Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910170

RESUMO

A novel bacterial strain, designated as PHS-Z3T, was isolated from a marine sponge belonging to the genus Theonella on the Puerto Galera Deep Monkey, Philippines. Cells of PHS-Z3T were Gram-stain-positive, motile, oxidase- and catalase-positive, white-pigmented, spore-forming, short rods that could grow at 10-40 °C (optimum, 20 °C), pH 6.0-9.5 (optimum, pH 7.5) and with 2-16 % (w/v) NaCl (optimum, 7 %). The 16S rRNA gene sequence of PHS-Z3T showed 97.9 %, 96.7 %, and 96.2 % identities to Paenibacillus mendelii C/2T, Paenibacillus oenotherae DT7-4T and Paenibacillus aurantiacus RC11T, respectively. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that PHS-Z3T formed an independent cluster with Paenibacillus mendelii C/2T. The total genome of PHS-Z3T was approximately 7 613 364 bp in size with a DNA G+C content of 51.6 %. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between PHS-Z3T and other type strains of species of the genus Paenibacillus were 68.0-81.4 % [ANI by blast (ANIb)], 83.0-88.0 % [ANI by MUMmer (ANIm)] and 12.7-32.1 % (dDDH). The dDDH and ANI values were below the standard cut-off criteria for delineation of bacterial species. The percentage of conserved proteins (POCP) values between the genome of PHS-Z3T and those of members of the genus Paenibacillus were 39.7-75.7 %, while the average amino acid identity (AAI) values were 55.9-83.7 %. The sole respiratory quinone in the strain was MK-7, and the predominant fatty acids were anteiso-C15 : 0 and C16 : 0. The major polar lipids of PHS-Z3T consisted of diphosphatidylglycerol, phospholipid and phosphatidylglycerol. The characteristic amino acid in the cell wall of PHS-Z3T was diamino heptanoic acid (meso-DAP). On the basis of the molecular, physiological, biochemical and chemotaxonomic features, strain PHS-Z3T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus spongiae sp. nov. is proposed, with the type strain PHS-Z3T (=MCCC 1K07848T=KCTC 43443T).


Assuntos
Paenibacillus , Theonella , Animais , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Paenibacillus/genética , Aminoácidos
2.
J Nat Prod ; 86(9): 2216-2227, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37609780

RESUMO

Six new thiazole-containing cyclic peptides, the cyclotheonellazoles D-I (1-6), were isolated from the Australian marine sponge Theonella sp. (2131) with their structures assigned by comprehensive 1D and 2D NMR spectroscopic and MS spectrometric analyses, Marfey's derivatization studies, and comparison with time-dependent density functional theory (TDDFT) calculated ECD data. The Type 2 azole-homologated peptides herein comprise up to five nonproteinogenic amino acids, including the protease transition state mimic α-keto-ß-amino acid residue 3-amino-4-methyl-2-oxohexanoic acid (Amoha), while 1-3 also contain a terminal hydantoin residue not previously found in cyclotheonellazoles. The keramamides A (7) and L (8) were reisolated affording expanded exploration of their biological activities. The peptides were examined for protease inhibitory activities against two mammalian serine proteases (elastase and chymotrypsin) and SARS-CoV-2 3-chymotrypsin-like protease (3CLpro), a validated antiviral therapeutic target for COVID-19. Peptides 1-6 and keramamide A (7) displayed potent nanomolar inhibition of elastase (IC50 16.0 to 61.8 nM), while 7 also contained modest inhibition of chymotrypsin and SARS-CoV-2 3CLpro (IC50 0.73 and 1.1 µM, respectively). The cyclotheonellazoles D-E (1-3) do not affect the viability of human breast, ovarian, and colon cancer cells (>100 µM), with the cytotoxicity previously reported for keramamide L (8) not replicated (inactive >20 µM).


Assuntos
COVID-19 , Theonella , Animais , Humanos , Peptídeos Cíclicos/química , Theonella/química , Tiazóis/farmacologia , Elastase Pancreática , Quimotripsina , Estrutura Molecular , Austrália , SARS-CoV-2 , Peptídeos/química , Aminoácidos/química , Mamíferos
3.
Mar Drugs ; 21(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37233485

RESUMO

The marine environment is considered a vast source in the discovery of structurally unique bioactive secondary metabolites. Among marine invertebrates, the sponge Theonella spp. represents an arsenal of novel compounds ranging from peptides, alkaloids, terpenes, macrolides, and sterols. In this review, we summarize the recent reports on sterols isolated from this amazing sponge, describing their structural features and peculiar biological activities. We also discuss the total syntheses of solomonsterols A and B and the medicinal chemistry modifications on theonellasterol and conicasterol, focusing on the effect of chemical transformations on the biological activity of this class of metabolites. The promising compounds identified from Theonella spp. possess pronounced biological activity on nuclear receptors or cytotoxicity and result in promising candidates for extended preclinical evaluations. The identification of naturally occurring and semisynthetic marine bioactive sterols reaffirms the utility of examining natural product libraries for the discovery of new therapeutical approach to human diseases.


Assuntos
Fitosteróis , Theonella , Animais , Humanos , Esteróis/farmacologia , Esteróis/química , Receptores Citoplasmáticos e Nucleares
4.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985496

RESUMO

Two previously unreported onnamide analogs, 2Z- and 6Z-onnamides A (1 and 2), were isolated from the marine sponge Theonella conica collected at Amami-Oshima Is., Kagoshima Prefecture, Japan. Structures of compounds 1 and 2 were elucidated by spectral analysis. Structure-activity relationships (SARs) for effects on histone modifications and cytotoxicity against HeLa and P388 cells were characterized. The geometry in the polyene systems of onnamides affected the histone modification levels and cytotoxicity.


Assuntos
Poríferos , Theonella , Animais , Humanos , Theonella/química , Poríferos/química , Piranos , Células HeLa , Polienos/farmacologia , Estrutura Molecular
5.
Mar Drugs ; 20(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36354984

RESUMO

We reported three new members of the theonellapeptolide family from theonellapeptolide II series, namely theonellapeptolides IIb (1), IIa (2), IIc (3), and three known members-IId (4), IIe (5), and Id (6)-from Kodingarengan marine sponge Theonella swinhoei collected in Makassar, Indonesia. The structures of tridecadepsipeptides 1-3, including the absolute configurations of their amino acids, were determined by the integrated NMR and tandem MS analyses followed by Marfey's analysis. To the best of our knowledge, 1 and 2 are the first theonellapeptolide-type compounds to have a valine residue with D configuration at residue position 6. The isolated theonellapeptolide-type compounds 1-6 showed selective cytotoxic activity against human pancreatic MIA PaCa-2 cancer cells in a nutrient-deprived medium. Among them, the most potent preferential cytotoxicity was observed in new theonellapeptolide IIc (3) and known IId (4), IIe (5), and Id (6).


Assuntos
Antineoplásicos , Theonella , Animais , Humanos , Indonésia , Theonella/química , Antineoplásicos/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular
6.
Mar Drugs ; 20(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35049886

RESUMO

Theonella swinhoei is a fairly common inhabitant of reefs throughout the Indian and Pacific Oceans. Metabolomic analyses of samples of T. swinhoei collected in different depths in the Gulf of Aqaba revealed two chemotypes differing in the profiles of the theonellamides they produce, some of which seem to be unknown. Driven by this finding, we examined a sample of T. swinhoei collected more than 40 years ago in the southern part of the Gulf of Aqaba. Large-scale extract of this sample yielded four theonellamides, the known theopalauamide (4), as the major component, and three new metabolites, theonellamide J (1), 5-cis-Apoa-theopalauamide (2), and theonellamide K (3), as the minor components. The planar structure of these complex cyclic glycopeptides was elucidated by combination of 1D and 2D NMR techniques and HRESIMS. The absolute configuration of the amino acids was established by Marfey's and advanced Marfey's methods, and the absolute configuration of its galactose unit using "Tanaka's method" for monosaccharides. The biological activity of the pure compounds was tested for antibacterial activity and for cytotoxicity to HTC-116 cell line. The compounds presented significant cytotoxicity against the HTC-116 cell line, illuminating the importance of the Apoa subunit for the activity.


Assuntos
Antineoplásicos/farmacologia , Glicopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Poríferos , Theonella , Animais , Antineoplásicos/química , Organismos Aquáticos , Linhagem Celular Tumoral/efeitos dos fármacos , Glicopeptídeos/química , Humanos , Oceano Índico , Oceano Pacífico , Peptídeos Cíclicos/química
7.
Proc Natl Acad Sci U S A ; 115(8): 1718-1723, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29439203

RESUMO

Marine sponges are prolific sources of unique bioactive natural products. The sponge Theonella swinhoei is represented by several distinct variants with largely nonoverlapping chemistry. For the Japanese chemotype Y harboring diverse complex polyketides and peptides, we previously provided genomic and functional evidence that a single symbiont, the filamentous, multicellular organism "Candidatus Entotheonella factor," produces almost all of these compounds. To obtain further insights into the chemistry of "Entotheonella," we investigated another phylotype, "Candidatus Entotheonella serta," present in the T. swinhoei WA sponge chemotype, a source of theonellamide- and misakinolide-type compounds. Unexpectedly, considering the lower chemical diversity, sequencing of individual bacterial filaments revealed an even larger number of biosynthetic gene regions than for Ca E. factor, with virtually no overlap. These included genes for misakinolide and theonellamide biosynthesis, the latter assigned by comparative genomic and metabolic analysis of a T. swinhoei chemotype from Israel, and by biochemical studies. The data suggest that both compound families, which were among the earliest model substances to study bacterial producers in sponges, originate from the same bacterium in T. swinhoei WA. They also add evidence that metabolic richness and variability could be a more general feature of Entotheonella symbionts.


Assuntos
Fenômenos Fisiológicos Bacterianos , Simbiose , Theonella/microbiologia , Animais , Bactérias/química , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Genômica , Policetídeos/metabolismo , Theonella/química , Theonella/fisiologia
8.
Ecotoxicol Environ Saf ; 222: 112522, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304132

RESUMO

Arsenic (As) contamination of freshwater resources constitutes a major environmental issue affecting over 200 million people worldwide. Although the use of microorganisms for the bioremediation of As has been well studied, only very few candidates have been identified to date. Here, we investigated bacteria associated with the Red Sea sponge Theonella swinhoei and their potential to reduce As in a low-salinity liquid medium. This Indo-Pacific common sponge has been shown to hyper-accumulate As, at an average concentration of 8600 mg/g-1 in an environment uncontaminated by arsenic or barium. Four isolated strains of bacteria exhibited arsenic reduction potential by transforming inorganic As in the form of arsenate (iAsV) to arsenite (iAsIII). Two of these isolates were identified as Alteromonas macleodii and Pseudovibrio ascidisceicola, and the other two isolates, both belonging to the same species, were identified as Pseudovibrio denitrificans. The four isolates were then cultured in a low-salinity iAsV-rich medium (5 mM) and As concentration was measured over time using a specifically designed high-performance liquid chromatograph coupled to a mass spectrometer (HPLC-MS). Out of the four isolates, A. macleodii and P. ascidisceicola grew successfully in a low-salinity liquid medium and reduced AsV to AsIII at an average rate of 0.094 and 0.083 mM/h, respectively, thereby demonstrating great potential for the bioremediation of As-contaminated groundwater.


Assuntos
Arsênio , Rhodobacteraceae , Theonella , Alteromonas , Animais , Arseniatos , Biodegradação Ambiental , Humanos , Filogenia , RNA Ribossômico 16S
9.
Chembiochem ; 21(4): 564-571, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31430416

RESUMO

Uncultivated bacterial symbionts from the candidate genus "Entotheonella" have been shown to produce diverse natural products previously attributed to their sponge hosts. In addition to these known compounds, "Entotheonella" genomes contain rich sets of biosynthetic gene clusters that lack identified natural products. Among these is a small type III polyketide synthase (PKS) cluster, one of only three clusters present in all known "Entotheonella" genomes. This conserved "Entotheonella" PKS (cep) cluster encodes the type III PKS CepA and the putative methyltransferase CepB. Herein, the characterization of CepA as an enzyme involved in phenolic lipid biosynthesis is reported. In vitro analysis showed a specificity for alkyl starter substrates and the production of tri- and tetraketide pyrones and tetraketide resorcinols. The conserved distribution of the cep cluster suggests an important role for the phenolic lipid polyketides produced in "Entotheonella" variants.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Policetídeo Sintases/química , Theonella/microbiologia , Animais , Bactérias/genética , Proteínas de Bactérias/genética , Família Multigênica , Policetídeo Sintases/genética , Simbiose
10.
J Nat Prod ; 83(4): 1288-1294, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32191460

RESUMO

Two new cyclic depsipeptides named swinhopeptolides A (1) and B (2) have been isolated from the marine sponge Theonella swinhoei cf. verrucosa, collected from Papua New Guinea. They each contain 11 diverse amino acid residues and 13-carbon polyketide moieties attached at the N-terminus. Compounds 1 and 2 each exist as two conformers in DMSO-d6 due to cis/trans isomerism of the proline residue, and their structures were successfully assigned by extensive NMR analyses complemented by chemical degradation and derivatization studies. Swinhopeptolide B (2) contains a previously undescribed 2,6,8-trimethyldeca-(2E,4E,6E)-trienoic acid moiety N-linked to a terminal serine residue. Swinhopeptolides A (1) and B (2) showed significant inhibition of the Ras/Raf signaling pathway with IC50 values of 5.8 and 8.5 µM, respectively.


Assuntos
Depsipeptídeos/farmacologia , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Theonella/química , Proteínas ras/antagonistas & inibidores , Aminoácidos/química , Animais , Depsipeptídeos/química , Depsipeptídeos/isolamento & purificação , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Papua Nova Guiné , Poríferos/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/metabolismo
11.
Mar Drugs ; 18(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265994

RESUMO

A total of eight new oxygenated 4-exo-methylene sterols, 1-8, together with one artifact 9 and six known sterols 11-16, were isolated from the marine sponge Theonella swinhoei collected from the Bohol province in Philippines. Structures of sterols 1-8 were determined from 1D and 2D NMR data. Among the sterols, 8α-hydroxytheonellasterol (4) spontaneously underwent an allylic 1,3-hydroxyl shift to produce 15α-hydroxytheonellasterol (9) as an artifact; this was rationalized by quantum mechanical calculations of the transition state. In addition, the 1,2-epoxy alcohol subunit of 8α-hydroxy-14,15-ß-epoxytheonellasterol (5) was assigned using the Gauge-Independent Atomic Orbital (GIAO) NMR chemical shift calculations and subsequent DP4+ analysis. Finally, comparison of the 13C chemical shifts of isolated 7α-hydroxytheonellasterol (6) with the reported values revealed significant discrepancies at C-6, C-7, C-8, and C-14, leading to reassignment of the C-7 stereochemistry in the known structure.


Assuntos
Anti-Inflamatórios/química , Esteróis/química , Theonella/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Oxirredução , Teoria Quântica , Células RAW 264.7 , Estereoisomerismo , Esteróis/isolamento & purificação , Esteróis/farmacologia , Relação Estrutura-Atividade
12.
J Ind Microbiol Biotechnol ; 46(3-4): 551-563, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30627933

RESUMO

Polytheonamides are the most extensively modified ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) currently known. In RiPP biosynthesis, the processed peptide is usually released from a larger precursor by proteolytic cleavage to generate the bioactive terminal product of the pathway. For polytheonamides, which are members of a new RiPP family termed proteusins, we have recently shown that such cleavage is catalyzed by the cysteine protease PoyH acting on the precursor PoyA, both encoded in the polytheonamide biosynthetic gene cluster. We now report activity for PoyH under a variety of reaction conditions for different maturation states of PoyA and demonstrate a potential use of PoyH as a promiscuous protease to liberate and characterize RiPPs from other pathways. As a proof of concept, the identified recognition motif was introduced into precursors of the thiopeptide thiocillin and the lanthipeptide lichenicidin VK1, allowing for their site-specific cleavage with PoyH. Additionally, we show that PoyH cleavage is inhibited by PoyG, a previously uncharacterized chagasin-like protease inhibitor encoded in the polytheonamide gene cluster.


Assuntos
Endopeptidases/genética , Proteínas/genética , Animais , Bacteriocinas/genética , Bacteriocinas/metabolismo , Produtos Biológicos/química , Catálise , Clonagem Molecular , Biologia Computacional , Endopeptidases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Família Multigênica , Peptídeos/genética , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Ribossomos/metabolismo , Theonella/genética , Theonella/metabolismo
13.
J Nat Prod ; 81(7): 1645-1650, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29989811

RESUMO

Swinhoeisterols C-F (1-4), four new steroids having a rearranged 6/6/5/7 ring system, were isolated from the Xisha sponge Theonella swinhoei, together with the known analogue swinhoeisterol A (5). Their structures were determined based on spectroscopic analysis, TDDFT-ECD and optical rotation calculations, and biogenetic correlations. In an in vitro assay, compound 1 showed an inhibitory effect on (h)p300 with an IC50 value of 8.8 µM, whereas compounds 2-4 were not active.


Assuntos
Esteroides/isolamento & purificação , Theonella/química , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Esteroides/química , Fatores de Transcrição de p300-CBP/antagonistas & inibidores
14.
J Nat Prod ; 81(11): 2595-2599, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30346758

RESUMO

There are several examples of marine organisms whose metabolic profiles differ among conspecifics inhabiting the same region. We have analyzed the metabolic profile of each colony of a Theonella swinhoei marine sponge with a yellow interior and noticed the patchy distribution of one metabolite. This compound was isolated and its structure was studied by a combination of spectrometric analyses and chemical degradation, showing it to be a congener in the theonellamide class of bicyclic peptides. Theonellamides had previously been isolated by us only from T. swinhoei with a white interior and not from those with a yellow interior.


Assuntos
Peptídeos Cíclicos/isolamento & purificação , Theonella/química , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Peptídeos Cíclicos/química
15.
Nat Chem Biol ; 11(9): 705-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26236936

RESUMO

Actin-targeting macrolides comprise a large, structurally diverse group of cytotoxins isolated from remarkably dissimilar micro- and macroorganisms. In spite of their disparate origins and structures, many of these compounds bind actin at the same site and exhibit structural relationships reminiscent of modular, combinatorial drug libraries. Here we investigate biosynthesis and evolution of three compound groups: misakinolides, scytophycin-type compounds and luminaolides. For misakinolides from the sponge Theonella swinhoei WA, our data suggest production by an uncultivated 'Entotheonella' symbiont, further supporting the relevance of these bacteria as sources of bioactive polyketides and peptides in sponges. Insights into misakinolide biosynthesis permitted targeted genome mining for other members, providing a cyanobacterial luminaolide producer as the first cultivated source for this dimeric compound family. The data indicate that this polyketide family is bacteria-derived and that the unusual macrolide diversity is the result of combinatorial pathway modularity for some compounds and of convergent evolution for others.


Assuntos
Actinas/metabolismo , Evolução Biológica , Cianobactérias/metabolismo , Deltaproteobacteria/metabolismo , Policetídeos/metabolismo , Actinas/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cianobactérias/genética , Deltaproteobacteria/genética , Expressão Gênica , Macrolídeos/química , Macrolídeos/metabolismo , Dados de Sequência Molecular , Família Multigênica , Peptídeos , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/química , Ligação Proteica , Piranos/química , Piranos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Simbiose , Theonella/microbiologia
16.
J Nat Prod ; 80(4): 1110-1116, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28207261

RESUMO

The extract of a sample of the sponge Theonella aff. swinhoei collected in Madagascar exhibited promising in vitro antiplasmodial activity. The antiplasmodial activity was ascribed in part to the known metabolite swinholide A. Further investigation of the extract afforded three unusual cyclic peptides, cyclotheonellazoles A-C (1-3), which contain six nonproteinogenic amino acids out of the eight acid units that compose these natural products. Among these acids the most novel were 4-propenoyl-2-tyrosylthiazole and 3-amino-4-methyl-2-oxohexanoic acid. The structure of the compounds was elucidated by interpretation of the 1D and 2D NMR data, HRESIMS, and advanced Merfay's techniques. The new compounds were found to be nanomolar inhibitors of chymotrypsin and sub-nanomolar inhibitors of elastase, but did not present antiplasmodial activity.


Assuntos
Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Poríferos/química , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Theonella/química , Animais , Quimotripsina/antagonistas & inibidores , Madagáscar , Biologia Marinha , Toxinas Marinhas/química , Toxinas Marinhas/isolamento & purificação , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Elastase Pancreática/antagonistas & inibidores , Peptídeos Cíclicos/química , Inibidores de Proteases/química
17.
Appl Environ Microbiol ; 82(4): 1274-1285, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26655754

RESUMO

Sponges harbor a remarkable diversity of microbial symbionts in which signal molecules can accumulate and enable cell-cell communication, such as quorum sensing (QS). Bacteria capable of QS were isolated from marine sponges; however, an extremely small fraction of the sponge microbiome is amenable to cultivation. We took advantage of community genome assembly and binning to investigate the uncultured majority of sponge symbionts. We identified a complete N-acyl-homoserine lactone (AHL)-QS system (designated TswIR) and seven partial luxI homologues in the microbiome of Theonella swinhoei. The TswIR system was novel and shown to be associated with an alphaproteobacterium of the order Rhodobacterales, here termed Rhodobacterales bacterium TS309. The tswI gene, when expressed in Escherichia coli, produced three AHLs, two of which were also identified in a T. swinhoei sponge extract. The taxonomic affiliation of the 16S rRNA of Rhodobacterales bacterium TS309 to a sponge-coral specific clade, its enrichment in sponge versus seawater and marine sediment samples, and the presence of sponge-specific features, such as ankyrin-like domains and tetratricopeptide repeats, indicate a likely symbiotic nature of this bacterium.


Assuntos
Alphaproteobacteria/enzimologia , Ligases/isolamento & purificação , Microbiota , Simbiose , Theonella/microbiologia , Acil-Butirolactonas/metabolismo , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Oceano Índico , Ligases/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Análise de Sequência de DNA
18.
Microb Ecol ; 71(4): 873-86, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26809776

RESUMO

Theonella swinhoei is an arsenic hyper-accumulator sponge, harboring a multitude of associated bacteria. These bacteria reside in the mesohyl, the dense extracellular matrix of the sponge. Previous elemental analysis of separated cell fractions from the sponge had determined that arsenic is localized to the associated bacteria. Subsequently, sponge-associated arsenic-tolerant bacteria were isolated here and grouped into 15 operational taxonomic units (OTUs, 97% similarity). Both culture-dependent and culture-independent work had revealed that T. swinhoei harbors a highly diverse bacterial community. It was thus hypothesized the acclimation of bacteria in the presence of a sponge skeleton, better mimicking its natural environment, would increase the yield of isolation of sponge-associated bacteria. Using seven modularly designed media, 380 bacteria isolates were grown and grouped into 22 OTUs. Inclusion of sponge skeleton in the growth medium promoted bacterial growth in all seven media, accounting for 20 of the 22 identified OTUs (the other two in a medium without skeleton). Diversity and richness indices were calculated for each treatment or combination of treatments with shared growth parameters. Integrating data inherent in the modularly designed media with the ecological indices led to the formation of new hypotheses regarding the aeration conditions and expected arsenic form in situ. Both aerobic and anoxic conditions are expected to occur in the sponge (temporally and/or spatially). Arsenate is expected to be the dominant (or even the only) arsenic form in the sponge.


Assuntos
Arseniatos/farmacologia , Arsenitos/farmacologia , Bactérias/efeitos dos fármacos , Theonella/microbiologia , Animais , Arsênio/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Meios de Cultura , Genes Bacterianos , Oceano Índico , Filogenia , RNA Ribossômico 16S/genética , Água do Mar , Simbiose , Theonella/química
19.
J Nat Prod ; 79(4): 996-1004, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27007992

RESUMO

Two new nitrogenous prenylbisabolanes never before found in Lithistid sponges have been isolated from Theonella swinhoei. These new diterpenes, named amitorine A (1) and amitorine B (2), containing a prenylbisabolane skeleton have been characterized by spectroscopic analyses, and the relative and absolute configurations of 1 and 2 were determined by asymmetric synthesis of both diastereomers via the common bicyclic lactone 6 intermediate.


Assuntos
Diterpenos/isolamento & purificação , Theonella/química , Animais , Diterpenos/química , Diterpenos/farmacologia , Japão , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
20.
J Nat Prod ; 79(6): 1694-7, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27213234

RESUMO

Nazumazoles D-F (1-3) were isolated from the marine sponge Theonella swinhoei. The compounds gave extremely broad peaks by reversed-phase HPLC using an ODS column. HPLC using a gel permeation column was instrumental for the separation of the three compounds. Their planar structures were determined by interpretation of NMR data to be cyclic pentapeptides. Nazumazoles D-F contained one residue each of α-keto-l-norvaline (l-Knv) {or α-keto-d-leucine (l-Kle)}, l-alanyloxazole (l-Aox), d-Abu (or d-Ser), N-α-CHO-ß-l-Dpr, and cis-4-methyl-l-proline. The absolute configuration of each amino acid residue was determined by Marfey's method in combination with conversion of the α-keto-ß-amino acid to the α-amino acid by oxidation. Nazumazoles D-F are not cytotoxic against P388 cells at 50 µM, but inhibit chymotrypsin.


Assuntos
Peptídeos Cíclicos/isolamento & purificação , Theonella/química , Animais , Cromatografia Líquida de Alta Pressão , Biologia Marinha , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA