Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474201

RESUMO

In recent years, the potent influence of tocotrienol (T3) on diminishing blood glucose and lipid concentrations in both Mus musculus (rats) and Homo sapiens (humans) has been established. However, the comprehensive exploration of tocotrienol's hypolipidemic impact and the corresponding mechanisms in aquatic species remains inadequate. In this study, we established a zebrafish model of a type 2 diabetes mellitus (T2DM) model through high-fat diet administration to zebrafish. In the T2DM zebrafish, the thickness of ocular vascular walls significantly increased compared to the control group, which was mitigated after treatment with T3. Additionally, our findings demonstrate the regulatory effect of T3 on lipid metabolism, leading to the reduced synthesis and storage of adipose tissue in zebrafish. We validated the expression patterns of genes relevant to these processes using RT-qPCR. In the T2DM model, there was an almost two-fold upregulation in pparγ and cyp7a1 mRNA levels, coupled with a significant downregulation in cpt1a mRNA (p < 0.01) compared to the control group. The ELISA revealed that the protein expression levels of Pparγ and Rxrα exhibited a two-fold elevation in the T2DM group relative to the control. In the T3-treated group, Pparγ and Rxrα protein expression levels consistently exhibited a two-fold decrease compared to the model group. Lipid metabolomics showed that T3 could affect the metabolic pathways of zebrafish lipid regulation, including lipid synthesis and decomposition. We provided experimental evidence that T3 could mitigate lipid accumulation in our zebrafish T2DM model. Elucidating the lipid-lowering effects of T3 could help to minimize the detrimental impacts of overfeeding in aquaculture.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Tocotrienóis , Humanos , Camundongos , Ratos , Animais , Tocotrienóis/metabolismo , Peixe-Zebra/metabolismo , Dieta Hiperlipídica , Hiperlipidemias/metabolismo , Óleo de Farelo de Arroz , Diabetes Mellitus Tipo 2/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo
2.
Biochem Biophys Res Commun ; 638: 112-119, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36446153

RESUMO

Synaptic dysfunction is a hallmark of aging and is found in several neurological disorders such as Alzheimer's disease. A common mechanism related to synaptic dysfunction is dysregulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, which mediate excitatory neurotransmission and synaptic plasticity. Accumulating evidence suggests that tocotrienols, vitamin E molecules that contain an isoprenoid side chain, may promote cognitive improvement in hippocampal-dependent learning tasks. Tocotrienols have also been shown to reduce the secretion of ß-amyloid (Aß) and cholesterol biosynthesis in part by downregulating 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme that controls flux of the mevalonate pathway and cholesterol biosynthesis. We hypothesized that tocotrienols might promote cognitive improvement by increasing AMPA receptor-mediated synaptic transmission. Here, we found that δ-tocotrienol increased surface levels of GluA1 but not the GluA2 AMPA receptor subunit in primary hippocampal neurons. Unexpectedly, δ-tocotrienol treatment caused a decrease in the phosphorylation of GluA1 at Serine 845 with no significant changes in GluA1 at Serine 831. Moreover, δ-tocotrienol increased spontaneous excitatory postsynaptic current (sEPSC) amplitude and reduced the secretion of Aß40 in primary hippocampal neurons. Taken together, our findings suggest that δ-tocotrienol increases AMPA receptor-mediated neurotransmission via noncanonical changes in GluA1 phosphorylation status. These findings suggest that δ-tocotrienol may be beneficial in ameliorating synaptic dysfunction found in aging and neurological disease.


Assuntos
Receptores de AMPA , Tocotrienóis , Receptores de AMPA/metabolismo , Ácido Mevalônico/metabolismo , Tocotrienóis/metabolismo , Transmissão Sináptica , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Colesterol/metabolismo , Serina/metabolismo , Hipocampo/metabolismo
3.
Metab Eng ; 79: 66-77, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429412

RESUMO

Vitamin E tocochromanols are generated in plants by prenylation of homogentisate using geranylgeranyl diphosphate (GGDP) for tocotrienol biosynthesis and phytyl diphosphate (PDP) for tocopherol biosynthesis. Homogentisate geranylgeranyl transferase (HGGT), which uses GGDP for prenylation, is a proven target for oilseed tocochromanol biofortification that effectively bypasses the chlorophyll-linked pathway that limits PDP for vitamin E biosynthesis. In this report, we explored the feasibility of maximizing tocochromanol production in the oilseed crop camelina (Camelina sativa) by combining seed-specific HGGT expression with increased biosynthesis and/or reduced homogentisate catabolism. Plastid-targeted Escherichia coli TyrA-encoded chorismate mutase/prephenate dehydrogenase and Arabidopsis hydroxyphenylpyruvate dioxygenase (HPPD) cDNA were co-expressed in seeds to bypass feedback-regulated steps and increase flux into homogentisate biosynthesis. Homogentisate catabolism was also suppressed by seed-specific RNAi of the gene for homogentisate oxygenase (HGO), which initiates homogentisate degradation. In the absence of HGGT expression, tocochromanols were increased by ∼2.5-fold with HPPD/TyrA co-expression, and ∼1.4-fold with HGO suppression compared to levels in non-transformed seeds. No further increase in tocochromanols was observed in HPPD/TyrA lines with the addition of HGO RNAi. HGGT expression alone increased tocochromanol concentrations in seeds by âˆ¼four-fold to ≤1400 µg/g seed weight. When combined with HPPD/TyrA co-expression, we obtained an additional three-fold increase in tocochromanol concentrations indicating that homogentisate concentrations limit HGGT's capacity for maximal tocochromanol production. The addition of HGO RNAi further increased tocochromanol concentrations to 5000 µg/g seed weight, an unprecedented tocochromanol concentration in an engineered oilseed. Metabolomic data obtained from engineered seeds provide insights into phenotypic changes associated with "extreme" tocochromanol production.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dioxigenases , Tocotrienóis , Vitamina E , Tocotrienóis/metabolismo , Biofortificação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
4.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895053

RESUMO

Our skin is constantly exposed to blue light (BL), which is abundant in sunlight and emitted by digital devices. Prolonged exposure to BL can lead to oxidative stress-induced damages and skin hyperpigmentation. For this study, we used a cell line-based model to examine the protective effects of tocotrienol-rich fraction (TRF) on BL-induced oxidative stress and hyperpigmentation in B16-F1 melanocytes. Alpha-tocopherol (αTP) was used as a comparator. Molecular assays such as cell viability assay, flow cytometry, western blotting, fluorescence imaging, melanin and tyrosinase analysis were performed. Our results showed that TRF effectively suppressed the formation of reactive oxygen species and preserved the mitochondrial membrane potential. Additionally, TRF exhibited anti-apoptotic properties by reducing the activation of the p38 mitogen-activated protein kinase molecule and downregulating the expression of cleaved caspase-3. Moreover, TRF modulated tyrosinase activity, resulting in a lowered rate of melanogenesis and reduced melanin production. In contrast, αTP did not exhibit significant protective effects against skin damages and pigmentation in BL-induced B16-F1 cells. Therefore, this study indicates that TRF may offer superior protective effects over αTP against the effects of BL on melanocytes. These findings demonstrate the potential of TRF as a protective natural ingredient that acts against BL-induced skin damages and hyperpigmentation via its anti-oxidative and anti-melanogenic properties.


Assuntos
Hiperpigmentação , Tocotrienóis , Hiperpigmentação/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Estresse Oxidativo , Tocotrienóis/farmacologia , Tocotrienóis/metabolismo , Animais , Camundongos
5.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012567

RESUMO

Fungal pathogens capable of producing mycotoxins are one of the main threats to the cultivation of cereals and the safety of the harvested kernels. Improving the resistance of crops to fungal disease and accumulation of mycotoxins is therefore a crucial issue. Achieving this goal requires a deep understanding of plant defense mechanisms, most of them involving specialized metabolites. However, while numerous studies have addressed the contribution of phenylpropanoids and carotenoids to plant chemical defense, very few have dealt with tocochromanols. Tocochromanols, which encompass tocopherols and tocotrienols and constitute the vitamin E family, are widely distributed in cereal kernels; their biosynthetic pathway has been extensively studied with the aim to enrich plant oils and combat vitamin E deficiency in humans. Here we provide strong assumptions arguing in favor of an involvement of tocochromanols in plant-fungal pathogen interactions. These assumptions are based on both direct effects resulting from their capacity to scavenge reactive oxygen species, including lipid peroxyl radicals, on their potential to inhibit fungal growth and mycotoxin yield, and on more indirect effects mainly based on their role in plant protection against abiotic stresses.


Assuntos
Micotoxinas , Tocotrienóis , Grão Comestível/metabolismo , Humanos , Estresse Fisiológico , Tocoferóis/metabolismo , Tocotrienóis/metabolismo
6.
Compr Rev Food Sci Food Saf ; 21(2): 964-998, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35181987

RESUMO

Vitamin E is a group of isoprenoid chromanols with different biological activities. It comprises eight oil-soluble compounds: four tocopherols, namely, α-, ß-, γ-, and δ-tocopherols; and four tocotrienols, namely, α-, ß-, γ, and δ-tocotrienols. Vitamin E isomers are well-known for their antioxidant activity, gene-regulation effects, and anti-inflammatory and nephroprotective properties. Considering that vitamin E is exclusively synthesized by photosynthetic organisms, animals can only acquire it through their diet. Plant-based food is the primary source of vitamin E; hence, oils, nuts, fruits, and vegetables with high contents of vitamin E are mostly consumed after processing, including industrial processes and home-cooking, which involve vitamin E profile and content alteration during their preparation. Accordingly, it is essential to identify the vitamin E content and profile in foodstuff to match daily intake requirements. This review summarizes recent advances in vitamin E chemistry, metabolism and metabolites, current knowledge on their contents and profiles in raw and processed plant foods, and finally, their modern developments in analytical methods.


Assuntos
Tocotrienóis , Vitamina E , Animais , Antioxidantes/química , Tecnologia de Alimentos , Tocoferóis/química , Tocoferóis/metabolismo , Tocotrienóis/análise , Tocotrienóis/química , Tocotrienóis/metabolismo
7.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207571

RESUMO

Tocopherols and tocotrienols are natural compounds of plant origin, available in the nature. They are supplied in various amounts in a diet, mainly from vegetable oils, some oilseeds, and nuts. The main forms in the diet are α- and γ-tocopherol, due to the highest content in food products. Nevertheless, α-tocopherol is the main form of vitamin E with the highest tissue concentration. The α- forms of both tocopherols and tocotrienols are considered as the most metabolically active. Currently, research results indicate also a greater antioxidant potential of tocotrienols than tocopherols. Moreover, the biological role of vitamin E metabolites have received increasing interest. The aim of this review is to update the knowledge of tocopherol and tocotrienol bioactivity, with a particular focus on their bioavailability, distribution, and metabolism determinants in humans. Almost one hundred years after the start of research on α-tocopherol, its biological properties are still under investigation. For several decades, researchers' interest in the biological importance of other forms of vitamin E has also been growing. Some of the functions, for instance the antioxidant functions of α- and γ-tocopherols, have been confirmed in humans, while others, such as the relationship with metabolic disorders, are still under investigation. Some studies, which analyzed the biological role and mechanisms of tocopherols and tocotrienols over the past few years described new and even unexpected cellular and molecular properties that will be the subject of future research.


Assuntos
Antioxidantes , Dieta , Tocotrienóis , alfa-Tocoferol , gama-Tocoferol , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Tocotrienóis/química , Tocotrienóis/metabolismo , alfa-Tocoferol/química , alfa-Tocoferol/metabolismo , gama-Tocoferol/química , gama-Tocoferol/metabolismo
8.
Cell Immunol ; 357: 104200, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32979761

RESUMO

Tocopherols long dominated studies on vitamin E, although interest has shifted to tocotrienols. It was previously shown that δ-tocotrienol derived from palm oil reduced nitric oxide released by BV2 microglia as early as 18 h after lipopolysaccharide stimulation. The current study measured δ-tocotrienol uptake by BV2 over a 24 h incubation period and its anti-inflammatory effects on primary microglia. Uptake of 17.5 µg/mL δ-tocotrienol by BV2 microglia began as early as 5 min and rose steeply to 21 ± 3% of the amount administered at 24 h. The amount of δ-tocotrienol retained in the lipopolysaccharide-stimulated microglia at 24 h was 14 ± 2%, with no substantial difference seen in unstimulated microglia. The same δ-tocotrienol regimen reduced nitric oxide levels by 82% at 24 h after lipopolysaccharide stimulation (p < 0.05). This was accompanied by decreased inducible nitric oxide synthase protein expression by 67 ± 5% compared to untreated controls (p < 0.05). In primary microglia, δ-tocotrienol downregulated IL-1ß production, but TNF-α and IL-6 were not affected. δ-Tocotrienol also reduced prostaglandin E2 production by ~78%% and decreased transcription of COX-2 and 5-LOX, but not COX-1. This study showed the anti-inflammatory effects of δ-tocotrienol derived from palm oil and opens up interest for tocotrienol supplementation to reduce the effects of inflammatory conditions.


Assuntos
Microglia/efeitos dos fármacos , Vitamina E/análogos & derivados , Animais , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óleo de Palmeira/metabolismo , Óleo de Palmeira/farmacologia , Cultura Primária de Células , Tocotrienóis/metabolismo , Tocotrienóis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Vitamina E/metabolismo , Vitamina E/farmacologia
9.
Plant Cell ; 29(10): 2374-2392, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28970338

RESUMO

Tocopherols, tocotrienols, and plastochromanols (collectively termed tocochromanols) are lipid-soluble antioxidants synthesized by all plants. Their dietary intake, primarily from seed oils, provides vitamin E and other health benefits. Tocochromanol biosynthesis has been dissected in the dicot Arabidopsis thaliana, which has green, photosynthetic seeds, but our understanding of tocochromanol accumulation in major crops, whose seeds are nonphotosynthetic, remains limited. To understand the genetic control of tocochromanols in grain, we conducted a joint linkage and genome-wide association study in the 5000-line U.S. maize (Zea mays) nested association mapping panel. Fifty-two quantitative trait loci for individual and total tocochromanols were identified, and of the 14 resolved to individual genes, six encode novel activities affecting tocochromanols in plants. These include two chlorophyll biosynthetic enzymes that explain the majority of tocopherol variation, which was not predicted given that, like most major cereal crops, maize grain is nonphotosynthetic. This comprehensive assessment of natural variation in vitamin E levels in maize establishes the foundation for improving tocochromanol and vitamin E content in seeds of maize and other major cereal crops.


Assuntos
Vitamina E/metabolismo , Zea mays/metabolismo , Clorofila/metabolismo , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Tocoferóis/metabolismo , Tocotrienóis/metabolismo
10.
Biosci Biotechnol Biochem ; 84(3): 526-535, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31743080

RESUMO

Lysyl oxidase (LOX) is required for the formation of bone collagen cross-links. Inactivation of the LOX gene in osteoblasts by DNA methylation and JAK signaling has been reported to cause loss of cross-links and an increased risk of fractures. Tocotrienols (T3s) have proven benefits on bone strength, but their potential effects on LOX remain largely unknown. Thus, the present study investigates the in vitro effects of T3s on LOX expression in human osteoblastic MG-63 cells. Results indicated that Tocotrienol-Rich Fraction (TRF), the δ-T3 rich oil extracted from Annatto was the most effective and significantly increased LOX expression. TRF treatment decreased de-novo methyltransferases (DNMTs), DNMT3A and DNMT3B levels. In addition, TRF significantly inhibited JAK2 activation and decreased expression of Fli1, a transcription factor of DNMTs. We conclude that TRF induced an increase in LOX expression via inhibition of de-novo methylation and reduction of Fli1 expression by the inactivation of JAK2.Abbreviations: CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; Fli1: friend leukemia virus integration 1; JAK: janus kinase; LOX: lysyl oxidase; PCR: polymerase chain reaction; STAT: signal transducers and activators of transcription; T3s: tocotrienols; TPs: tocopherols; TRF: Tocotrienol-Rich Fraction.


Assuntos
Bixaceae/metabolismo , Carotenoides/metabolismo , Osteoblastos/metabolismo , Extratos Vegetais/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Tocotrienóis/metabolismo , Linhagem Celular , Humanos , Osteoblastos/enzimologia
11.
J Sci Food Agric ; 100(14): 5230-5238, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32519367

RESUMO

BACKGROUND: Black sweet corn as an edible fruit has various nutritional qualities. This study discusses changes in the vitamin C and E, folate, and carotenoid content during black sweet corn maturation, and also the effects of preharvest weather conditions and of related genes in multi-vitamin biosynthesis pathways. RESULTS: Most vitamin levels improved, especially vitamin C and carotenoid levels, while the folate content dropped rapidly. Transcript levels of most genes in folate biosynthesis showed trends that were similar to the content changes. VTC2 and GLDH, which are regulated by light, had high expression levels leading to an increase in ascorbate content during maturation. γ-Tocotrienol is the main vitamin E component, and HGGT, the key gene controlling the synthesis of tocotrienols, had a much higher expression level than other genes. Lutein and zeaxanthin were the dominant carotenoid components. A rapid reduction in the transcription level of LCYε could result in a lower lutein production rate . CONCLUSION: Black sweet corn has a high nutritional value and is rich in vitamins, including zeaxanthin, γ-tocotrienols, and ascorbic acid. The best harvest time is between 20-25 days after pollination (DAPs) when kernels had a good taste as well as relatively high vitamin levels. © 2020 Society of Chemical Industry.


Assuntos
Sementes/crescimento & desenvolvimento , Vitaminas/biossíntese , Zea mays/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Cor , Luteína/análise , Luteína/metabolismo , Sementes/química , Sementes/metabolismo , Tocotrienóis/análise , Tocotrienóis/metabolismo , Vitaminas/análise , Zea mays/química , Zea mays/crescimento & desenvolvimento , Zeaxantinas/análise , Zeaxantinas/metabolismo
12.
J Nat Prod ; 82(1): 51-58, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30629440

RESUMO

Recent studies have highlighted the biological potential of tocotrienols, a vitamin E subfamily. The major natural sources of tocotrienols are complex mixtures requiring particularly challenging purification processes. The present study describes efficient semi-synthetic strategies toward relevant δ-( R)-tocotrienol derivatives, using as a starting material δ-( R)-garcinoic acid, the major vitamin E derivative isolated from Garcinia kola nuts, a renewable vegetal source.


Assuntos
Garcinia/metabolismo , Tocotrienóis/metabolismo , Tocotrienóis/isolamento & purificação
13.
Plant Cell Physiol ; 59(12): 2490-2501, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137562

RESUMO

Vitamin E, a potent antioxidant either presents in the form of tocopherols and/or tocotrienols depending on the plant species, tissue and developmental stage, plays a major role in protecting lipids from oxidation in seeds. Unlike tocopherols, which have a more universal distribution, the occurrence of tocotrienols is limited primarily to monocot seeds. Dwarf fan palm (Chamaerops humilis var. humilis) seeds accumulate tocotrienols in quiescent and dormant seeds, while tocopherols are de novo synthesized during germination. Here, we aimed to elucidate whether tocopherol biosynthesis is regulated at the transcriptional level during germination in this species. We identified and quantified the expression levels of five genes involved in vitamin E biosynthesis, including TYROSINE AMINOTRANSFERASE (ChTAT), HOMOGENTISATE PHYTYLTRANSFERASE (ChHPT), HOMOGENTISATE GERANYLGERANYL TRANSFERASE (ChHGGT), TOCOPHEROL CYCLASE (ChTC) and TOCOPHEROL γ-METHYLTRANSFERASE (Chγ-TMT). Furthermore, we evaluated to what extent variations in the endogenous contents of hormones and hydrogen peroxide (H2O2) correlated with transcriptional regulation. Results showed an increase of ChTAT and ChHPT levels during seed germination, which correlated with an increase of jasmonic acid (JA), gibberellin4 (GA4), and H2O2 contents, while ChHGGT and Chγ-TMT expression levels decreased, thus clearly indicating vitamin E biosynthesis is diverted to tocopherols rather than to tocotrienols. Exogenous application of jasmonic acid increased tocopherol, but not tocotrienol content, thus confirming its regulatory role in vitamin E biosynthesis during seed germination. It is concluded that the biosynthesis of vitamin E is regulated at the transcriptional level during germination in dwarf fan palm seeds, with ChHPT playing a key role in the diversion of the vitamin E pathway towards tocopherols instead of tocotrienols.


Assuntos
Arecaceae/genética , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Germinação/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Transcrição Gênica , Vitamina E/biossíntese , Sequência de Aminoácidos , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Oxilipinas/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tocoferóis/metabolismo , Tocotrienóis/metabolismo
14.
New Phytol ; 217(1): 245-260, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29105089

RESUMO

Photosynthetic organisms such as plants, algae and some cyanobacteria synthesize tocochromanols, a group of compounds that encompasses tocopherols and tocotrienols and that exhibits vitamin E activity in animals. While most vitamin E biosynthetic genes have been identified in plant genomes, regulatory genes controlling tocopherol accumulation are currently unknown. We isolated by forward genetics Arabidopsis enhanced vitamin E (eve) mutants that overaccumulate the classic tocopherols and plastochromanol-8, and a tocochromanol unknown in this species. We mapped eve1 and eve4, and identified the unknown Arabidopsis tocochromanol by using a combination of analytical tools. In addition, we determined its biosynthetic pathway with a series of tocochromanol biosynthetic mutants and transgenic lines. eve1 and eve4 are two seed lipid mutants affecting the WRINKLED1 (WRI1) and ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) genes, respectively. The unknown tocochromanol is 11'-12' γ-tocomonoenol, whose biosynthesis is VITAMIN E 1 (VTE1) - and VTE2-dependent and is initiated by the condensation of homogentisate (HGA) and tetrahydrogeranylgeranyl pyrophosphate. This study identifies the first two regulatory genes, WRI1 and DGAT1, that control the synthesis of all tocochromanol forms in seeds, and shows the existence of a metabolic trade-off between lipid and tocochromanol metabolisms. Moreover, it shows that Arabidopsis possesses a tocomonoenol biosynthetic pathway that competes with tocopherol synthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Diglicerídeos/metabolismo , Fatores de Transcrição/metabolismo , Vitamina E/metabolismo , Acil Coenzima A/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vias Biossintéticas , Cromanos/metabolismo , Diacilglicerol O-Aciltransferase/genética , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Metabolismo dos Lipídeos , Sementes/enzimologia , Sementes/genética , Tocoferóis/metabolismo , Tocotrienóis/metabolismo , Fatores de Transcrição/genética , Vitamina E/análogos & derivados
15.
Int J Mol Sci ; 17(10)2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27775605

RESUMO

Edible oils are the major natural dietary sources of tocopherols and tocotrienols, collectively known as tocols. Plant foods with low lipid content usually have negligible quantities of tocols. However, seeds and other plant food processing by-products may serve as alternative sources of edible oils with considerable contents of tocopherols and tocotrienols. Tocopherols are among the most important lipid-soluble antioxidants in food as well as in human and animal tissues. Tocopherols are found in lipid-rich regions of cells (e.g., mitochondrial membranes), fat depots, and lipoproteins such as low-density lipoprotein cholesterol. Their health benefits may also be explained by regulation of gene expression, signal transduction, and modulation of cell functions. Potential health benefits of tocols include prevention of certain types of cancer, heart disease, and other chronic ailments. Although deficiencies of tocopherol are uncommon, a continuous intake from common and novel dietary sources of tocopherols and tocotrienols is advantageous. Thus, this contribution will focus on the relevant literature on common and emerging edible oils as a source of tocols. Potential application and health effects as well as the impact of new cultivars as sources of edible oils and their processing discards are presented. Future trends and drawbacks are also briefly covered.


Assuntos
Antioxidantes/metabolismo , Dieta , Óleos de Plantas/química , Plantas Comestíveis/química , Tocoferóis/metabolismo , Tocotrienóis/metabolismo , Doenças Cardiovasculares/prevenção & controle , Humanos , Neoplasias/prevenção & controle , Sementes/química
16.
Eur J Nutr ; 54(2): 265-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24830781

RESUMO

INTRODUCTION: Tocomin® represents commercially available mixture of naturally occurring tocotrienols (T3s) and tocopherols extracted from palm oil/palm fruits that possess powerful antioxidant, anticancer, neuro/cardioprotective and cholesterol-lowering properties. Cellular autophagy represents a defense mechanism against oxidative stress and several anticancer compounds. Recently, we reported that T3s induce apoptosis and endoplasmic reticulum stress in breast cancer cells. METHODOLOGY: We studied the effects of Tocomin® on MCF-7 and MDA-MB 231 breast cancer cells and non-tumor MCF-10A cells. RESULTS: Tocomin® inhibited cell proliferation and induced apoptosis in both MCF-7 and MDA-MB 231 breast cancer cell lines without affecting the viability of MCF-10A cells. We also showed that Tocomin® negatively modulates phosphoinositide 3-kinase and mTOR pathways and induces cytoprotective autophagic response in triple negative MDA-MB 231 cells. Lastly, we demonstrate that autophagy inhibitor 3-methyladenine (3-MA) potentiated the apoptosis induced by Tocomin® in MDA-MB 231 cells. CONCLUSION: Together, our data indicate anticancer effects of Tocomin® in breast cancer cells, which is potentiated by the autophagy inhibitor 3-MA.


Assuntos
Adenina/análogos & derivados , Antimetabólitos Antineoplásicos/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Suplementos Nutricionais , Tocotrienóis/agonistas , Adenina/efeitos adversos , Adenina/farmacologia , Antimetabólitos Antineoplásicos/efeitos adversos , Antioxidantes/efeitos adversos , Antioxidantes/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Suplementos Nutricionais/efeitos adversos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/metabolismo , Tocotrienóis/efeitos adversos , Tocotrienóis/metabolismo
17.
J Sci Food Agric ; 95(4): 672-8, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24841131

RESUMO

BACKGROUND: The present study examined the contents of tocopherols and tocotrienols and their distribution in 58 different varieties of whole rice cultivated in Malaysia. The analytical method used was saponification of samples followed by dispersive liquid-liquid microextraction and reverse phase high-performance liquid chromatography. RESULTS: The total vitamin E contents of different varieties of whole rice ranged between 19.36 and 63.29 mg kg⁻¹. Contents of vitamin E isomers varied among rice varieties both within and between grain color groups. Black-pigmented rice showed significantly higher mean contents of α-tocopherol, ß-tocopherol and α-tocotrienol than non-pigmented rice and red-pigmented rice. Red-pigmented rice had significantly lower mean contents of γ-tocotrienol and total vitamin E than non-pigmented rice. The mean contents of δ-tocotrienol and total vitamin E in non-pigmented rice, however, were similar to those in black-pigmented rice. γ-Tocotrienol was the predominant form of vitamin E isomer in all analyzed varieties. The Pearson correlations among vitamin E isomers and total vitamin E content of whole rice were also studied. CONCLUSION: This study provides information on vitamin E content of different rice varieties that would be beneficial for decision making in genetic breeding of bioactive compound-rich rice varieties.


Assuntos
Produtos Agrícolas/química , Oryza/química , Sementes/química , Tocoferóis/análise , Tocotrienóis/análise , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Manipulação de Alimentos , Humanos , Hidrólise , Extração Líquido-Líquido , Malásia , Valor Nutritivo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Pigmentos Biológicos/biossíntese , Reprodutibilidade dos Testes , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Especificidade da Espécie , Tocoferóis/metabolismo , Tocotrienóis/metabolismo , alfa-Tocoferol/análise , alfa-Tocoferol/metabolismo , beta-Tocoferol/análise , beta-Tocoferol/metabolismo
18.
Plant J ; 73(4): 628-39, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23137278

RESUMO

Vitamin E tocotrienol synthesis in monocots requires homogentisate geranylgeranyl transferase (HGGT), which catalyzes the condensation of homogentisate and the unsaturated C20 isoprenoid geranylgeranyl diphosphate (GGDP). By contrast, vitamin E tocopherol synthesis is mediated by homogentisate phytyltransferase (HPT), which condenses homogentisate and the saturated C20 isoprenoid phytyl diphosphate (PDP). An HGGT-independent pathway for tocotrienol synthesis has also been shown to occur by de-regulation of homogentisate synthesis. In this paper, the basis for this pathway and its impact on vitamin E production when combined with HGGT are explored. An Arabidopsis line was initially developed that accumulates tocotrienols and homogentisate by co-expression of Arabidopsis hydroxyphenylpyruvate dioxygenase (HPPD) and Escherichia coli bi-functional chorismate mutase/prephenate dehydrogenase (TyrA). When crossed into the vte2-1 HPT null mutant, tocotrienol production was lost, indicating that HPT catalyzes tocotrienol synthesis in HPPD/TyrA-expressing plants by atypical use of GGDP as a substrate. Consistent with this, recombinant Arabidopsis HPT preferentially catalyzed in vitro production of the tocotrienol precursor geranylgeranyl benzoquinol only when presented with high molar ratios of GGDP:PDP. In addition, tocotrienol levels were highest in early growth stages in HPPD/TyrA lines, but decreased strongly relative to tocopherols during later growth stages when PDP is known to accumulate. Collectively, these results indicate that HPPD/TyrA-induced tocotrienol production requires HPT and occurs upon enrichment of GGDP relative to PDP in prenyl diphosphate pools. Finally, combined expression of HPPD/TyrA and HGGT in Arabidopsis leaves and seeds resulted in large additive increases in vitamin E production, indicating that homogentisate concentrations limit HGGT-catalyzed tocotrienol synthesis.


Assuntos
Antioxidantes/química , Tocotrienóis/metabolismo , Vitamina E/biossíntese , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Dioxigenases/genética , Dioxigenases/metabolismo , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Vetores Genéticos/genética , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Fases de Leitura Aberta , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sementes/genética , Sementes/metabolismo , Células Sf9 , Transformação Genética , Transgenes , Vitamina E/genética
19.
Planta ; 240(2): 437-46, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24929975

RESUMO

Vitamin E occurs in all photosynthetic organisms examined to date. Tocopherols predominate in photosynthetic tissues (α-tocopherol being the major form), while either tocopherols or tocotrienols (or both) are present in seeds. Tocotrienols have not been described in photosynthetic tissues thus far. Here, we report on the presence of tocotrienols in leaves of higher plants. Both tocopherols and tocotrienols accumulated in leaves of Vellozia gigantea, an endemic plant found in the rupestrian fields of Serra do Cipó, Brazil. Increased plant size had a remarkable effect on the vitamin E composition of leaves, α-tocopherol and ß-tocotrienol levels being highest in the largest individuals, but only during the dry season. Vitamin E levels positively correlated with lipid hydroxyperoxide levels, which also increased in the largest individuals during the dry season. However, the maximum efficiency of PSII photochemistry (F v/F m ratio) kept above 0.75 throughout the experiment, thus indicating absence of photoinhibitory damage to the photosynthetic apparatus. It is concluded that higher plants, such as V. gigantea, can accumulate tocotrienols in leaves, aside from tocopherols, and that the levels of both tocopherols and tocotrienols in the leaves of this species are strongly modulated by seasonal and plant size effects.


Assuntos
Magnoliopsida/metabolismo , Folhas de Planta/metabolismo , Tocotrienóis/metabolismo , Estações do Ano
20.
J Sci Food Agric ; 94(4): 810-8, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24254057

RESUMO

BACKGROUND: The main component in tocotrienols (T3) from barley (Hordeum vulgare L.) is α-T3, the vitamer with the highest bioavailability, while palm oil T3 is particularly rich in γ-T3. Unlike tocopherols, T3 are known for their cholesterogenesis-inhibiting, neuroprotective and anticarcinogenic properties. In this study the oral bioavailabilities of T3 from barley oil (3.98 mg day⁻¹) and T3 from palm oil (3.36 mg day⁻¹) in nanoemulsified formulations (NE) and self-emulsifying systems (SES) were compared using hen's eggs as a bioindicator. In addition, the transfer efficiencies of barley oil T3 and palm oil T3 into egg yolk were compared, as well as their effects on egg cholesterol levels. RESULTS: Nanoemulsification led to T3 levels (132.9 µg per egg) higher than with non-emulsified barley oil (112.8 µg per egg) and barley oil SES (116.7 µg per egg) owing to the high proportions of α-T3 (99-117 µg per egg), which has a particularly high transfer efficiency (4.32-6.75%). T3 contents of eggs from hens fed barley oil supplements (112-132 µg per egg) were significantly higher than those of eggs from hens fed palm oil supplements (70-78 µg per egg). Addition of barley and palm oils to laying hen feed decreased egg yolk cholesterol by 4 and 6% respectively. CONCLUSION: Results from this animal study may help to establish T3 from barley as a dietary supplement and to develop nutritionally improved hen's eggs.


Assuntos
Arecaceae/química , Colesterol/biossíntese , Dieta/veterinária , Gema de Ovo/metabolismo , Hordeum/química , Óleos de Plantas/metabolismo , Tocotrienóis/metabolismo , Animais , Transporte Biológico , Galinhas , Dieta com Restrição de Gorduras , Regulação para Baixo , Ovos/análise , Feminino , Humanos , Hipercolesterolemia/dietoterapia , Absorção Intestinal , Valor Nutritivo , Óleo de Palmeira , Óleos de Plantas/química , Tocotrienóis/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA