Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.309
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(4): e1011252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683847

RESUMO

Pneumocystis jirovecii is a fungal pathogen that causes pneumocystis pneumonia, a disease that mainly affects immunocompromised individuals. This fungus has historically been hard to study because of our inability to grow it in vitro. One of the main drug targets in P. jirovecii is its dihydrofolate reductase (PjDHFR). Here, by using functional complementation of the baker's yeast ortholog, we show that PjDHFR can be inhibited by the antifolate methotrexate in a dose-dependent manner. Using deep mutational scanning of PjDHFR, we identify mutations conferring resistance to methotrexate. Thirty-one sites spanning the protein have at least one mutation that leads to resistance, for a total of 355 high-confidence resistance mutations. Most resistance-inducing mutations are found inside the active site, and many are structurally equivalent to mutations known to lead to resistance to different antifolates in other organisms. Some sites show specific resistance mutations, where only a single substitution confers resistance, whereas others are more permissive, as several substitutions at these sites confer resistance. Surprisingly, one of the permissive sites (F199) is without direct contact to either ligand or cofactor, suggesting that it acts through an allosteric mechanism. Modeling changes in binding energy between F199 mutants and drug shows that most mutations destabilize interactions between the protein and the drug. This evidence points towards a more important role of this position in resistance than previously estimated and highlights potential unknown allosteric mechanisms of resistance to antifolate in DHFRs. Our results offer unprecedented resources for the interpretation of mutation effects in the main drug target of an uncultivable fungal pathogen.


Assuntos
Farmacorresistência Fúngica , Antagonistas do Ácido Fólico , Metotrexato , Mutação , Pneumocystis carinii , Tetra-Hidrofolato Desidrogenase , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Pneumocystis carinii/genética , Pneumocystis carinii/enzimologia , Pneumocystis carinii/efeitos dos fármacos , Antagonistas do Ácido Fólico/farmacologia , Farmacorresistência Fúngica/genética , Metotrexato/farmacologia , Regulação Alostérica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Domínio Catalítico/genética
2.
Cell ; 147(7): 1564-75, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22196731

RESUMO

Recent work indicates a general architecture for proteins in which sparse networks of physically contiguous and coevolving amino acids underlie basic aspects of structure and function. These networks, termed sectors, are spatially organized such that active sites are linked to many surface sites distributed throughout the structure. Using the metabolic enzyme dihydrofolate reductase as a model system, we show that: (1) the sector is strongly correlated to a network of residues undergoing millisecond conformational fluctuations associated with enzyme catalysis, and (2) sector-connected surface sites are statistically preferred locations for the emergence of allosteric control in vivo. Thus, sectors represent an evolutionarily conserved "wiring" mechanism that can enable perturbations at specific surface positions to rapidly initiate conformational control over protein function. These findings suggest that sectors enable the evolution of intermolecular communication and regulation.


Assuntos
Regulação Alostérica , Escherichia coli/enzimologia , Modelos Moleculares , Proteínas/química , Escherichia coli/metabolismo , Evolução Molecular , Domínios PDZ , Proteínas/genética , Proteínas/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
3.
J Cell Biochem ; 125(3): e30533, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38345373

RESUMO

Dihydrofolate reductase (DHFR) is a ubiquitous enzyme that regulates the biosynthesis of tetrahydrofolate among various species of Plasmodium parasite. It is a validated target of the antifolate drug pyrimethamine (Pyr) in Plasmodium falciparum (Pf), but its clinical efficacy has been hampered due to the emergence of drug resistance. This has made the attempt to screen Food & Drug Administration-approved drugs against wild- and mutant PfDHFR by employing an in-silico pipeline to identify potent candidates. The current study has followed a virtual screening approach for identifying potential DHFR inhibitors from DrugBank database, based on a structure similarity search of candidates, followed by absorption, distribution, metabolism, and excretion estimation. The screened drugs were subjected to various parameters like docking, molecular mechanics with generalized born and surface area solvation calculations, and molecular simulations. We have thus identified two potential drug candidates, duloxetine and guanethidine, which can be repurposed to be tested for their efficacy against wild type and drug resistant falciparum malaria.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Preparações Farmacêuticas , Reposicionamento de Medicamentos , Malária/tratamento farmacológico , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Resistência a Medicamentos , Ácido Fólico
4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468677

RESUMO

We have studied the role of protein dynamics in chemical catalysis in the enzyme dihydrofolate reductase (DHFR), using a pump-probe method that employs pulsed-laser photothermal heating of a gold nanoparticle (AuNP) to directly excite a local region of the protein structure and transient absorbance to probe the effect on enzyme activity. Enzyme activity is accelerated by pulsed-laser excitation when the AuNP is attached close to a network of coupled motions in DHFR (on the FG loop, containing residues 116-132, or on a nearby alpha helix). No rate acceleration is observed when the AuNP is attached away from the network (distal mutant and His-tagged mutant) with pulsed excitation, or for any attachment site with continuous wave excitation. We interpret these results within an energy landscape model in which transient, site-specific addition of energy to the enzyme speeds up the search for reactive conformations by activating motions that facilitate this search.


Assuntos
Nanopartículas Metálicas/química , Modelos Moleculares , Tetra-Hidrofolato Desidrogenase/química , Catálise , Domínio Catalítico/efeitos da radiação , Ouro/química , Calefação/efeitos adversos , Cinética , Nanopartículas Metálicas/efeitos da radiação , Conformação Proteica/efeitos da radiação , Tetra-Hidrofolato Desidrogenase/ultraestrutura
5.
Chem Biodivers ; 21(6): e202400200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570192

RESUMO

In order to develop novel antimicrobial agents, we prepared quinoline bearing pyrimidine analogues 2-7, 8 a-d and 9 a-d and their structures were elucidated by spectroscopic techniques. Furthermore, our second aim was to predict the interactions between the active compounds and enzymes (DNA gyrase and DHFR). In this work, fourteen pyrimido[4,5-b]quinoline derivatives were prepared and assessed for their antimicrobial potential by estimating zone of inhibition. All the screened candidates displayed antibacterial potential with zone of inhibition range of 9-24 mm compared with ampicillin (20-25 mm) as a reference drug. Moreover, the target derivatives 2 (ZI=16), 9 c (ZI=17 mm) and 9 d (ZI=16 mm) recorded higher antifungal activity against C. albicans to that exhibited by the antifungal drug amphotericin B (ZI=15 mm). Finally, the most potent pyrimidoquinoline compounds (2, 3, 8 c, 8 d, 9 c and 9 d) were docked inside DHFR and DNA gyrase active sites and they recorded excellent fitting within the active regions of DNA gyrase and DHFR. These outcomes revealed us that compounds (2, 3, 8 c, 8 d, 9 c and 9 d) could be lead compounds to discover novel antibacterial candidates.


Assuntos
Antibacterianos , Candida albicans , DNA Girase , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Quinolinas , Tetra-Hidrofolato Desidrogenase , Quinolinas/química , Quinolinas/farmacologia , DNA Girase/metabolismo , DNA Girase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Candida albicans/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Relação Estrutura-Atividade , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Estrutura Molecular , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , Relação Dose-Resposta a Droga
6.
Angew Chem Int Ed Engl ; 63(22): e202403098, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38545954

RESUMO

Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.


Assuntos
Biocatálise , Código Genético , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Engenharia de Proteínas , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
7.
PLoS Comput Biol ; 18(2): e1009855, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143481

RESUMO

Antimicrobial resistance presents a significant health care crisis. The mutation F98Y in Staphylococcus aureus dihydrofolate reductase (SaDHFR) confers resistance to the clinically important antifolate trimethoprim (TMP). Propargyl-linked antifolates (PLAs), next generation DHFR inhibitors, are much more resilient than TMP against this F98Y variant, yet this F98Y substitution still reduces efficacy of these agents. Surprisingly, differences in the enantiomeric configuration at the stereogenic center of PLAs influence the isomeric state of the NADPH cofactor. To understand the molecular basis of F98Y-mediated resistance and how PLAs' inhibition drives NADPH isomeric states, we used protein design algorithms in the osprey protein design software suite to analyze a comprehensive suite of structural, biophysical, biochemical, and computational data. Here, we present a model showing how F98Y SaDHFR exploits a different anomeric configuration of NADPH to evade certain PLAs' inhibition, while other PLAs remain unaffected by this resistance mechanism.


Assuntos
Antagonistas do Ácido Fólico , Infecções Estafilocócicas , Farmacorresistência Bacteriana/genética , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Humanos , NADP/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/química , Trimetoprima/metabolismo , Trimetoprima/farmacologia
8.
J Chem Inf Model ; 63(15): 4839-4849, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37491825

RESUMO

Dihydrofolate reductase (DHFR) is an important drug target and a highly studied model protein for understanding enzyme dynamics. DHFR's crucial role in folate synthesis renders it an ideal candidate to understand protein function and protein evolution mechanisms. In this study, to understand how a newly proposed DHFR inhibitor, 4'-deoxy methyl trimethoprim (4'-DTMP), alters evolutionary trajectories, we studied interactions that lead to its superior performance over that of trimethoprim (TMP). To elucidate the inhibition mechanism of 4'-DTMP, we first confirmed, both computationally and experimentally, that the relative binding free energy cost for the mutation of TMP and 4'-DTMP is the same, pointing the origin of the characteristic differences to be kinetic rather than thermodynamic. We then employed an interaction-based analysis by focusing first on the active site and then on the whole enzyme. We confirmed that the polar modification in 4'-DTMP induces additional local interactions with the enzyme, particularly, the M20 loop. These changes are propagated to the whole enzyme as shifts in the hydrogen bond networks. To shed light on the allosteric interactions, we support our analysis with network-based community analysis and show that segmentation of the loop domain of inhibitor-bound DHFR must be avoided by a successful inhibitor.


Assuntos
Escherichia coli , Antagonistas do Ácido Fólico , Escherichia coli/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Timidina Monofosfato , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Trimetoprima/farmacologia , Trimetoprima/química , Trimetoprima/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(3): 1485-1495, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31911473

RESUMO

Many large proteins suffer from slow or inefficient folding in vitro. It has long been known that this problem can be alleviated in vivo if proteins start folding cotranslationally. However, the molecular mechanisms underlying this improvement have not been well established. To address this question, we use an all-atom simulation-based algorithm to compute the folding properties of various large protein domains as a function of nascent chain length. We find that for certain proteins, there exists a narrow window of lengths that confers both thermodynamic stability and fast folding kinetics. Beyond these lengths, folding is drastically slowed by nonnative interactions involving C-terminal residues. Thus, cotranslational folding is predicted to be beneficial because it allows proteins to take advantage of this optimal window of lengths and thus avoid kinetic traps. Interestingly, many of these proteins' sequences contain conserved rare codons that may slow down synthesis at this optimal window, suggesting that synthesis rates may be evolutionarily tuned to optimize folding. Using kinetic modeling, we show that under certain conditions, such a slowdown indeed improves cotranslational folding efficiency by giving these nascent chains more time to fold. In contrast, other proteins are predicted not to benefit from cotranslational folding due to a lack of significant nonnative interactions, and indeed these proteins' sequences lack conserved C-terminal rare codons. Together, these results shed light on the factors that promote proper protein folding in the cell and how biomolecular self-assembly may be optimized evolutionarily.


Assuntos
Proteínas de Escherichia coli/química , Proteínas Intrinsicamente Desordenadas/química , Dobramento de Proteína , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Simulação de Dinâmica Molecular , Fosfotransferases/química , Fosfotransferases/genética , Fosfotransferases/metabolismo , Biossíntese de Proteínas , Proteínas Metiltransferases/química , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
10.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769342

RESUMO

Our previous research suggests an important regulatory role of CK2-mediated phosphorylation of enzymes involved in the thymidylate biosynthesis cycle, i.e., thymidylate synthase (TS), dihydrofolate reductase (DHFR), and serine hydroxymethyltransferase (SHMT). The aim of this study was to show whether silencing of the CK2α gene affects TS and DHFR expression in A-549 cells. Additionally, we attempted to identify the endogenous kinases that phosphorylate TS and DHFR in CCRF-CEM and A-549 cells. We used immunodetection, immunofluorescence/confocal analyses, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), in-gel kinase assay, and mass spectrometry analysis. Our results demonstrate that silencing of the CK2α gene in lung adenocarcinoma cells significantly increases both TS and DHFR expression and affects their cellular distribution. Additionally, we show for the first time that both TS and DHFR are very likely phosphorylated by endogenous CK2 in two types of cancer cells, i.e., acute lymphoblastic leukaemia and lung adenocarcinoma. Moreover, our studies indicate that DHFR is phosphorylated intracellularly by CK2 to a greater extent in leukaemia cells than in lung adenocarcinoma cells. Interestingly, in-gel kinase assay results indicate that the CK2α' isoform was more active than the CK2α subunit. Our results confirm the previous studies concerning the physiological relevance of CK2-mediated phosphorylation of TS and DHFR.


Assuntos
Adenocarcinoma de Pulmão , Tetra-Hidrofolato Desidrogenase , Humanos , Fosforilação , Tetra-Hidrofolato Desidrogenase/química , Timidilato Sintase/metabolismo
11.
Molecules ; 28(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770958

RESUMO

Dihydrofolate reductase (DHFR) is a crucial enzyme that maintains the levels of 5,6,7,8-tetrahydrofolate (THF) required for the biological synthesis of the building blocks of DNA, RNA, and proteins. Over-activation of DHFR results in the progression of multiple pathological conditions such as cancer, bacterial infection, and inflammation. Therefore, DHFR inhibition plays a major role in treating these illnesses. Sesquiterpenes of various types are prime metabolites derived from the marine sponge Dactylospongia elegans and have demonstrated antitumor, anti-inflammation, and antibacterial capacities. Here, we investigated the in silico potential inhibitory effects of 87 D. elegans metabolites on DHFR and predicted their ADMET properties. Compounds were prepared computationally for molecular docking into the selected crystal structure of DHFR (PDB: 1KMV). The docking scores of metabolites 34, 28, and 44 were the highest among this series (gscore values of -12.431, -11.502, and -10.62 kcal/mol, respectively), even above the co-crystallized inhibitor SRI-9662 score (-10.432 kcal/mol). The binding affinity and protein stability of these top three scored compounds were further estimated using molecular dynamic simulation. Compounds 34, 28, and 44 revealed high binding affinity to the enzyme and could be possible leads for DHFR inhibitors; however, further in vitro and in vivo investigations are required to validate their potential.


Assuntos
Antagonistas do Ácido Fólico , Poríferos , Sesquiterpenos , Animais , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Tetra-Hidrofolato Desidrogenase/química , Antagonistas do Ácido Fólico/química , Poríferos/metabolismo , Sesquiterpenos/farmacologia
12.
J Chem Inf Model ; 62(24): 6715-6726, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35984987

RESUMO

Antibiotic resistance is a global health problem in which mutations occurring in functional proteins render drugs ineffective. The working mechanisms of the arising mutants are seldom apparent; a methodology to decipher these mechanisms systematically would render devising therapies to control the arising mutational pathways possible. Here we utilize Cα-Cß bond vector relaxations obtained from moderate length MD trajectories to determine conduits for functionality of the resistance conferring mutants of Escherichia coli dihydrofolate reductase. We find that the whole enzyme is synchronized to the motions of the substrate, irrespective of the mutation introducing gain-of-function or loss-of function. The total coordination of the motions suggests changes in the hydrogen bond dynamics with respect to the wild type as a possible route to determine and classify the mode-of-action of individual mutants. As a result, nine trimethoprim-resistant point mutations arising frequently in evolution experiments are categorized. One group of mutants that display the largest occurrence (L28R, W30G) work directly by modifying the dihydrofolate binding region. Conversely, W30R works indirectly by the formation of the E139-R30 salt bridge which releases energy resulting from tight binding by distorting the binding cavity. A third group (D27E, F153S, I94L) arising as single, resistance invoking mutants in evolution experiment trajectories allosterically and dynamically affects a hydrogen bonding motif formed at residues 59-69-71 which in turn modifies the binding site dynamics. The final group (I5F, A26T, R98P) consists of those mutants that have properties most similar to the wild type; these only appear after one of the other mutants is fixed on the protein structure and therefore display clear epistasis. Thus, we show that the binding event is governed by the entire enzyme dynamics while the binding site residues play gating roles. The adjustments made in the total enzyme in response to point mutations are what make quantifying and pinpointing their effect a hard problem. Here, we show that hydrogen bond dynamics recorded on sub-µs time scales provide the necessary fingerprints to decipher the various mechanisms at play.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Tetra-Hidrofolato Desidrogenase , Escherichia coli/enzimologia , Ligação de Hidrogênio , Cinética , Mutação , Mutação Puntual , Tetra-Hidrofolato Desidrogenase/química , Proteínas de Escherichia coli/química
13.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163439

RESUMO

The presence of protein structures with atypical folds in the Protein Data Bank (PDB) is rare and may result from naturally occurring knots or crystallographic errors. Proper characterisation of such folds is imperative to understanding the basis of naturally existing knots and correcting crystallographic errors. If left uncorrected, such errors can frustrate downstream experiments that depend on the structures containing them. An atypical fold has been identified in P. falciparum dihydrofolate reductase (PfDHFR) between residues 20-51 (loop 1) and residues 191-205 (loop 2). This enzyme is key to drug discovery efforts in the parasite, necessitating a thorough characterisation of these folds. Using multiple sequence alignments (MSA), a unique insert was identified in loop 1 that exacerbates the appearance of the atypical fold-giving it a slipknot-like topology. However, PfDHFR has not been deposited in the knotted proteins database, and processing its structure failed to identify any knots within its folds. The application of protein homology modelling and molecular dynamics simulations on the DHFR domain of P. falciparum and those of two other organisms (E. coli and M. tuberculosis) that were used as molecular replacement templates in solving the PfDHFR structure revealed plausible unentangled or open conformations of these loops. These results will serve as guides for crystallographic experiments to provide further insights into the atypical folds identified.


Assuntos
Plasmodium falciparum/enzimologia , Alinhamento de Sequência/métodos , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Cristalografia por Raios X , Bases de Dados de Proteínas , Modelos Moleculares , Simulação de Dinâmica Molecular , Plasmodium falciparum/genética , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
14.
Biochemistry ; 60(50): 3822-3828, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34875176

RESUMO

Evolution of dihydrofolate reductase (DHFR) has been studied using the enzyme from Escherichia coli DHFR (ecDHFR) as a model, but less studies have used the enzyme from Homo sapiens DHFR (hsDHFR). Each enzyme maintains a short and narrow distribution of hydride donor-acceptor distances (DAD) at the tunneling ready state (TRS). Evolution of the enzyme was previously studied in ecDHFR where three key sites were identified as important to the catalyzed reaction. The corresponding sites in hsDHFR are F28, 62-PEKN, and 26-PPLR. Each of these sites was studied here through the creation of mutant variants of the enzyme and measurements of the temperature dependence of the intrinsic kinetic isotope effects (KIEs) on the reaction. F28 is mutated first to M (F28M) and then to the L of the bacterial enzyme (F28L). The KIEs of the F28M variant are larger and more temperature-dependent than wild-type (WT), suggesting a broader and longer average DAD at the TRS. To more fully mimic ecDHFR, we also study a triple mutant of the human enzyme (F32L-PP26N-PEKN62G). Remarkably, the intrinsic KIEs, while larger in magnitude, are temperature-independent like the WT enzymes. We also construct deletion mutations of hsDHFR removing both the 62-PEKN and 26-PPLR sequences. The results mirror those described previously for insertion mutants of ecDHFR. Taken together, these results suggest a balancing act during DHFR evolution between achieving an optimal TRS for hydride transfer and preventing product inhibition arising from the different intercellular pools of NADPH and NADP+ in prokaryotic and eukaryotic cells.


Assuntos
Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Substituição de Aminoácidos , Biocatálise , Escherichia coli/enzimologia , Escherichia coli/genética , Evolução Molecular , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Tetra-Hidrofolato Desidrogenase/genética , Termodinâmica
15.
Biochemistry ; 60(35): 2663-2671, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34428034

RESUMO

Conformational fluctuations from ground-state to sparsely populated but functionally important excited states play a key role in enzyme catalysis. For Escherichia coli dihydrofolate reductase (DHFR), the release of the product tetrahydrofolate (THF) and oxidized cofactor NADP+ occurs through exchange between closed and occluded conformations of the Met20 loop. A "dynamic knockout" mutant of E. coli DHFR, where the E. coli sequence in the Met20 loop is replaced by the human sequence (N23PP/S148A), models human DHFR and is incapable of accessing the occluded conformation. 1H and 15N CPMG relaxation dispersion analysis for the ternary product complex of the mutant enzyme with NADP+ and the product analogue 5,10-dideazatetrahydrofolate (ddTHF) (E:ddTHF:NADP+) reveals the mechanism by which NADP+ is released when the Met20 loop cannot undergo the closed-to-occluded conformational transition. Two excited states were observed: one related to a faster, relatively high-amplitude conformational fluctuation in areas near the active site, associated with the shuttling of the nicotinamide ring of the cofactor out of the active site, and the other to a slower process where ddTHF undergoes small-amplitude motions within the binding site that are consistent with disorder observed in a room-temperature X-ray crystal structure of the N23PP/S148A mutant protein. These motions likely arise due to steric conflict of the pterin ring of ddTHF with the ribose-nicotinamide moiety of NADP+ in the closed active site. These studies demonstrate that site-specific kinetic information from relaxation dispersion experiments can provide intimate details of the changes in catalytic mechanism that result from small changes in local amino acid sequence.


Assuntos
Escherichia coli/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolatos/química , Sítios de Ligação , Domínio Catalítico , Cinética , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Proteica
16.
Angiogenesis ; 24(1): 97-110, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32935224

RESUMO

Gene therapies that chronically suppress vascular endothelial growth factor (VEGF) represent a new approach for managing retinal vascular leakage and neovascularization. However, constitutive suppression of VEGF in the eye may have deleterious side effects. Here, we developed a novel strategy to introduce Flt23k, a decoy receptor that binds intracellular VEGF, fused to the destabilizing domain (DD) of Escherichia coli dihydrofolate reductase (DHFR) into the retina. The expressed DHFR(DD)-Flt23k fusion protein is degraded unless "switched on" by administering a stabilizer; in this case, the antibiotic trimethoprim (TMP). Cells transfected with the DHFR(DD)-Flt23k construct expressed the fusion protein at levels correlated with the TMP dose. Stabilization of the DHFR(DD)-Flt23k fusion protein by TMP was able to inhibit intracellular VEGF in hypoxic cells. Intravitreal injection of self-complementary adeno-associated viral vector (scAAV)-DHFR(DD)-Flt23k and subsequent administration of TMP resulted in tunable suppression of ischemia-induced retinal neovascularization in a rat model of oxygen-induced retinopathy (OIR). Hence, our study suggests a promising novel approach for the treatment of retinal neovascularization. Schematic diagram of the tunable system utilizing the DHFR(DD)-Flt23k approach to reduce VEGF secretion. a The schematic shows normal VEGF secretion. b Without the ligand TMP, the DHFR(DD)-Flt23k protein is destabilized and degraded by the proteasome. c In the presence of the ligand TMP, DHFR(DD)-Flt23k is stabilized and sequestered in the ER, thereby conditionally inhibiting VEGF. Green lines indicate the intracellular and extracellular distributions of VEGF. Blue lines indicate proteasomal degradation of the DHFR(DD)-Flt23k protein. Orange lines indicate the uptake of cell-permeable TMP. TMP, trimethoprim; VEGF, vascular endothelial growth factor; ER, endoplasmic reticulum.


Assuntos
Terapia Genética , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Neovascularização Retiniana/genética , Neovascularização Retiniana/terapia , Animais , Hipóxia Celular , Dependovirus/metabolismo , Modelos Animais de Doenças , Feminino , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Injeções Intravítreas , Domínios Proteicos , Ratos Sprague-Dawley , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Transgenes , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Bioorg Med Chem Lett ; 40: 127903, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33713779

RESUMO

Folate and related derivatives are essential small molecules required for survival. Of significant interest is the biological role and necessity of folate in the crosstalk between commensal organisms and their respective hosts, including the tremendously complex human distal gut microbiome. Here, we designed a folate-based probe consisting of a photo-crosslinker to detect and quantitate folate-binding proteins from proteomic samples. We demonstrate the selectivity of our probe for the well-established human folate-binding protein dihydrofolate reductase and show no promiscuous labeling occurs with human caspase-3 or bovine serum albumin, which served as negative controls. Affinity-based enrichment of folate-binding proteins from an E. coli lysate in combination with mass spectrometry proteomics verified the ability of our probe to isolate low-abundance folate-dependent proteins. We envision that our probe will serve as a tool to elucidate the roles of commensal microbial folate-binding proteins in health and microbiome-related diseases.


Assuntos
Reagentes de Ligações Cruzadas/química , Transportadores de Ácido Fólico/análise , Ácido Fólico/química , Sondas Moleculares/química , Caspase 3/química , Cromatografia Líquida de Alta Pressão , Escherichia coli/química , Humanos , Microbiota/fisiologia , Processos Fotoquímicos , Proteômica , Soroalbumina Bovina/metabolismo , Espectrometria de Massas em Tandem , Tetra-Hidrofolato Desidrogenase/química
18.
Mol Divers ; 25(2): 861-876, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32172491

RESUMO

In the present investigation, a series of dihydrotriazine derivatives-bearing 5-aryloxypyrazole moieties were synthesized and their structures were confirmed by different spectral tools. The biological evaluation in vitro revealed that some of the target compounds exerted good antibacterial and antifungal activity in comparison with the reference drugs. Among these novel hybrids, compound 10d showed the most potent activity with minimum inhibitory concentration values (MIC) of 0.5 µg/mL against S. aureus 4220, MRSA 3506 and E. coli 1924 strain. The cytotoxic activity of the compounds 6d, 6m, 10d and 10g was assessed in MCF-7 and HeLa cells. Growth kinetics study showed significant inhibition of bacterial growth when treated with different conc. of 10d. In vitro enzyme study implied that compound 10d exerted its antibacterial activity through DHFR inhibition. Moreover, significant inhibition of biofilm formation was observed in bacterial cells treated with MIC conc. of 10d as visualized by SEM micrographs. Twenty-nine target compounds were designed, synthesized and evaluated in terms of their antibacterial and antifungal activities.


Assuntos
Antibacterianos , Triazinas , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/química , Triazinas/síntese química , Triazinas/química , Triazinas/farmacologia
19.
Mol Cell ; 49(1): 133-44, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23219534

RESUMO

What are the molecular properties of proteins that fall on the radar of protein quality control (PQC)? Here we mutate the E. coli's gene encoding dihydrofolate reductase (DHFR) and replace it with bacterial orthologous genes to determine how components of PQC modulate fitness effects of these genetic changes. We find that chaperonins GroEL/ES and protease Lon compete for binding to molten globule intermediate of DHFR, resulting in a peculiar symmetry in their action: overexpression of GroEL/ES and deletion of Lon both restore growth of deleterious DHFR mutants and most of the slow-growing orthologous DHFR strains. Kinetic steady-state modeling predicts and experimentation verifies that mutations affect fitness by shifting the flux balance in cellular milieu between protein production, folding, and degradation orchestrated by PQC through the interaction with folding intermediates.


Assuntos
Escherichia coli/genética , Mutação de Sentido Incorreto , Dobramento de Proteína , Tetra-Hidrofolato Desidrogenase/metabolismo , Algoritmos , Motivos de Aminoácidos , Sequência de Bases , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Aptidão Genética , Homeostase , Cinética , Viabilidade Microbiana , Modelos Biológicos , Dados de Sequência Molecular , Protease La/genética , Protease La/metabolismo , Biossíntese de Proteínas , Proteólise , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética
20.
J Chem Phys ; 154(19): 195103, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34240890

RESUMO

Interactions among ions and their specific interactions with macromolecular solutes are known to play a central role in biomolecular stability. However, similar effects in the conformational stability of protein loops that play functional roles, such as binding ligands, proteins, and DNA/RNA molecules, remain relatively unexplored. A well-characterized enzyme that has such a functional loop is Escherichia coli dihydrofolate reductase (ecDHFR), whose so-called M20 loop has been observed in three ordered conformations in crystal structures. To explore how solution ionic strengths may affect the M20 loop conformation, we proposed a reaction coordinate that could quantitatively describe the loop conformation and used it to classify the loop conformations in representative ecDHFR x-ray structures crystallized in varying ionic strengths. The Protein Data Bank survey indicates that at ionic strengths (I) below the intracellular ion concentration-derived ionic strength in E. coli (I ≤ 0.237M), the ecDHFR M20 loop tends to adopt open/closed conformations, and rarely an occluded loop state, but when I is >0.237M, the loop tends to adopt closed/occluded conformations. Distance-dependent electrostatic potentials around the most mobile M20 loop region from molecular dynamics simulations of ecDHFR in equilibrated CaCl2 solutions of varying ionic strengths show that high ionic strengths (I = 0.75/1.5M) can preferentially stabilize the loop in closed/occluded conformations. These results nicely correlate with conformations derived from ecDHFR structures crystallized in varying ionic strengths. Altogether, our results suggest caution in linking M20 loop conformations derived from crystal structures solved at ionic strengths beyond that tolerated by E. coli to the ecDHFR function.


Assuntos
Cloreto de Cálcio/química , Escherichia coli/enzimologia , Tetra-Hidrofolato Desidrogenase/química , Simulação de Dinâmica Molecular , Concentração Osmolar , Conformação Proteica , Soluções , Tetra-Hidrofolato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA