginning with it.


Assuntos
Técnicas Biossensoriais/veterinária , Consumo de Oxigênio/fisiologia , Percas/metabolismo , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Natação/fisiologia
14.
BMC Vet Res ; 15(1): 40, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683098

RESUMO

BACKGROUND: Suture materials and techniques are frequently evaluated in ex vivo studies by comparing tensile strengths. However, the direct measurement techniques to obtain the tensile forces in canine skin are not available, and, therefore, the conditions suture lines undergo is unknown. A soft elastomeric capacitor is used to monitor deformation in the skin over time by sensing strain. This sensor was applied to a sample of canine skin to evaluate its capacity to sense strain in the sample while loaded in a dynamic material testing machine. The measured strain of the sensor was compared with the strain measured by the dynamic testing machine. The sample of skin was evaluated with and without the sensor adhered. RESULTS: In this study, the soft elastomeric capacitor was able to measure strain and a correlation was made to stress using a modified Kelvin-Voigt model for the canine skin sample. The sensor significantly increases the stiffness of canine skin when applied which required the derivation of mechanical models for interpretation of the results. CONCLUSIONS: Flexible sensors can be applied to canine skin to investigate the inherent biomechanical properties. These sensors need to be lightweight and highly elastic to avoid interference with the stress across a suture line. The sensor studied here serves as a prototype for future sensor development and has demonstrated that a lightweight highly elastic sensor is needed to decrease the effect on the sensor/skin construct. Further studies are required for biomechanical characterization of canine skin.


Assuntos
Técnicas Biossensoriais/veterinária , Pele , Animais , Fenômenos Biomecânicos , Técnicas Biossensoriais/instrumentação , Cães , Elastômeros/química , Estresse Mecânico , Suturas/veterinária
15.
Vet Res ; 48(1): 11, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28222780

RESUMO

Infectious animal diseases caused by pathogenic microorganisms such as bacteria and viruses threaten the health and well-being of wildlife, livestock, and human populations, limit productivity and increase significantly economic losses to each sector. The pathogen detection is an important step for the diagnostics, successful treatment of animal infection diseases and control management in farms and field conditions. Current techniques employed to diagnose pathogens in livestock and poultry include classical plate-based methods and conventional biochemical methods as enzyme-linked immunosorbent assays (ELISA). These methods are time-consuming and frequently incapable to distinguish between low and highly pathogenic strains. Molecular techniques such as polymerase chain reaction (PCR) and real time PCR (RT-PCR) have also been proposed to be used to diagnose and identify relevant infectious disease in animals. However these DNA-based methodologies need isolated genetic materials and sophisticated instruments, being not suitable for in field analysis. Consequently, there is strong interest for developing new swift point-of-care biosensing systems for early detection of animal diseases with high sensitivity and specificity. In this review, we provide an overview of the innovative biosensing systems that can be applied for livestock pathogen detection. Different sensing strategies based on DNA receptors, glycan, aptamers and antibodies are presented. Besides devices still at development level some are validated according to standards of the World Organization for Animal Health and are commercially available. Especially, paper-based platforms proposed as an affordable, rapid and easy to perform sensing systems for implementation in field condition are included in this review.


Assuntos
Técnicas Biossensoriais/veterinária , Influenza Aviária/diagnóstico , Gado/microbiologia , Gado/virologia , Doenças das Aves Domésticas/diagnóstico , Animais , Técnicas Biossensoriais/métodos , Bluetongue/diagnóstico , Complexo Respiratório Bovino/diagnóstico , Infecções por Campylobacter/diagnóstico , Infecções por Campylobacter/veterinária , Bovinos , Galinhas/microbiologia , Galinhas/virologia , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/veterinária , Coccidiose/diagnóstico , Coccidiose/virologia , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/veterinária , Feminino , Febre Aftosa/diagnóstico , Mastite Bovina/diagnóstico , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/veterinária , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/veterinária , Salmonelose Animal/diagnóstico
16.
BMC Vet Res ; 12: 34, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911673

RESUMO

BACKGROUND: Dairy cows have a massive demand for glucose at the onset of lactation. A poor adaption to this period leads to an excessive negative energy balance with an increased risk for ketosis and impaired animal health and production. Besides the measurement of ketones, analysing the glucose concentration in blood is reported as helpful instrument for diagnosis and differentiation of ketosis. Monitoring metabolic parameters requires multiple blood sampling. In other species, new blood sampling techniques have been introduced in which small amounts of blood are rapidly analysed using electronic hand-held devices. The objective of this study was to evaluate the suitability of capillary blood for blood glucose measurement in dairy cows using the hand-held devices FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini) and the WellionVet GLUCO CALEA, (WGC, MED TRUST). In total, 240 capillary blood samples were obtained from dry and fresh lactating Holstein-Friesian cows. Blood was collected from the skin of the exterior vulva by using a lancet. For method comparison, additional blood samples were taken from a coccygeal vessel and analyzed in a laboratory. Glucose concentrations measured by a standard laboratory method were defined as the criterion standard. RESULTS: The Pearson correlation coefficients between the glucose concentrations analyzed in capillary blood with the devices and the reference were 73% for the FSP, 81% for the GLX and 41% for the WGC. Bland-Altman plots showed biases of -18.8 mg/dL for the FSP, -11.2 mg/dL for the GLX and +20.82 mg/dL for the WGC. The optimized threshold determined by a Receiver Operating Characteristics analysis to detect hyperglycemia using the FSP was 43 mg/dL with a sensitivity (Se) and specificity (Sp) of 76 and 80%. Using the GLX and WGC optimized thresholds were 49 mg/dL (Se = 92%, Sp = 85%) and 95 mg/dL (Se = 39%, Sp = 92%). CONCLUSIONS: The results of this study demonstrate good performance characteristics for the GLX and moderate for the FSP to detect hyperglycemia in dairy cows using capillary blood. With the study settings, the WGC was not suitable for determination of glucose concentrations.


Assuntos
Técnicas Biossensoriais/veterinária , Glicemia/análise , Coleta de Amostras Sanguíneas/veterinária , Bovinos/sangue , Animais , Técnicas Biossensoriais/instrumentação , Coleta de Amostras Sanguíneas/instrumentação , Capilares , Feminino , Sensibilidade e Especificidade
17.
J Med Assoc Thai ; 99 Suppl 8: S216-S221, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29906048

RESUMO

Background: The microfilarial nematodes, found mainly in blood circulation, form a special group of human and veterinary parasitic diseases. Recently, the rapid nucleic acid based biosensors (NABs) have been established in our laboratory for the employment of a point-of-care diagnostic test. Herein, NABs involved in the exploitation of lateral flow dipstick (LFD), gold nanoparticle (AuNP) and turbidity in combination with PCR and LAMP amplification for detection of filarial nematodes. The validation of each NABs was investigated in comparison to that of standard detection methods using the same unknown blood specimens. Objective: To compare the sensitivity, specificity and accuracy of NABs with standard detection methods. Material and Method: In this study, the microfilariae of Dirofilaria immitis was used as the representative model for filarial nematode. The PCR and LAMP primers were designed and synthesized according to the specific nucleotide regions of a small subunit gene of the parasite as well as the DNA probes. The fifty unknown blood samples were sent as a gift from Prasu Arthorn Animal Hospital, Faculty of Veterinary Science, Mahidol University. The samples were tested by using PCR, PCRLFD, PCR-AuNP, LAMP, LAMP-LFD, LAMP-AuNP, LAMP-turbidity and film blood smear. The efficacy of NABs was compared to a standard film blood smear in terms of sensitivity, specificity and accuracy. Results: Upon detection of fifty unknown blood samples, LAMP-LFD assay presented 100% of sensitivity, specificity and accuracy. The data revealed that sensitivity, specificity and accuracy of NABs varied from 66.67-100.00% when compared to a film blood smear stained with Giemsa dye. The data clearly indicated that LAMP-LFD was a preferred choice for the use as a point-of-care NABs. Conclusion: NABs were highly sensitive performing as a selective diagnostic tool that could be applied particularly as the rapid screening tests for filarial nematodes hence as a recommended epidemiological survey.


Assuntos
Técnicas Biossensoriais/veterinária , Dirofilaria immitis/isolamento & purificação , Doenças do Cão/diagnóstico , Filariose/veterinária , Microfilárias/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/veterinária , Animais , Técnicas Biossensoriais/métodos , Dirofilaria immitis/genética , Doenças do Cão/parasitologia , Cães , Filariose/diagnóstico , Filariose/parasitologia , Microfilárias/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Ácidos Nucleicos/análise
18.
Analyst ; 139(4): 742-8, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24326318

RESUMO

Research on birds has long played an important role in ecological investigations, as birds are relatively easily observed, and their high metabolic rates and diurnal habits make them quite evidently responsive to changes in their environments. A mechanistic understanding of such avian responses requires a better understanding of how variation in physiological state conditions avian behavior and integrates the effects of recent environmental changes. There is a great need for sensor systems that will allow free-flying birds to interact with their environment and make unconstrained decisions about their spatial location at the same time that their physiological state is being monitored in real time. We have developed a miniature needle-based enzymatic sensor system suitable for continuous real-time amperometric monitoring of uric acid levels in unconstrained live birds. The sensor system was constructed with Pt/Ir wire and Ag/AgCl paste. Uricase enzyme was immobilized on a 0.7 mm sensing cavity of Nafion/cellulose inner membrane to minimize the influences of background interferents. The sensor response was linear from 0.05 to 0.6 mM uric acid, which spans the normal physiological range for most avian species. We developed a two-electrode potentiostat system that drives the biosensor, reads the output current, and wirelessly transmits the data. In addition to extensive characterization of the sensor and system, we also demonstrate autonomous operation of the system by collecting in vivo extracellular uric acid measurements on a domestic chicken. The results confirm our needle-type sensor system's potential for real-time monitoring of birds' physiological state. Successful application of the sensor in migratory birds could open up a new era of studying both the physiological preparation for migration and the consequences of sustained avian flight.


Assuntos
Técnicas Biossensoriais , Monitorização Fisiológica , Ácido Úrico/análise , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/veterinária , Galinhas , Eletroquímica/métodos , Enzimas Imobilizadas/metabolismo , Irídio , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Monitorização Fisiológica/veterinária , Platina , Compostos de Prata/química , Urato Oxidase/química
19.
Fish Physiol Biochem ; 40(2): 385-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24037271

RESUMO

We developed a wireless monitoring system to monitor fish condition by tracking the change in whole cholesterol concentration. The whole cholesterol concentration of fish is a source of steroid hormones or indicator of immunity level, which makes its detection important for tracking physiological condition of fish. Wireless monitoring system comprises of mediator-type biosensor and wireless transmission device. Biosensor is implantable to fish body, and transmission device is so light, in that fish is allowed to swim freely during monitoring. Cholesterol esterase and oxidase were fixated on to the detection site of biosensor and used to detect the whole cholesterol concentration. However, cholesterol oxidase incorporates oxidation-reduction reaction of oxygen for detection, which concentration fluctuates easily due to change in environmental condition. Meanwhile, mediator-type biosensor enables monitoring of whole cholesterol concentration by using mediator to substitute that oxidation-reduction reaction of oxygen. Characteristic of fabricated mediator-type biosensor was tested. The sensor output current of mediator-type biosensor remained stable compared to output current of non-mediator-type biosensor under fluctuating oxygen concentration of 0-8 ppm, which implied that this sensor is less affected by change in dissolved oxygen concentration. That biosensor was then implanted into fish for wireless monitoring. As a result, approximately 48 h of real-time monitoring was successful.


Assuntos
Técnicas Biossensoriais/veterinária , Colesterol/metabolismo , Peixes/metabolismo , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Colesterol/sangue , Ciclídeos/sangue , Ciclídeos/metabolismo , Desenho de Equipamento , Peixes/sangue , Esclera/metabolismo , Tecnologia sem Fio
20.
Dev Biol (Basel) ; 135: 73-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23689885

RESUMO

Disease outbreaks caused by arthropod-borne animal viruses (arboviruses) resulting in significant livestock and economic losses world-wide appear to be increasing. Rift Valley fever (RVF) virus is an important arbovirus that causes lethal disease in cattle, camels, sheep and goats in Sub-Saharan Africa. There is concern that this virus could spread because of global warming, increased animal trade or through bioterrorism. This paper discusses the current and developing approaches to diagnosis of RVF. Diagnostic assays are available for RVF, but availability can be limited and there is a need for global harmonization. Continued improvement of standard serological and viral genome amplification approaches, including new embedded/syndromic testing, biosensor, emerging virus detection and characterization technologies is needed.


Assuntos
Febre do Vale de Rift/veterinária , Ruminantes , Testes Sorológicos/veterinária , África Subsaariana , Animais , Técnicas Biossensoriais/veterinária , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Genoma Viral , Genômica , Saúde Global , Técnicas de Amplificação de Ácido Nucleico , Febre do Vale de Rift/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA