Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144598

RESUMO

Glucocorticoid-induced osteogenic dysfunction is the main pathologyical mechanism underlying the development of glucocorticoid-induced osteoporosis. Glucocorticoids promote adipogenic differentiation and osteoblast apoptosis through various pathways. Various ongoing studies are exploring the potential of natural products in preventing glucocorticoid-induced osteoporosis. Preclinical studies have consistently shown the bone protective effects of tocotrienol through its antioxidant and anabolic effects. This review aims to summarise the potential mechanisms of tocotrienol in preventing glucocorticoid-induced osteoporosis based on existing in vivo and in vitro evidence. The current literature showed that tocotrienol prevents oxidative damage on osteoblasts exposed to high levels of glucocorticoids. Tocotrienol reduces lipid peroxidation and increases oxidative stress enzyme activities. The reduction in oxidative stress protects the osteoblasts and preserves the bone microstructure and biomechanical strength of glucocorticoid-treated animals. In other animal models, tocotrienol has been shown to activate the Wnt/ß-catenin pathway and lower the RANKL/OPG ratio, which are the targets of glucocorticoids. In conclusion, tocotrienol enhances osteogenic differentiation and bone formation in glucocorticoid-treated osteoblasts while improving structural integrity in glucocorticoid-treated rats. This is achieved by preventing oxidative stress and osteoblast apoptosis. However, these preclinical results should be validated in a randomised controlled trial.


Assuntos
Anabolizantes , Produtos Biológicos , Osteoporose , Tocotrienóis , Anabolizantes/farmacologia , Animais , Antioxidantes/metabolismo , Produtos Biológicos/farmacologia , Glucocorticoides/efeitos adversos , Osteoblastos , Osteogênese , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Ratos , Tocotrienóis/química , Tocotrienóis/farmacologia , beta Catenina/metabolismo
2.
J Sci Food Agric ; 102(1): 185-197, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34061348

RESUMO

BACKGROUND: Juices are currently a fast-growing segment in the fruit and vegetable industry sector. However, there are still no reports on the diversity of the phytochemical profile and health-promoting properties of commercial sea buckthorn (Hippophaë rhamnoides) juices. This study aimed to identify and quantify phytoprostanes, phytofurans by ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS), tocopherols, tocotrienols by ultra-performance liquid chromatography coupled with a fluorescence detector (UPLC-FL), carotenoids, and free amino acids by ultra-performance liquid chromatography coupled with a photodiode detector-quadrupole and tandem time-of-flight mass spectrometry (UPLC-PDA-Q/TOF-MS), and assess their anti-cholinergic, anti-diabetic, anti-obesity, anti-inflammatory, and antioxidant potential by in vitro assays of commercial sea buckthorn juices. RESULTS: Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) in sea buckthorn juices were identified for the first time. Juices contained eight F1 -, D1 -, B1 - and L1 -phytoprostanes and one phytofuran (32.31-1523.51 ng and up to 101.47 µg/100 g dry weight (DW)), four tocopherol congeners (22.23-94.08 mg 100 g-1 DW) and three tocotrienols (5.93-25.34 mg 100 g-1 DW). Eighteen carotenoids were identified, including ten xanthophylls, seven carotenes and phytofluene, at a concentration of 133.65 to 839.89 mg 100 g-1 DW. Among the 20 amino acids (175.92-1822.60 mg 100 g-1 DW), asparagine was dominant, and essential and conditionally essential amino acids constituted 11 to 41% of the total. The anti-enzyme and antioxidant potential of juices correlated selectively with the composition. CONCLUSION: Sea buckthorn juice can be a valuable dietary source of vitamins E and A, oxylipins and amino acids, used in the prevention of metabolic syndrome, inflammation, and neurodegenerative processes. The differentiation of the composition and the bioactive potential of commercial juices indicate that, for the consumer, it should be important to choose juices from the declared berry cultivars and crops. © 2021 Society of Chemical Industry.


Assuntos
Carotenoides/química , Sucos de Frutas e Vegetais/análise , Hippophae/química , Extratos Vegetais/química , Tocoferóis/química , Tocotrienóis/química , Aminoácidos/química , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Frutas/química , Espectrometria de Massas em Tandem
3.
Compr Rev Food Sci Food Saf ; 21(2): 964-998, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35181987

RESUMO

Vitamin E is a group of isoprenoid chromanols with different biological activities. It comprises eight oil-soluble compounds: four tocopherols, namely, α-, ß-, γ-, and δ-tocopherols; and four tocotrienols, namely, α-, ß-, γ, and δ-tocotrienols. Vitamin E isomers are well-known for their antioxidant activity, gene-regulation effects, and anti-inflammatory and nephroprotective properties. Considering that vitamin E is exclusively synthesized by photosynthetic organisms, animals can only acquire it through their diet. Plant-based food is the primary source of vitamin E; hence, oils, nuts, fruits, and vegetables with high contents of vitamin E are mostly consumed after processing, including industrial processes and home-cooking, which involve vitamin E profile and content alteration during their preparation. Accordingly, it is essential to identify the vitamin E content and profile in foodstuff to match daily intake requirements. This review summarizes recent advances in vitamin E chemistry, metabolism and metabolites, current knowledge on their contents and profiles in raw and processed plant foods, and finally, their modern developments in analytical methods.


Assuntos
Tocotrienóis , Vitamina E , Animais , Antioxidantes/química , Tecnologia de Alimentos , Tocoferóis/química , Tocoferóis/metabolismo , Tocotrienóis/análise , Tocotrienóis/química , Tocotrienóis/metabolismo
4.
Int J Med Sci ; 18(16): 3665-3673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790038

RESUMO

Menopause is the leading cause of osteoporosis for elderly women due to imbalanced bone remodelling in the absence of oestrogen. The ability of tocotrienol in reversing established bone loss due to oestrogen deficiency remains unclear despite the plenitude of evidence showcasing its preventive effects. This study aimed to investigate the effects of self-emulsified annatto tocotrienol (SEAT) on bone histomorphometry and remodelling in ovariectomised rats. Female Sprague Dawley rats (n=36) were randomly assigned into baseline, sham, ovariectomised (OVX) control, OVX-treated with annatto tocotrienol (AT) (60 mg/kg), SEAT (60 mg/kg) and raloxifene (1 mg/kg). Daily treatment given through oral gavage was started two months after castration. The rats were euthanised after eight weeks of treatment. Blood was collected for bone biomarkers. Femur and lumbar bones were collected for histomorphometry and remodelling markers. The results showed that AT and SEAT improved osteoblast numbers and trabecular mineralisation rate (p<0.05 vs untreated OVX). AT also decreased skeletal sclerostin expression in OVX rats (p<0.05 vs untreated OVX). Similar effects were observed in the raloxifene-treated group. Only SEAT significantly increased bone formation rate and reduced RANKL/OPG ratio (p<0.05 vs untreated OVX). However, no changes in osteoclast-related parameters were observed among the groups (p>0.05). In conclusion, SEAT exerts potential skeletal anabolic properties by increasing bone formation, suppressing sclerostin expression and reducing RANKL/OPG ratio in rats with oestrogen deficiency.


Assuntos
Osso e Ossos/efeitos dos fármacos , Carotenoides/uso terapêutico , Osteoporose Pós-Menopausa/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Tocotrienóis/uso terapêutico , Animais , Bixaceae/química , Densidade Óssea/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Carotenoides/química , Carotenoides/farmacologia , Modelos Animais de Doenças , Emulsões , Estradiol/deficiência , Feminino , Marcadores Genéticos , Humanos , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologia , Osteoprotegerina/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ligante RANK/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tocotrienóis/química , Tocotrienóis/farmacologia
5.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207571

RESUMO

Tocopherols and tocotrienols are natural compounds of plant origin, available in the nature. They are supplied in various amounts in a diet, mainly from vegetable oils, some oilseeds, and nuts. The main forms in the diet are α- and γ-tocopherol, due to the highest content in food products. Nevertheless, α-tocopherol is the main form of vitamin E with the highest tissue concentration. The α- forms of both tocopherols and tocotrienols are considered as the most metabolically active. Currently, research results indicate also a greater antioxidant potential of tocotrienols than tocopherols. Moreover, the biological role of vitamin E metabolites have received increasing interest. The aim of this review is to update the knowledge of tocopherol and tocotrienol bioactivity, with a particular focus on their bioavailability, distribution, and metabolism determinants in humans. Almost one hundred years after the start of research on α-tocopherol, its biological properties are still under investigation. For several decades, researchers' interest in the biological importance of other forms of vitamin E has also been growing. Some of the functions, for instance the antioxidant functions of α- and γ-tocopherols, have been confirmed in humans, while others, such as the relationship with metabolic disorders, are still under investigation. Some studies, which analyzed the biological role and mechanisms of tocopherols and tocotrienols over the past few years described new and even unexpected cellular and molecular properties that will be the subject of future research.


Assuntos
Antioxidantes , Dieta , Tocotrienóis , alfa-Tocoferol , gama-Tocoferol , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Tocotrienóis/química , Tocotrienóis/metabolismo , alfa-Tocoferol/química , alfa-Tocoferol/metabolismo , gama-Tocoferol/química , gama-Tocoferol/metabolismo
6.
J Sci Food Agric ; 101(14): 5963-5971, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33840091

RESUMO

BACKGROUND: Throughout the past decade, Pickering emulsion has been increasingly utilized for the encapsulation of bioactive compounds due to its high stability and biocompatibility. In the present work, palm tocotrienols were initially encapsulated in a calcium carbonate Pickering emulsion, which was then subjected to alginate gelation and subsequent chitosan coating. The effects of wall material (alginate and chitosan) concentrations, gelation pH and time, and chitosan coating time on the encapsulation efficiency of palm tocotrienols were explored. RESULTS: Our findings revealed that uncoated alginate microcapsules ruptured upon drying and exhibited low encapsulation efficiency (13.81 ± 2.76%). However, the addition of chitosan successfully provided a more complex and rigid external wall structure to enhance the stability of the microcapsules. By prolonging the crosslinking time from 5 to 30 min and increasing the chitosan concentration from 0.1% to 0.5%, the oil encapsulation efficiency was increased by 28%. Under the right gelation pH (pH 4), the extension of gelation time from 1 to 12 h resulted in an increase in alginate-Ca2+ crosslinkings, thus strengthening the microcapsules. CONCLUSION: With the optimum formulation and process parameters, a high encapsulation efficiency (81.49 ± 1.75%) with an elevated oil loading efficiency (63.58 ± 2.96%) were achieved. The final product is biocompatible and can potentially be used for the delivery of palm tocotrienols. © 2021 Society of Chemical Industry.


Assuntos
Alginatos/química , Quitosana/química , Composição de Medicamentos/métodos , Tocotrienóis/química , Cápsulas/química , Composição de Medicamentos/instrumentação , Emulsões/química , Géis/química , Concentração de Íons de Hidrogênio
7.
Nutr Cancer ; 72(4): 653-661, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31390910

RESUMO

Tumor-targeted nanoparticle delivery system has been known as a substitute and capable achievement in cancer treatment compared to conventional methods. In this study, we examined potential application of ɑ-tocotrienol-Precirol formulation to enhance efficiency of doxorubicin (DOX) in induction of apoptosis in HUH-7 hepatocarcinoma cells. ɑ-tocotrienol-loaded nanoparticles were characterized at the point of zeta potential, particle size, scanning electron microscope (SEM), and cell internalization. To evaluate antiproliferative effects of formulation, apoptosis, cell cycle procedure, flow cytometry, and MTT assays were employed. Optimum size of the ɑ-tocotrienol formulation revealed narrow size distribution with mean average of 78 ± 3 nm. IC50 values for ɑ-tocotrienol and ɑ-tocotrienol-nano structured lipid carriers after 24 h were 15 ± 0.6 and 10 ± 0.03 µM, respectively. After incubation of cells with ɑ-tocotrienol-loaded careers, the rate of cell proliferation decreased from 53 ± 6.1 to 34 ± 7.1% (P < 0.05). A significant improvement in the apoptosis percentage was revealed after treatment of the HUH-7 cell line with DOX and ɑ-tocotrienol careers (P < 0.05). Gene expression results demonstrated a marked decrease in survivin and increase in Bid and Bax levels. Our findings suggest that ɑ-tocotrienol-loaded nanoparticles elevate DOX efficacy in HUH-7 hepatocarcinoma cell.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Diglicerídeos/química , Doxorrubicina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Tocotrienóis/química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Doxorrubicina/química , Composição de Medicamentos , Humanos , Neoplasias Hepáticas/patologia , Nanopartículas , Survivina/genética , Proteína X Associada a bcl-2/genética
8.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287202

RESUMO

Vitamin E, a natural antioxidant, is of interest to scientists, health care pundits and faddists; its nutritional and biomedical attributes may be validated, anecdotal or fantasy. Vitamin E is a mixture of tocopherols (TPs) and tocotrienols (T-3s), each class having four substitutional isomers (α-, ß-, γ-, δ-). Vitamin E analogues attain only low concentrations in most tissues, necessitating exacting invasive techniques for analytical research. Quantitative positron emission tomography (PET) with an F-18-labeled molecular probe would expedite access to Vitamin E's biodistributions and pharmacokinetics via non-invasive temporal imaging. (R)-6-(3-[18F]Fluoropropoxy)-2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-chromane ([18F]F-γ-T-3) was prepared for this purpose. [18F]F-γ-T-3 was synthesized from γ-T-3 in two steps: (i) 1,3-di-O-tosylpropane was introduced at C6-O to form TsO-γ-T-3, and (ii) reaction of this tosylate with [18F]fluoride in DMF/K222. Non-radioactive F-γ-T-3 was synthesized by reaction of γ-T-3 with 3-fluoropropyl methanesulfonate. [18F]F-γ-T-3 biodistribution in a murine tumor model was imaged using a small-animal PET scanner. F-γ-T-3 was prepared in 61% chemical yield. [18F]F-γ-T-3 was synthesized in acceptable radiochemical yield (RCY 12%) with high radiochemical purity (>99% RCP) in 45 min. Preliminary F-18 PET images in mice showed upper abdominal accumulation with evidence of renal clearance, only low concentrations in the thorax (lung/heart) and head, and rapid clearance from blood. [18F]F-γ-T-3 shows promise as an F-18 PET tracer for detailed in vivo studies of Vitamin E. The labeling procedure provides acceptable RCY, high RCP and pertinence to all eight Vitamin E analogues.


Assuntos
Fluoretos/química , Radioisótopos de Flúor/química , Distribuição Tecidual/fisiologia , Tocotrienóis/química , Tocotrienóis/farmacocinética , Vitamina E/química , Vitamina E/farmacocinética , Animais , Antioxidantes/química , Antioxidantes/farmacocinética , Linhagem Celular Tumoral , Feminino , Fluoretos/farmacocinética , Radioisótopos de Flúor/farmacocinética , Humanos , Marcação por Isótopo/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Oxirredução , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Compostos Radiofarmacêuticos/metabolismo , gama-Tocoferol/química , gama-Tocoferol/farmacocinética
9.
Int J Mol Sci ; 20(6)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889819

RESUMO

Male osteoporosis is a significant but undetermined healthcare problem. Men suffer from a higher mortality rate post-fracture than women and they are marginalized in osteoporosis treatment. The current prophylactic agents for osteoporosis are limited. Functional food components such as tocotrienol may be an alternative option for osteoporosis prevention in men. This paper aims to review the current evidence regarding the skeletal effects of tocotrienol in animal models of male osteoporosis and its potential antiosteoporotic mechanism. The efficacy of tocotrienol of various sources (single isoform, palm and annatto vitamin E mixture) had been tested in animal models of bone loss induced by testosterone deficiency (orchidectomy and buserelin), metabolic syndrome, nicotine, alcoholism, and glucocorticoid. The treated animals showed improvements ranging from bone microstructural indices, histomorphometric indices, calcium content, and mechanical strength. The bone-sparing effects of tocotrienol may be exerted through its antioxidant, anti-inflammatory, and mevalonate-suppressive pathways. However, information pertaining to its mechanism of actions is superficial and warrants further studies. As a conclusion, tocotrienol could serve as a functional food component to prevent male osteoporosis, but its application requires validation from a clinical trial in men.


Assuntos
Osteoporose/prevenção & controle , Tocotrienóis/uso terapêutico , Animais , Desenvolvimento Ósseo/efeitos dos fármacos , Reabsorção Óssea/patologia , Glucocorticoides/metabolismo , Humanos , Masculino , Fumar/efeitos adversos , Tocotrienóis/química , Tocotrienóis/farmacologia
10.
Int J Mol Sci ; 20(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618817

RESUMO

Diabetes mellitus is a metabolic disorder characterized by the development of vascular complications associated with high morbidity and mortality and the consequent relevant costs for the public health systems. Diabetic kidney disease is one of these complications that represent the main cause of end-stage renal disease in Western countries. Hyperglycemia, inflammation, and oxidative stress contribute to its physiopathology, and several investigations have been performed to evaluate the role of antioxidant supplementation as a complementary approach for the prevention and control of diabetes and associated disturbances. Vitamin E compounds, including different types of tocopherols and tocotrienols, have been considered as a treatment to tackle major cardiovascular outcomes in diabetic subjects, but often with conflicting or even negative results. However, their effects on diabetic nephropathy are even less clear, despite several intervention studies that showed the improvement of renal parameters after supplementation in patients with diabetic kidney disease. Then we performed a review of the literature about the role of vitamin E supplementation on diabetic nephropathy, also describing the underlying antioxidant, anti-inflammatory, and metabolic mechanisms to evaluate the possible use of tocopherols and tocotrienols in clinical practice.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Tocotrienóis/química , Tocotrienóis/farmacologia , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Suplementos Nutricionais , Humanos , Estresse Oxidativo/efeitos dos fármacos , Tocoferóis/química , Tocoferóis/farmacologia , Vitamina E/administração & dosagem
11.
Int J Mol Sci ; 20(3)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717416

RESUMO

Tocotrienols, found in several natural sources such as rice bran, annatto seeds, and palm oil have been reported to exert various beneficial health promoting properties especially against chronic diseases, including cancer. The incidence of cancer is rapidly increasing around the world not only because of continual aging and growth in global population, but also due to the adaptation of Western lifestyle behaviours, including intake of high fat diets and low physical activity. Tocotrienols can suppress the growth of different malignancies, including those of breast, lung, ovary, prostate, liver, brain, colon, myeloma, and pancreas. These findings, together with the reported safety profile of tocotrienols in healthy human volunteers, encourage further studies on the potential application of these compounds in cancer prevention and treatment. In the current article, detailed information about the potential molecular mechanisms of actions of tocotrienols in different cancer models has been presented and the possible effects of these vitamin E analogues on various important cancer hallmarks, i.e., cellular proliferation, apoptosis, angiogenesis, metastasis, and inflammation have been briefly analyzed.


Assuntos
Neoplasias/tratamento farmacológico , Tocotrienóis/farmacologia , Tocotrienóis/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Estudos Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Tocotrienóis/química , Resultado do Tratamento
12.
Molecules ; 24(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841628

RESUMO

Supercritical fluid carbon dioxide (SF-CO2) was used to extract oil from Elaeagnus mollis Diels (E. mollis Diels) seed and its antioxidant ability was also investigated. The effect of extraction pressure (20⁻35 MPa), extraction temperature (35⁻65 C), extraction time (90⁻180 min) and seed particle size (40⁻100 mesh) on the oil yield were studied. An orthogonal experiment was conducted to determine the best operating conditions for the maximum extraction oil yield. Based on the optimum conditions, the maximum yield reached 29.35% at 30 MPa, 50 C, 150 min, 80 mesh seed particle size and 40 g/min SF-CO2 flow rate. The E. mollis Diels seed (EDS) oil obtained under optimal SF-CO2 extraction conditions had higher unsaturated fatty acid content (91.89%), higher vitamin E content (96.24 ± 3.01 mg/100 g) and higher total phytosterols content (364.34 ± 4.86 mg/100 g) than that extracted by Soxhlet extraction (SE) and cold pressing (CP) methods. The antioxidant activity of the EDS oil was measured by DPPH and hydroxyl radical scavenging test. EDS oil extracted by different methods exhibited a dose-dependent antioxidant ability, with IC50 values of no significant differences. Based on the results of correlation between bioactive compounds, lupeol and -tocopherol was the most important antioxidant in EDS oil.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Dióxido de Carbono/química , Elaeagnaceae/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Sementes/química , Ácidos Graxos/química , Tocoferóis/química , Tocotrienóis/química
13.
Molecules ; 24(5)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845769

RESUMO

Obesity is a major risk factor for diabetes, and these two metabolic conditions cause significant healthcare burden worldwide. Chronic inflammation and increased oxidative stress due to exposure of cells to excess nutrients in obesity may trigger insulin resistance and pancreatic ß-cell dysfunction. Tocotrienol, as a functional food component with anti-inflammatory, antioxidant, and cell signaling-mediating effects, may be a potential agent to complement the current management of obesity and diabetes. The review aimed to summarize the current evidence on the anti-obesity and antidiabetic effects of tocotrienol. Previous studies showed that tocotrienol could suppress adipogenesis and, subsequently, reduce body weight and fat mass in animals. This was achieved by regulating pathways of lipid metabolism and fatty acid biosynthesis. It could also reduce the expression of transcription factors regulating adipogenesis and increase apoptosis of adipocytes. In diabetic models, tocotrienol was shown to improve glucose homeostasis. Activation of peroxisome proliferator-activated receptors was suggested to be responsible for these effects. Tocotrienol also prevented multiple systemic complications due to obesity and diabetes in animal models through suppression of inflammation and oxidative stress. Several clinical trials have been conducted to validate the antidiabetic of tocotrienol, but the results were heterogeneous. There is no evidence showing the anti-obesity effects of tocotrienol in humans. Considering the limitations of the current studies, tocotrienol has the potential to be a functional food component to aid in the management of patients with obesity and diabetes.


Assuntos
Hipoglicemiantes/química , Doenças Metabólicas/prevenção & controle , Substâncias Protetoras/química , Tocotrienóis/química , Adipogenia/efeitos dos fármacos , Animais , Humanos , Hipoglicemiantes/farmacologia , Inflamação/prevenção & controle , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Estrutura Molecular , Obesidade/prevenção & controle , Substâncias Protetoras/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade , Tocotrienóis/farmacologia
14.
J Sci Food Agric ; 99(5): 2078-2087, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30298520

RESUMO

BACKGROUND: The seeds of Vitis vinifera grapes have been studied extensively but knowledge about the interspecific crosses of other Vitis species (e.g. V. vinifera, V. amurensis, V. rupestris, V. riparia, and V. labruska) is very limited. RESULTS: The oil yields recovered from the grape seeds ranged between 7 and 160 g kg-1 dw. The main fatty acids were linoleic (72.5-83.1%), oleic (6.2-15.5%), and palmitic (5.4-13.2%), which together constituted 92.8-97.1% of the total detected fatty acids. The total concentration of tocopherol (T) and tocotrienol (T3) homologues was between 0.785 and 9.033 g kg-1 oil. The concentration of sterols varied significantly and ranged between 2.912 and 105.962 g kg-1 oil. The ß-sitosterol constituted 68.2-86.3% of the total content of sterols. The oil yield in grape seeds significantly correlated with the oleic acid, α-linolenic acid, α-T, α-T3, γ-T3, campesterol, Δ5-stigmasterol, ß-sitosterol, and total Ts + T3 s and sterols. CONCLUSION: The present study demonstrated that seed oil recovered from different interspecific Vitis crosses is a rich source of minor lipophilic bioactive compounds, especially genotypes with low oil content. They can be used to enrich plant oils that are poor in tocotrienols and/or phytosterols without changing the fatty acid composition of main oil, due to low enrichment quantities (micro-blends). © 2018 Society of Chemical Industry.


Assuntos
Ácidos Graxos/química , Extratos Vegetais/química , Esteróis/química , Tocoferóis/química , Tocotrienóis/química , Vitis/química , Frutas/química , Frutas/classificação , Frutas/genética , Hibridização Genética , Sementes/química , Vitis/classificação , Vitis/genética
15.
Chem Pharm Bull (Tokyo) ; 66(7): 714-720, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962454

RESUMO

We previously found that antioxidative activity of liposomes co-encapsulating astaxanthin (Asx) and tocotrienols (T3s) was higher than the calculated additive activity, which results from intermolecular interactions between both antioxidants (J. Clin. Biochem. Nutr., 59, 2016, Kamezaki et al.). Herein, we conducted experiments to optimize Asx/α-T3 ratio for high antioxidative activity, and tried to elucidate details of intermolecular interaction of Asx with α-T3. Higher activity than calculated additive value was clearly observed at an Asx/α-T3 ratio of 2 : 1, despite two α-T3 would potentially interact with two terminal rings of one Asx. The synthetic Asx used in this study was a mixture of three stereoisomers, 3R,3'R-form (Asx-R), 3S,3'S-form (Asx-S) and 3R,3'S-meso form (Asx-meso). The calculated binding energy of the Asx-S/α-T3 complex was higher than those of Asx-R/α-T3 and Asx-meso/α-T3, suggesting that Asx-S and α-T3 is the most preferable combination for the intermolecular interaction. The optimal Asx-S/α-T3 ratio for antioxidation was shown to be 1 : 2. These results suggest that the Asx stereochemistry affects the intermolecular interaction of Asx/α-T3. Moreover, the absorption spectrum changes of Asx-S upon co-encapsulation with α-T3 in liposomes indicate that the electronic state of Asx-S is affected by intermolecular interactions with α-T3. Further, intermolecular interactions with α-T3 affected the electronic charges on the C9, C10 and C15 atoms in the polyene moiety of Asx-S. In conclusion, the intermolecular interaction of Asx/T3 depends on the Asx stereochemistry, and caused a change in the electronic state of the Asx polyene moiety by the presence of double bond in the T3 triene moiety.


Assuntos
Antioxidantes/química , Carotenoides/química , Lipossomos/química , Tocotrienóis/química , Antioxidantes/síntese química , Lipossomos/síntese química , Estrutura Molecular , Estereoisomerismo , Xantofilas/síntese química , Xantofilas/química
16.
Int J Toxicol ; 37(2_suppl): 61S-94S, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235959

RESUMO

The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 14 tocopherols and tocotrienols and concluded these ingredients are safe as used in cosmetics. The tocopherols are reported to function in cosmetics as antioxidants or skin-conditioning agents; in contrast, tocotrienols are not reported to function as an antioxidants in cosmetics but as a light stabilizer, oral care agent, or skin-conditioning agent. The Panel reviewed the new and existing animal and clinical data to determine the safety of these ingredients and found it appropriate to extrapolate the existing information to conclude on the safety of all the tocopherols and tocotrienols.


Assuntos
Qualidade de Produtos para o Consumidor , Cosméticos/química , Cosméticos/toxicidade , Tocoferóis/toxicidade , Tocotrienóis/toxicidade , Animais , Fármacos Dermatológicos , Humanos , Medição de Risco , Absorção Cutânea , Tocoferóis/química , Tocotrienóis/química , Testes de Toxicidade
17.
Vopr Pitan ; 87(2): 5-16, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30592863

RESUMO

The literature review systematizes a lot of information on the biological effects of tocotrienols. The effects are described in more details. Vitamin E was discovered at 20s of the last century, but tocotrienols are a less studied part of it. Tocotrienols exhibit cardioprotective, lipid-lowering, antitumor, anti-inflammatory, neuroprotective properties as it has been shown by recent researches. Edible oils (e.g. palm oil, rice bran oil, barley oil, etc.) contain high level of tocotrienols. So, after extraction from plant raw materials they can be used for long-term preventive therapy of many diseases, as well as for the treatment and enhancement of the action of medicinal substances. They can also be used as functional ingredients to stabilize and extend the shelf-life of food products due to their antioxidant properties.


Assuntos
Anti-Inflamatórios , Antineoplásicos , Cardiotônicos , Fármacos Neuroprotetores , Óleos de Plantas , Tocotrienóis , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Cardiotônicos/química , Cardiotônicos/uso terapêutico , Humanos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Óleos de Plantas/química , Óleos de Plantas/uso terapêutico , Tocotrienóis/química , Tocotrienóis/uso terapêutico
18.
Molecules ; 22(2)2017 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-28165404

RESUMO

Vitamin E is recognized as an essential vitamin since its discovery in 1922. Most vegetable oils contain a mixture of tocopherols and tocotrienols in the vitamin E composition. Structurally, tocopherols and tocotrienols share a similar chromanol ring and a side chain at the C-2 position. Owing to the three chiral centers in tocopherols, they can appear as eight different stereoisomers. Plant sources of tocopherol are naturally occurring in the form of RRR while synthetic tocopherols are usually in the form of all-racemic mixture. Similarly, with only one chiral center, natural tocotrienols occur as the R-isoform. In this review, we aim to discuss a few chromatographic methods that had been used to separate the stereoisomers of tocopherols and tocotrienols. These methods include high performance liquid chromatography, gas chromatography and combination of both. The review will focus on method development including selection of chiral columns, detection method and choice of elution solvent in the context of separation efficiency, resolution and chiral purity. The applications for separation of enantiomers in vitamin E will also be discussed especially in terms of the distinctive biological potency among the stereoisoforms.


Assuntos
Cromatografia , Vitamina E/química , Vitamina E/isolamento & purificação , Cromatografia/métodos , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Estereoisomerismo , Tocoferóis/química , Tocotrienóis/química
19.
Molecules ; 22(9)2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28850073

RESUMO

There are six tocol analogs present in palm oil, namely α-tocopherol (α-T), α-tocomonoenol (α-T1), α-tocotrienol (α-T3), γ-tocotrienol (γ-T3), ß-tocotrioenol (ß-T3) and δ-tocotrienol (δ-T3). These analogs were difficult to separate chromatographically due to their similar structures, physical and chemical properties. This paper reports on the effect of pressure and injection solvent on the separation of the tocol analogs in palm oil. Supercritical CO2 modified with ethanol was used as the mobile phase. Both total elution time and resolution of the tocol analogs decreased with increased pressure. Ethanol as an injection solvent resulted in peak broadening of the analogs within the entire pressure range studied. Solvents with an eluent strength of 3.4 or less were more suitable for use as injecting solvents.


Assuntos
Óleo de Palmeira/química , Tocoferóis/química , Tocoferóis/isolamento & purificação , Cromanos/química , Cromanos/isolamento & purificação , Cromatografia com Fluido Supercrítico/métodos , Estrutura Molecular , Pressão , Solventes , Tocotrienóis/química , Tocotrienóis/isolamento & purificação , Vitamina E/análogos & derivados , Vitamina E/química , Vitamina E/isolamento & purificação , alfa-Tocoferol/química , alfa-Tocoferol/isolamento & purificação
20.
Molecules ; 20(11): 19936-46, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26556328

RESUMO

In the present study, tocotrienol rich fraction (TRF) nanoemulsions were produced as an alternative approach to improve solubility and absorption of tocotrienols. In the present study, droplet size obtained after 10 cycles of homogenization with increasing pressure was found to decrease from 120 to 65.1 nm. Nanoemulsions stabilized with Tween series alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) homogenized at 25,000 psi and 10 cycles, produced droplet size less than 100 nm and a narrow size distribution with a polydispersity index (PDI) value lower than 0.2. However blend of Tween series with Span 80 produced nanoemulsions with droplet size larger than 200 nm. This work has also demonstrated the amount of tocols losses in TRF nanoemulsion stabilized Tweens alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) ranged between 3%-25%. This can be attributed to the interfacial film formed surrounding the droplets exhibited different level of oxidative stability against heat and free radicals created during high pressure emulsification.


Assuntos
Emulsões , Nanoestruturas/química , Tocotrienóis/química , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA