Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.380
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 159(3): 647-61, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25307932

RESUMO

While the catalog of mammalian transcripts and their expression levels in different cell types and disease states is rapidly expanding, our understanding of transcript function lags behind. We present a robust technology enabling systematic investigation of the cellular consequences of repressing or inducing individual transcripts. We identify rules for specific targeting of transcriptional repressors (CRISPRi), typically achieving 90%-99% knockdown with minimal off-target effects, and activators (CRISPRa) to endogenous genes via endonuclease-deficient Cas9. Together they enable modulation of gene expression over a ∼1,000-fold range. Using these rules, we construct genome-scale CRISPRi and CRISPRa libraries, each of which we validate with two pooled screens. Growth-based screens identify essential genes, tumor suppressors, and regulators of differentiation. Screens for sensitivity to a cholera-diphtheria toxin provide broad insights into the mechanisms of pathogen entry, retrotranslocation and toxicity. Our results establish CRISPRi and CRISPRa as powerful tools that provide rich and complementary information for mapping complex pathways.


Assuntos
Sistemas CRISPR-Cas , Técnicas Genéticas , Transcrição Gênica , Linhagem Celular , Toxina da Cólera/metabolismo , Toxina Diftérica/metabolismo , Genoma Humano , Humanos
2.
Nature ; 624(7992): 630-638, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093012

RESUMO

The COVID-19 pandemic has fostered major advances in vaccination technologies1-4; however, there are urgent needs for vaccines that induce mucosal immune responses and for single-dose, non-invasive administration4-6. Here we develop an inhalable, single-dose, dry powder aerosol SARS-CoV-2 vaccine that induces potent systemic and mucosal immune responses. The vaccine encapsulates assembled nanoparticles comprising proteinaceous cholera toxin B subunits displaying the SARS-CoV-2 RBD antigen within microcapsules of optimal aerodynamic size, and this unique nano-micro coupled structure supports efficient alveoli delivery, sustained antigen release and antigen-presenting cell uptake, which are favourable features for the induction of immune responses. Moreover, this vaccine induces strong production of IgG and IgA, as well as a local T cell response, collectively conferring effective protection against SARS-CoV-2 in mice, hamsters and nonhuman primates. Finally, we also demonstrate a mosaic iteration of the vaccine that co-displays ancestral and Omicron antigens, extending the breadth of antibody response against co-circulating strains and transmission of the Omicron variant. These findings support the use of this inhaled vaccine as a promising multivalent platform for fighting COVID-19 and other respiratory infectious diseases.


Assuntos
Vacinas contra COVID-19 , Imunidade nas Mucosas , Animais , Cricetinae , Humanos , Camundongos , Administração por Inalação , Aerossóis , Anticorpos Antivirais/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos Virais/imunologia , Toxina da Cólera , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Nanopartículas , Pós , Primatas/virologia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Vacinação , Cápsulas
3.
EMBO J ; 42(3): e111562, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504455

RESUMO

Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects nontoxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ-driven toxigenic conversion or expression of the CTXφ-encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ-driven pathogenicity in V. cholerae. Our results indicate that mucin-associated O-glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ-related virulence factors, including the toxin co-regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O-glycan structures affect CTXφ-mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.


Assuntos
Bacteriófagos , Toxina da Cólera , Mucinas , Vibrio cholerae , Virulência , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Mucinas/genética , Mucinas/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulência/genética , Virulência/fisiologia , Polissacarídeos/genética , Polissacarídeos/metabolismo
4.
EMBO J ; 42(3): e113204, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573348

RESUMO

Vibrio cholerae, the causative agent of cholera, must first be converted to its toxigenic form and cross the sugar-rich mucus barrier before it can cause disease, but whether these hurdles are linked is unclear. In this issue, Wang et al (2022) provide new evidence that mucus O-glycans directly prevent toxigenic conversion and virulence factor expression in V. cholerae.


Assuntos
Toxina da Cólera , Cólera , Mucinas , Vibrio cholerae , Fatores de Virulência , Humanos , Cólera/metabolismo , Cólera/microbiologia , Toxina da Cólera/metabolismo , Mucinas/metabolismo , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade , Fatores de Virulência/metabolismo , Polissacarídeos/metabolismo
5.
EMBO J ; 40(24): e108542, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34612526

RESUMO

Bacterial small RNAs (sRNAs) are well known to modulate gene expression by base pairing with trans-encoded transcripts and are typically non-coding. However, several sRNAs have been reported to also contain an open reading frame and thus are considered dual-function RNAs. In this study, we discovered a dual-function RNA from Vibrio cholerae, called VcdRP, harboring a 29 amino acid small protein (VcdP), as well as a base-pairing sequence. Using a forward genetic screen, we identified VcdRP as a repressor of cholera toxin production and link this phenotype to the inhibition of carbon transport by the base-pairing segment of the regulator. By contrast, we demonstrate that the VcdP small protein acts downstream of carbon transport by binding to citrate synthase (GltA), the first enzyme of the citric acid cycle. Interaction of VcdP with GltA results in increased enzyme activity and together VcdR and VcdP reroute carbon metabolism. We further show that transcription of vcdRP is repressed by CRP allowing us to provide a model in which VcdRP employs two different molecular mechanisms to synchronize central metabolism in V. cholerae.


Assuntos
Carbono/metabolismo , Toxina da Cólera/metabolismo , Citrato (si)-Sintase/metabolismo , RNA Bacteriano/genética , Vibrio cholerae/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Testes Genéticos , Fases de Leitura Aberta , Fenótipo , RNA Bacteriano/metabolismo , Vibrio cholerae/genética
6.
EMBO J ; 40(20): e107766, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34516001

RESUMO

The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis-trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI-based retrograde transport vesicles, thus concentrating them in the trans-Golgi. In genome-edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis-Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.


Assuntos
Glicoesfingolipídeos/metabolismo , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Brefeldina A/farmacologia , Ceramidas/metabolismo , Toxina da Cólera/farmacologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Glicosilação/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/genética , Proteínas da Matriz do Complexo de Golgi/genética , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Toxina Shiga/farmacologia
7.
Nature ; 572(7768): 244-248, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31367037

RESUMO

Vibrio cholerae is the causative agent of cholera, a potentially lethal enteric bacterial infection1. Cholera toxin (CTX), a protein complex that is secreted by V. cholerae, is required for V. cholerae to cause severe disease. CTX is also thought to promote transmission of the organism, as infected individuals shed many litres of diarrhoeal fluid that typically contains in excess of 1011 organisms per litre. How the pathogen is able to reach such high concentrations in the intestine during infection remains poorly understood. Here we show that CTX increases pathogen growth and induces a distinct V. cholerae transcriptomic signature that is indicative of an iron-depleted gut niche. During infection, bacterial pathogens need to acquire iron, which is an essential nutrient for growth2. Most iron in the mammalian host is found in a chelated form within the porphyrin structure of haem, and the ability to use haem as a source of iron is genetically encoded by V. cholerae3. We show that the genes that enable V. cholerae to obtain iron via haem and vibriobactin confer a growth advantage to the pathogen only when CTX is produced. Furthermore, we found that CTX-induced congestion of capillaries in the terminal ileum correlated with an increased bioavailability of luminal haem. CTX-induced disease in the ileum also led to increased concentrations of long-chain fatty acids and L-lactate metabolites in the lumen, as well as the upregulation of V. cholerae genes that encode enzymes of the tricarboxylic acid (TCA) cycle that contain iron-sulfur clusters. Genetic analysis of V. cholerae suggested that pathogen growth was dependent on the uptake of haem and long-chain fatty acids during infection, but only in a strain capable of producing CTX in vivo. We conclude that CTX-induced disease creates an iron-depleted metabolic niche in the gut, which selectively promotes the growth of V. cholerae through the acquisition of host-derived haem and fatty acids.


Assuntos
Toxina da Cólera/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo , Animais , Cólera/metabolismo , Cólera/microbiologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Heme/metabolismo , Ácido Láctico/metabolismo , Camundongos , Coelhos , Análise de Sequência de RNA , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Vibrio cholerae/genética
8.
Proc Natl Acad Sci U S A ; 119(50): e2202938119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469767

RESUMO

Using epitope- and structure-based multiepitope fusion antigen vaccinology platform, we constructed a polyvalent protein immunogen that presents antigenic domains (epitopes) of Vibrio cholerae toxin-coregulated pilus A, cholera toxin (CT), sialidase, hemolysin A, flagellins (B, C, and D), and peptides mimicking lipopolysaccharide O-antigen on a flagellin B backbone. Mice and rabbits immunized intramuscularly with this polyvalent protein immunogen developed antibodies to all of the virulence factors targeted by the immunogen except lipopolysaccharide. Mouse and rabbit antibodies exhibited functional activities against CT enterotoxicity, CT binding to GM1 ganglioside, bacterial motility, and in vitro adherence of V. cholerae O1, O139, and non-O1/non-O139 serogroup strains. When challenged orogastrically with V. cholerae O1 El Tor N16961 or a non-O1/non-O139 strain, rabbits IM immunized with the immunogen showed a 2-log (99%) reduction in V. cholerae colonization of small intestines. Moreover, infant rabbits born to the mother immunized with the protein immunogen acquired antibodies passively and were protected from bacterial intestinal colonization (>2-log reduction), severe diarrhea (100%), and mild diarrhea (88%) after infection with V. cholerae O1 El Tor (N16961), O1 classical (O395), O139 (Bengal), or a non-O1/non-O139 strain. This study demonstrated that this polyvalent cholera protein is broadly immunogenic and cross-protective, and an adult rabbit colonization model and an infant rabbit passive protection model fill a gap in preclinical efficacy assessment in cholera vaccine development.


Assuntos
Cólera , Vibrio cholerae , Coelhos , Camundongos , Animais , Cólera/prevenção & controle , Cólera/microbiologia , Lipopolissacarídeos , Vibrio cholerae/metabolismo , Toxina da Cólera , Diarreia/prevenção & controle
9.
Biochemistry ; 63(5): 587-598, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38359344

RESUMO

Production of soluble proteins is essential for structure/function studies; however, this usually requires milligram amounts of protein, which can be difficult to obtain with traditional expression systems. Recently, the Gram-negative bacterium Vibrio natriegens emerged as a novel and alternative host platform for production of proteins in high yields. Here, we used a commercial strain derived from V. natriegens (Vmax X2) to produce soluble bacterial and fungal proteins in milligram scale, which we struggled to achieve in Escherichia coli. These proteins include the cholera toxin (CT) and N-acetyl glucosamine-binding protein A (GbpA) from Vibrio cholerae, the heat-labile enterotoxin (LT) from E. coli and the fungal nematotoxin CCTX2 from Coprinopsis cinerea. CT, GbpA, and LT are secreted by the Type II secretion system in their natural hosts. When these three proteins were produced in Vmax, they were also secreted and could be recovered from the growth media. This simplified the downstream purification procedure and resulted in considerably higher protein yields compared to production in E. coli (6- to 26-fold increase). We also tested Vmax for protein perdeuteration using deuterated minimal media with deuterium oxide as solvent and achieved a 3-fold increase in yield compared to the equivalent protocol in E. coli. This is good news, since isotopic labeling is expensive and often ineffective but represents a necessary prerequisite for some structural biology techniques. Thus, Vmax represents a promising host for production of challenging expression targets and for protein perdeuteration in amounts suitable for structural biology studies.


Assuntos
Escherichia coli , Vibrio , Escherichia coli/genética , Escherichia coli/metabolismo , Enterotoxinas/metabolismo , Toxina da Cólera/metabolismo
10.
Int J Cancer ; 154(6): 1097-1110, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38095490

RESUMO

Gastrointestinal bacteria are known to have an impact on local and systemic immunity, and consequently either promote or suppress cancer development. Following the notion that perinatal bacterial exposure might confer immune system competency for life, we investigated whether early-life administration of cholera-toxin (CT), a protein exotoxin of the small intestine pathogenic bacterium Vibrio cholerae, may shape local and systemic immunity to impart a protective effect against tumor development in epithelia distantly located from the gut. For that, newborn mice were orally treated with low non-pathogenic doses of CT and later challenged with the carcinogen 7,12-dimethylbenzanthracene (DMBA), known to cause mainly mammary, but also skin, lung and stomach cancer. Our results revealed that CT suppressed the overall incidence and multiplicity of tumors, with varying efficiencies among cancer types, and promoted survival. Harvesting mouse tissues at an earlier time-point (105 instead of 294 days), showed that CT does not prevent preneoplastic lesions per se but it rather hinders their evolution into tumors. CT pretreatment universally increased apoptosis in the cancer-prone mammary, lung and nonglandular stomach, and altered the expression of several cancer-related molecules. Moreover, CT had a long-term effect on immune system cells and factors, the most prominent being the systemic neutrophil decrease. Finally, CT treatment significantly affected gut bacterial flora composition, leading among others to a major shift from Clostridia to Bacilli class abundance. Overall, these results support the notion that early-life CT consumption is able to affect host's immune, microbiome and gene expression profiles toward the prevention of cancer.


Assuntos
Neoplasias , Vibrio cholerae , Animais , Camundongos , Toxina da Cólera , Desmame , Carcinogênese/induzido quimicamente
11.
Biochem Biophys Res Commun ; 716: 149991, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704888

RESUMO

Cholera toxin (Ctx) is a major virulence factor produced by Vibrio cholerae that can cause gastrointestinal diseases, including severe watery diarrhea and dehydration, in humans. Ctx binds to target cells through multivalent interactions between its B-subunit pentamer and the receptor ganglioside GM1 present on the cell surface. Here, we identified a series of tetravalent peptides that specifically bind to the receptor-binding region of the B-subunit pentamer using affinity-based screening of multivalent random-peptide libraries. These tetravalent peptides efficiently inhibited not only the cell-elongation phenotype but also the elevated cAMP levels, both of which are induced by Ctx treatment in CHO cells or a human colon carcinoma cell line (Caco-2 cells), respectively. Importantly, one of these peptides, NRR-tet, which was highly efficient in these two activities, markedly inhibited fluid accumulation in the mouse ileum caused by the direct injection of Ctx. In consistent, NRR-tet reduced the extensive Ctx-induced damage of the intestinal villi. After NRR-tet bound to Ctx, the complex was incorporated into the cultured epithelial cells and accumulated in the recycling endosome, affecting the retrograde transport of Ctx from the endosome to the Golgi, which is an essential process for Ctx to exert its toxicity in cells. Thus, NRR-tet may be a novel type of therapeutic agent against cholera, which induces the aberrant transport of Ctx in the intestinal epithelial cells, detoxifying the toxin.


Assuntos
Toxina da Cólera , Cricetulus , Toxina da Cólera/metabolismo , Humanos , Animais , Camundongos , Células CHO , Células CACO-2 , Peptídeos/farmacologia , Peptídeos/metabolismo , Peptídeos/química , Transporte Proteico/efeitos dos fármacos , Cólera/tratamento farmacológico , Cólera/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos
12.
Plant Biotechnol J ; 22(5): 1402-1416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38163285

RESUMO

Immunoglobulin G (IgG)-based fusion proteins have been widely exploited as a potential vaccine delivery platform but in the absence of exogenous adjuvants, the lack of robust immunity remains an obstacle. Here, we report on a key modification that overcomes that obstacle. Thus, we constructed an IgG-Fc vaccine platform for dengue, termed D-PCF, which in addition to a dengue antigen incorporates the cholera toxin non-toxic B subunit (CTB) as a molecular adjuvant, with all three proteins expressed as a single polypeptide. Following expression in Nicotiana benthamiana plants, the D-PCF assembled as polymeric structures of similar size to human IgM, a process driven by the pentamerization of CTB. A marked improvement of functional properties in vitro and immunogenicity in vivo over a previous iteration of the Fc-fusion protein without CTB [1] was demonstrated. These include enhanced antigen presenting cell binding, internalization and activation, complement activation, epithelial cell interactions and ganglioside binding, as well as more efficient polymerization within the expression host. Following immunization of mice with D-PCF by a combination of systemic and mucosal (intranasal) routes, we observed robust systemic and mucosal immune responses, as well as systemic T cell responses, significantly higher than those induced by a related Fc-fusion protein but without CTB. The induced antibodies could bind to the domain III of the dengue virus envelope protein from all four dengue serotypes. Finally, we also demonstrated feasibility of aerosolization of D-PCF as a prerequisite for vaccine delivery by the respiratory route.


Assuntos
Dengue , Vacinas , Animais , Camundongos , Humanos , Toxina da Cólera/química , Toxina da Cólera/metabolismo , Proteínas de Plantas , Adjuvantes Imunológicos , Peptídeos , Imunoglobulina G , Camundongos Endogâmicos BALB C
13.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449342

RESUMO

Cholera, caused by Vibrio cholerae, is a severe diarrheal disease that necessitates prompt diagnosis and effective treatment. This review comprehensively examines various diagnostic methods, from traditional microscopy and culture to advanced nucleic acid testing like polymerase spiral reaction and rapid diagnostic tests, highlighting their advantages and limitations. Additionally, we explore evolving treatment strategies, with a focus on the challenges posed by antibiotic resistance due to the activation of the SOS response pathway in V. cholerae. We discuss promising alternative treatments, including low-pressure plasma sterilization, bacteriophages, and selenium nanoparticles. The paper emphasizes the importance of multidisciplinary approaches combining novel diagnostics and treatments in managing and preventing cholera, a persistent global health challenge. The current re-emergent 7th pandemic of cholera commenced in 1961 and shows no signs of abeyance. This is probably due to the changing genetic profile of V. cholerae concerning bacterial pathogenic toxins. Given this factor, we argue that the disease is effectively re-emergent, particularly in Eastern Mediterranean countries such as Lebanon, Syria, etc. This review considers the history of the current pandemic, the genetics of the causal agent, and current treatment regimes. In conclusion, cholera remains a significant global health challenge that requires prompt diagnosis and effective treatment. Understanding the history, genetics, and current treatments is crucial in effectively addressing this persistent and re-emergent disease.


Assuntos
Bacteriófagos , Cólera , Vibrio cholerae , Humanos , Cólera/diagnóstico , Cólera/epidemiologia , Cólera/prevenção & controle , Vibrio cholerae/genética , Bacteriófagos/fisiologia , Filogenia , Toxina da Cólera/genética , Toxina da Cólera/metabolismo
14.
Rheumatol Int ; 44(8): 1487-1499, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38743252

RESUMO

BACKGROUND: A significant number of patients with axial spondyloarthritis (axSpA) do not respond to biological therapy. Therefore, we decided to investigate the specificity of this group of patients and, in particular, whether haptoglobin (Hp), its polymorphism and zonulin, in addition to other clinical features, are predictors of poor response to biological treatment. METHODS: 48 patients with axSpA who were unsuccessfully treated with standard drugs were converted to biological treatment, and from this time on, a 12-week follow-up was started to assess the failure of biological treatment (Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) decrease < 2 points). Predictors of treatment failure were identified using logistic regression analysis. RESULTS: 21% of subjects had biological treatment failure. Patients who had a higher zonulin level, a history of frequent infections, were older, had inflammatory bowel disease (IBD), had a lower Hp level at the time of inclusion in biological therapy showed an increased risk of treatment failure. CONCLUSIONS: The results of the study support the hypothesis that the effectiveness of biological treatment of axSpA is limited by changed microbiota and intestinal epithelial barrier dysfunction, as an increased risk of biological treatment failure was observed in patients who were older, had higher zonulin level, IBD and repeated courses of antibiotics due to frequent infections. Therefore, starting biological treatment should be followed by reducing intestinal permeability and regulating the disturbed gut microbiome.


Assuntos
Espondiloartrite Axial , Toxina da Cólera , Disbiose , Haptoglobinas , Permeabilidade , Falha de Tratamento , Humanos , Feminino , Masculino , Adulto , Estudos Prospectivos , Pessoa de Meia-Idade , Espondiloartrite Axial/tratamento farmacológico , Precursores de Proteínas , Microbioma Gastrointestinal , Produtos Biológicos/uso terapêutico , Produtos Biológicos/efeitos adversos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Polimorfismo Genético , Fatores de Risco , Função da Barreira Intestinal
15.
Semin Cancer Biol ; 86(Pt 3): 753-768, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34271147

RESUMO

It is a major concern to treat cancer successfully, due to the distinctive pathophysiology of cancer cells and the gradual manifestation of resistance. Specific action, adverse effects and development of resistance has prompted the urgent requirement of exploring alternative anti-tumour treatment therapies. The naturally derived microbial toxins as a therapy against cancer cells are a promisingly new dimension. Various important microbial toxins such as Diphtheria toxin, Vibrio cholera toxin, Aflatoxin, Patulin, Cryptophycin-55, Chlorella are derived from several bacterial, fungal and algal species. These agents act on different biotargets such as inhibition of protein synthesis, reduction in cell growth, regulation of cell cycle and many cellular processes. Bacterial toxins produce actions primarily by targeting protein moieties and some immunomodulation and few acts through DNA. Fungal toxins appear to have more DNA damaging activity and affect the cell cycle. Algal toxins produce alteration in mitochondrial phosphorylation. In conclusion, microbial toxins and their metabolites appear to have a great potential to provide a promising option for the treatment and management to combat cancer.


Assuntos
Toxinas Bacterianas , Chlorella , Neoplasias , Humanos , Toxinas Bacterianas/farmacologia , Toxina da Cólera/farmacologia , Neoplasias/tratamento farmacológico
16.
Infect Immun ; 91(7): e0018123, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37272791

RESUMO

Naegleria fowleri is an etiological agent that generates primary amoebic meningoencephalitis; unfortunately, no effective treatment or vaccine is available. The objective of this work was to determine the immunoprotective response of two vaccine antigens, as follows: (i) the polypeptide band of 19 kDa or (ii) a predicted immunogenic peptide from the membrane protein MP2CL5 (Smp145). Both antigens were administered intranasally in mice using cholera toxin (CT) as an adjuvant. The survival rate and immune response of immunized mice with both antigens and challenged with N. fowleri trophozoites were measured in the nose-associated lymphoid tissue (NALT) and nasal passages (NPs) by flow cytometry and enzyme-linked immunosorbent assay (ELISA). We also determined the immunolocalization of both antigens in N. fowleri trophozoites by confocal microscopy. Immunization with the polypeptide band of 19 kDa alone or coadministered with CT was able to confer 80% and 100% of protection, respectively. The immunization with both antigens (alone or coadministered with CT) showed an increase in T and B lymphocytes. In addition, there was an increase in the expression of integrin α4ß1 and IgA in the nasal cavity of protected mice, and the IgA, IgG, and IgM levels were increased in serum and nasal washes. The immunolocalization of both antigens in N. fowleri trophozoites was observed in the plasma membrane, specifically in pseudopod-like structures. The MP2CL5 antigens evaluated in this work were capable of conferring protection which would lead us to consider them as potential candidates for vaccines against meningitis caused by N. fowleri.


Assuntos
Meningite , Naegleria fowleri , Vacinas , Animais , Camundongos , Toxina da Cólera , Imunidade , Imunoglobulina A
17.
Infect Immun ; 91(5): e0043522, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37022166

RESUMO

In order for successful fecal-oral transmission, enteric bacterial pathogens have to successfully compete with the intestinal microbiota and reach high concentrations during infection. Vibrio cholerae requires cholera toxin (CT) to cause diarrheal disease, which is thought to promote the fecal-oral transmission of the pathogen. Besides inducing diarrheal disease, the catalytic activity of CT also alters host intestinal metabolism, which promotes the growth of V. cholerae during infection through the acquisition of host-derived nutrients. Furthermore, recent studies have found that CT-induced disease activates a niche-specific suite of V. cholerae genes during infection, some of which may be important for fecal-oral transmission of the pathogen. Our group is currently exploring the concept that CT-induced disease promotes the fecal-oral transmission of V. cholerae by modulating both host and pathogen metabolism. Furthermore, the role of the intestinal microbiota in pathogen growth and transmission during toxin-induced disease merits further investigation. These studies open the door to investigating whether other bacterial toxins also enhance pathogen growth and transmission during infection, which may shed light on the design of novel therapeutics for intervention or prevention of diarrheal diseases.


Assuntos
Toxinas Bacterianas , Cólera , Vibrio cholerae , Humanos , Toxina da Cólera/genética , Cólera/microbiologia , Vibrio cholerae/fisiologia , Diarreia
18.
Infect Immun ; 91(11): e0031323, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37889003

RESUMO

The widespread prevalence of Helicobacter pylori (H. pylori) infection remains a great challenge to human health. The existing vaccines are not ideal for preventing H. pylori infection; thus, exploring highly effective adjuvants may improve the immunoprotective efficacy of H. pylori vaccines. In a previous study, we found that the outer membrane vesicles (OMVs), a type of nanoscale particle spontaneously produced by Gram-negative bacteria, could act as adjuvants to boost the immune responses to vaccine antigens. In this study, we explored the potential application of OMVs as delivery vectors for adjuvant development. We constructed recombinant OMVs containing eukaryotic expression plasmid of cytokines, including interleukin 17A or interferon-γ, and evaluated their function as adjuvants in combination with inactivated whole-cell vaccine (WCV) or UreB as vaccine antigens. Our results showed that recombinant OMVs as adjuvants could induce stronger humoral and mucosal immune responses in mice than wild-type H. pylori OMVs and the cholera toxin (CT) adjuvant. Additionally, the recombinant OMVs significantly promoted Th1/Th2/Th17-type immune responses. Furthermore, the recombinant OMV adjuvant induced more potent clearance of H. pylori than CT and wild-type OMVs. Our findings suggest that the recombinant OMVs coupled with cytokines may become potent adjuvants for the development of novel and effective vaccines against H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Vacinas , Humanos , Animais , Camundongos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Citocinas/metabolismo , Infecções por Helicobacter/prevenção & controle , Adjuvantes Imunológicos , Toxina da Cólera/genética , Plasmídeos/genética , Vacinas Bacterianas , Anticorpos Antibacterianos
19.
Glycobiology ; 33(10): 801-816, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37622990

RESUMO

Prior research on cholera toxin (CT) binding and intoxication has relied on human colonic cancer derived epithelial cells. While these transformed cell lines have been beneficial, they neither derive from small intestine where intoxication occurs, nor represent the diversity of small intestinal epithelial cells (SI-ECs) and variation in glycoconjugate expression among individuals. Here, we used human enteroids, derived from jejunal biopsies of multipledonors to study CT binding and intoxication of human non-transformed SI-ECs. We modulated surface expression of glycosphingolipids, glycoproteins and specific glycans to distinguish the role of each glycan/glycoconjugate. Cholera-toxin-subunit-B (CTB) mutants were generated to decipher the preference of each glycoconjugate to different binding sites and the correlation between CT binding and intoxication. Human enteroids contain trace amounts of GM1, but other glycosphingolipids may be contributing to CT intoxication. We discovered that inhibition of either fucosylation or O-glycosylation sensitize enteroids to CT-intoxication. This can either be a consequence of the removal of fucosylated "decoy-like-ligands" binding to CTB's non-canonical site and/or increase in the availability of Gal/GalNAc-terminating glycoconjugates binding to the canonical site. Furthermore, simultaneous inhibition of fucosylation and O-glycosylation increased the availability of additional Gal/GalNAc-terminating glycoconjugates but counteracted the sensitization in CT intoxication caused by inhibiting O-glycosylation because of reduction in fucose. This implies a dual role of fucose as a functional glycan and a decoy, the interplay of which influences CT binding and intoxication. Finally, while the results were similar for enteroids from different donors, they were not identical, pointing to a role for human genetic variation in determining sensitivity to CT.


Assuntos
Cólera , Humanos , Fucose , Toxina da Cólera/química , Toxina da Cólera/metabolismo , Ligantes , Glicoconjugados , Polissacarídeos , Glicoesfingolipídeos
20.
Immunogenetics ; 75(2): 99-114, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36459183

RESUMO

The bacteria Vibrio cholerae causes cholera, an acute diarrheal infection that can lead to dehydration and even death. Over 100,000 people die each year as a result of epidemic diseases; vaccination has emerged as a successful strategy for combating cholera. This study uses bioinformatics tools to create a multi-epitope vaccine against cholera infection using five structural polyproteins from the V. cholerae (CTB, TCPA, TCPF, OMPU, and OMPW). The antigenic retrieved protein sequence were analyzed using BCPred and IEDB bioinformatics tools to predict B cell and T cell epitopes, respectively, which were then linked with flexible linkers together with an adjuvant to boost it immunogenicity. The construct has a theoretical PI of 6.09, a molecular weight of 53.85 kDa, and an estimated half-life for mammalian reticulocytes in vitro of 4.4 h. These results demonstrate the construct's longevity. The vaccine design was docked against the human toll-like receptor (TLR) to evaluate compatibility and effectiveness; also other additional post-vaccination assessments were carried out on the designed vaccine. Through in silico cloning, its expression was determined. The results show that it has a CAI value of 0.1 and GC contents of 58.97% which established the adequate expression and downstream processing of the vaccine construct, and our research demonstrated that the multi-epitope subunit vaccine exhibits antigenic characteristics. Additionally, we carried out an in silico immunological simulation to examine the immune reaction to an injection. Our results strongly suggest that the vaccine candidate on further validation would induce immune response against the V. cholerae infection.


Assuntos
Vacinas contra Cólera , Cólera , Vibrio cholerae , Animais , Humanos , Cólera/prevenção & controle , Toxina da Cólera , Vibrio cholerae/genética , Epitopos , Biologia Computacional , Epitopos de Linfócito T/genética , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA