Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.086
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(7): e0054524, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38899887

RESUMO

White-rot fungi differentially express laccases when they encounter aromatic compounds. However, the underlying mechanisms are still being explored. Here, proteomics analysis revealed that in addition to increased laccase activity, proteins involved in sphingolipid metabolism and toluene degradation as well as some cytochrome P450s (CYP450s) were differentially expressed and significantly enriched during 48 h of o-toluidine exposure, in Trametes hirsuta AH28-2. Two Zn2Cys6-type transcription factors (TFs), TH8421 and TH4300, were upregulated. Bioinformatics docking and isothermal titration calorimetry assays showed that each of them could bind directly to o-toluidine and another aromatic monomer, guaiacol. Binding to aromatic compounds promoted the formation of TH8421/TH4300 heterodimers. TH8421 and TH4300 silencing in T. hirsuta AH28-2 led to decreased transcriptional levels and activities of LacA and LacB upon o-toluidine and guaiacol exposure. EMSA and ChIP-qPCR analysis further showed that TH8421 and TH4300 bound directly with the promoter regions of lacA and lacB containing CGG or CCG motifs. Furthermore, the two TFs were involved in direct and positive regulation of the transcription of some CYP450s. Together, TH8421 and TH4300, two key regulators found in T. hirsuta AH28-2, function as heterodimers to simultaneously trigger the expression of downstream laccases and intracellular enzymes. Monomeric aromatic compounds act as ligands to promote heterodimer formation and enhance the transcriptional activities of the two TFs.IMPORTANCEWhite-rot fungi differentially express laccase isoenzymes when exposed to aromatic compounds. Clarification of the molecular mechanisms underlying differential laccase expression is essential to elucidate how white-rot fungi respond to the environment. Our study shows that two Zn2Cys6-type transcription factors form heterodimers, interact with the promoters of laccase genes, and positively regulate laccase transcription in Trametes hirsuta AH28-2. Aromatic monomer addition induces faster heterodimer formation and rate of activity. These findings not only identify two new transcription factors involved in fungal laccase transcription but also deepen our understanding of the mechanisms underlying the response to aromatics exposure in white-rot fungi.


Assuntos
Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Lacase , Trametes , Fatores de Transcrição , Lacase/genética , Lacase/metabolismo , Trametes/enzimologia , Trametes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrocarbonetos Aromáticos/metabolismo
2.
BMC Microbiol ; 24(1): 321, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232659

RESUMO

With the development of industry and modern manufacturing, nondegradable low-density polyethylene (LDPE) has been widely used, posing a rising environmental hazard to natural ecosystems and public health. In this study, we isolated a series of LDPE-degrading fungi from landfill sites and carried out LDPE degradation experiments by combining highly efficient degrading fungi in pairs. The results showed that the mixed microorganisms composed of Alternaria sp. CPEF-1 and Trametes sp. PE2F-4 (H-3 group) had a greater degradation effect on heat-treated LDPE (T-LDPE). After 30 days of inoculation with combination strain H-3, the weight loss rate of the T-LDPE film was approximately 154% higher than that of the untreated LDPE (U-LDPE) film, and the weight loss rate reached 0.66 ± 0.06%. Environmental scanning electron microscopy (ESEM) and Fourier transform infrared spectroscopy (FTIR) were used to further investigate the biodegradation impacts of T-LDPE, including the changes on the surface and depolymerization of the LDPE films during the fungal degradation process. Our findings revealed that the combined fungal treatment is more effective at degrading T-LDPE than the single strain treatment, and it is expected that properly altering the composition of the microbial community can help lessen the detrimental impact of plastics on the environment.


Assuntos
Alternaria , Biodegradação Ambiental , Polietileno , Trametes , Alternaria/metabolismo , Polietileno/metabolismo , Trametes/metabolismo , Instalações de Eliminação de Resíduos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Filogenia , Microbiologia do Solo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38591772

RESUMO

Two yeast strains, designated as 19-39-3 and 19-40-2, obtained from the fruiting bodies of Trametes versicolor and Marasmius siccus collected in Yunwu Mountain Forest Park, PR China, have been identified as representing a novel asexual ascomycetous yeast species. From the results of phylogenetic analyses of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA, small subunit (SSU) rRNA and translation elongation factor 1-α (TEF1) genes, it was determined that these strains represent a member of the genus Wickerhamomyces, with Wickerhamomyces alni and Candida ulmi as the closest relatives. The novel species exhibited 6.6 and 6.7% differences in the D1/D2 domains compared with W. alni and C. ulmi, respectively. Additionally, distinct biochemical and physiological differences were observed between the novel species and its related counterparts. No sexual reproduction was observed in these strains, leading to the proposal of the name Wickerhamomyces corioli f.a., sp. nov. for this newly discovered species.


Assuntos
Agaricales , Saccharomycetales , Filogenia , DNA Espaçador Ribossômico/genética , Agaricales/genética , Trametes/genética , Análise de Sequência de DNA , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Saccharomycetales/genética , DNA Fúngico/genética , Técnicas de Tipagem Micológica
4.
Microb Cell Fact ; 23(1): 36, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287338

RESUMO

The yeast Saccharomyces cerevisiae is widely used as a host cell for recombinant protein production due to its fast growth, cost-effective culturing, and ability to secrete large and complex proteins. However, one major drawback is the relatively low yield of produced proteins compared to other host systems. To address this issue, we developed an overlay assay to screen the yeast knockout collection and identify mutants that enhance recombinant protein production, specifically focusing on the secretion of the Trametes trogii fungal laccase enzyme. Gene ontology analysis of these mutants revealed an enrichment of processes including vacuolar targeting, vesicle trafficking, proteolysis, and glycolipid metabolism. We confirmed that a significant portion of these mutants also showed increased activity of the secreted laccase when grown in liquid culture. Notably, we found that the combination of deletions of OCA6, a tyrosine phosphatase gene, along with PMT1 or PMT2, two genes encoding ER membrane protein-O-mannosyltransferases involved in ER quality control, and SKI3, which encode for a component of the SKI complex responsible for mRNA degradation, further increased secreted laccase activity. Conversely, we also identified over 200 gene deletions that resulted in decreased secreted laccase activity, including many genes that encode for mitochondrial proteins and components of the ER-associated degradation pathway. Intriguingly, the deletion of the ER DNAJ co-chaperone gene SCJ1 led to almost no secreted laccase activity. When we expressed SCJ1 from a low-copy plasmid, laccase secretion was restored. However, overexpression of SCJ1 had a detrimental effect, indicating that precise dosing of key chaperone proteins is crucial for optimal recombinant protein expression. This study offers potential strategies for enhancing the overall yield of recombinant proteins and provides new avenues for further research in optimizing protein production systems.


Assuntos
Lacase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Lacase/genética , Lacase/metabolismo , Trametes/genética , Trametes/metabolismo , Proteínas Recombinantes , Processamento de Proteína Pós-Traducional
5.
Appl Microbiol Biotechnol ; 108(1): 103, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229299

RESUMO

A novel peptidyl-lys metalloendopeptidase (Tc-LysN) from Tramates coccinea was recombinantly expressed in Komagataella phaffii using the native pro-protein sequence. The peptidase was secreted into the culture broth as zymogen (~38 kDa) and mature enzyme (~19.8 kDa) simultaneously. The mature Tc-LysN was purified to homogeneity with a single step anion-exchange chromatography at pH 7.2. N-terminal sequencing using TMTpro Zero and mass spectrometry of the mature Tc-LysN indicated that the pro-peptide was cleaved between the amino acid positions 184 and 185 at the Kex2 cleavage site present in the native pro-protein sequence. The pH optimum of Tc-LysN was determined to be 5.0 while it maintained ≥60% activity between pH values 4.5-7.5 and ≥30% activity between pH values 8.5-10.0, indicating its broad applicability. The temperature maximum of Tc-LysN was determined to be 60 °C. After 18 h of incubation at 80 °C, Tc-LysN still retained ~20% activity. Organic solvents such as methanol and acetonitrile, at concentrations as high as 40% (v/v), were found to enhance Tc-LysN's activity up to ~100% and ~50%, respectively. Tc-LysN's thermostability, ability to withstand up to 8 M urea, tolerance to high concentrations of organic solvents, and an acidic pH optimum make it a viable candidate to be employed in proteomics workflows in which alkaline conditions might pose a challenge. The nano-LC-MS/MS analysis revealed bovine serum albumin (BSA)'s sequence coverage of 84% using Tc-LysN which was comparable to the sequence coverage of 90% by trypsin peptides. KEY POINTS: •A novel LysN from Trametes coccinea (Tc-LysN) was expressed in Komagataella phaffii and purified to homogeneity •Tc-LysN is thermostable, applicable over a broad pH range, and tolerates high concentrations of denaturants •Tc-LysN was successfully applied for protein digestion and mass spectrometry fingerprinting.


Assuntos
Polyporaceae , Saccharomycetales , Espectrometria de Massas em Tandem , Trametes , Metaloendopeptidases , Solventes
6.
Bioprocess Biosyst Eng ; 47(4): 475-482, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480583

RESUMO

Use of white-rot fungi for enzyme-based bioremediation of wastewater is of high interest. These fungi produce considerable amounts of extracellular ligninolytic enzymes during solid-state fermentation on lignocellulosic materials such as straw and sawdust. We used pure sawdust colonized by Pleurotus ostreatus, Trametes versicolor, and Ganoderma lucidum for extraction of ligninolytic enzymes in aqueous suspension. Crude enzyme suspensions of the three fungi, with laccase activity range 12-43 U/L and manganese peroxidase activity range 5-55 U/L, were evaluated for degradation of 11 selected pharmaceuticals spiked at environmentally relevant concentrations. Sulfamethoxazole was removed significantly in all treatments. The crude enzyme suspension from P. ostreatus achieved degradation of wider range of pharmaceuticals when the enzyme activity was increased. Brief homogenization of the colonized sawdust was also observed to be favorable, resulting in significant reductions after a short exposure of 5 min. The highest reduction was observed for sulfamethoxazole which was reduced by 84% compared to an autoclaved control without enzyme activity and for trimethoprim which was reduced by 60%. The compounds metoprolol, lidocaine, and venlafaxine were reduced by approximately 30% compared to the control. Overall, this study confirmed the potential of low-cost lignocellulosic material as a substrate for production of enzymes from white-rot fungi. However, monitoring over time in bioreactors revealed a rapid decrease in enzymatic ligninolytic activity.


Assuntos
Pleurotus , Trametes , Lacase/química , Lignina/metabolismo , Fermentação , Sulfametoxazol/metabolismo , Preparações Farmacêuticas/metabolismo , Biodegradação Ambiental
7.
J Basic Microbiol ; 64(2): e2300529, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38066405

RESUMO

Global production of sugarcane bagasse (SB) by sugar industries exceeds more than 100 tons per annum. SB is rich in lignin and polysaccharide and hence can serve as a low-cost energy and carbon source for the growth of industrially important microorganism. However, various other applications of SB have also been investigated. In this study, SB was used as an adsorbent to remove an azo dye, malachite green. Subsequently, the dye-adsorbed SB was fermented by Trametes pubescens MB 89 for the production of laccase enzyme. The fungal pretreated SB was further utilized as a substrate for the simultaneous production of multiple plant cell wall degrading enzymes including, cellulase, xylanase, pectinase, and amylase by thermophilic bacterial strains. Results showed that 0.1% SB removed 97.04% malachite green at 30°C after 30 min from a solution containing 66 ppm of the dye. Fermentation of the dye-adsorbed SB by T. pubescens MB 89 yielded 667.203 IU mL-1 laccase. Moreover, Brevibacillus borstelensis UE10 produced 38.41 and 18.6 IU mL-1 ß-glucosidase and pectinase, respectively, by using fungal-pretreated SB. Cultivation of B. borstelensis UE27 in the medium containing the same substrate yielded 32.14 IU mL-1 of endoglucanase and 27.23 IU mL-1 of ß-glucosidase. Likewise, Neobacillus sedimentimangrovi UE25 could produce a mix of ß-glucosidase (37.24 IU mL-1 ), xylanase (18.65 IU mL-1 ) and endoglucanase (26.65 IU mL-1 ). Hence, this study led to the development of a method through which dye-containing textile effluent can be treated by SB along with the production of industrially important enzymes.


Assuntos
Celulase , Corantes de Rosanilina , Saccharum , Celulose/metabolismo , Celulase/metabolismo , Poligalacturonase , Saccharum/metabolismo , Lacase , Trametes/metabolismo , Fermentação , beta-Glucosidase/metabolismo
8.
J Sci Food Agric ; 104(2): 655-663, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37654023

RESUMO

BACKGROUND: Corn, being an important grain, is prone to contamination by aflatoxin B1 (AFB1 ), and AFB1 -contaminated corn severely endangers the health of humans and livestock. Trametes versicolor, a fungus that can grow in corn, possesses the ability to directly degrade AFB1 through its laccase. This study aimed to optimize the fermentation conditions for T. versicolor to degrade AFB1 in corn and investigate the effect of T. versicolor fermentation on the nutritional composition of corn. AFB1 -contaminated corn was used as the culture substrate for T. versicolor. A combination of single-factor experiments and response surface methodology was employed to identify the optimal conditions of AFB1 degradation. RESULTS: The optimal conditions of AFB1 degradation were as follows: 9 days of fermentation, a fermentation temperature of 26.7 °C, a moisture content of 70.5% and an inoculation amount of 4.9 mL (containing 51.99 mg of T. versicolor mycelia). With the optimal conditions, the degradation rate of AFB1 in corn could reach 93.01%, and the dry basis content of protein and dietary fiber in the fermented corn was significantly increased. More importantly, the lysine content in the fermented corn was also significantly increased. CONCLUSION: This is the first report that direct fermentation of AFB1 -contaminated corn by T. versicolor not only efficiently degrades AFB1 but also improves the nutritional composition of corn. These findings suggest that the fermentation of corn by T. versicolor is a promising, environmentally friendly and efficient approach to degrade AFB1 and improve the nutritional value of corn. © 2023 Society of Chemical Industry.


Assuntos
Aflatoxina B1 , Trametes , Humanos , Aflatoxina B1/química , Trametes/metabolismo , Zea mays/química , Fermentação , Lacase/metabolismo
9.
Environ Geochem Health ; 46(8): 282, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963450

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants with carcinogenic, mutagenic and teratogenic effects. The white-rot fungi in the fungal group have significant degradation ability for high molecular weight organic pollutants. However, exogenous fungi are easily antagonized by indigenous microorganisms. Low molecular weight organic acids, a small molecular organic matter secreted by plants, can provide carbon sources for soil microorganisms. Combining organic acids with white rot fungi may improve the nutritional environment of fungi. In this study, immobilized Trametes versicolor was used to degrade benzo[a]pyrene in soil, and its effect on removing benzo[a]pyrene in soil mediated by different low molecular weight organic acids was investigated. The results showed that when the degradation was 35 days, the removal effect of the experimental group with citric acid was the best, reaching 43.7%. The degradation effect of Trametes versicolor on benzo[a]pyrene was further investigated in the liquid medium when citric acid was added, and the effects of citric acid on the biomass, extracellular protein concentration and laccase activity of Trametes versicolor were investigated by controlling different concentrations of citric acid. In general, citric acid can act as a carbon source for Trametes versicolor and promote its extracellular protein secretion and laccase activity, thereby accelerating the mineralization of benzo[a]pyrene by Trametes versicolor. Therefore, citric acid can be used as a biostimulant in the remediation of PAHs contaminated soil with Trametes versicolor.


Assuntos
Benzo(a)pireno , Biodegradação Ambiental , Ácido Cítrico , Poluentes do Solo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Ácido Cítrico/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Lacase/metabolismo , Microbiologia do Solo , Polyporaceae/metabolismo , Trametes/metabolismo , Biomassa
10.
J Am Chem Soc ; 145(24): 13284-13301, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294874

RESUMO

In multicopper oxidases (MCOs), the type 1 (T1) Cu accepts electrons from the substrate and transfers these to the trinuclear Cu cluster (TNC) where O2 is reduced to H2O. The T1 potential in MCOs varies from 340 to 780 mV, a range not explained by the existing literature. This study focused on the ∼350 mV difference in potential of the T1 center in Fet3p and Trametes versicolor laccase (TvL) that have the same 2His1Cys ligand set. A range of spectroscopies performed on the oxidized and reduced T1 sites in these MCOs shows that they have equivalent geometric and electronic structures. However, the two His ligands of the T1 Cu in Fet3p are H-bonded to carboxylate residues, while in TvL they are H-bonded to noncharged groups. Electron spin echo envelope modulation spectroscopy shows that there are significant differences in the second-sphere H-bonding interactions in the two T1 centers. Redox titrations on type 2-depleted derivatives of Fet3p and its D409A and E185A variants reveal that the two carboxylates (D409 and E185) lower the T1 potential by 110 and 255-285 mV, respectively. Density functional theory calculations uncouple the effects of the charge of the carboxylates and their difference in H-bonding interactions with the His ligands on the T1 potential, indicating 90-150 mV for anionic charge and ∼100 mV for a strong H-bond. Finally, this study provides an explanation for the generally low potentials of metallooxidases relative to the wide range of potentials of the organic oxidases in terms of different oxidized states of their TNCs involved in catalytic turnover.


Assuntos
Ceruloplasmina , Histidina , Ceruloplasmina/química , Ligantes , Cobre/química , Trametes , Eletricidade Estática , Lacase/metabolismo
11.
Biochem Biophys Res Commun ; 649: 79-86, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758482

RESUMO

Glutathione transferases are detoxification enzymes with multifaceted roles, including a role in the metabolism and scavenging of nitric oxide (NO) compounds in cells. Here, we explored the ability of Trametes versicolor glutathione transferases (GSTs) from the Omega class (TvGSTOs) to bind metal-nitrosyl compounds. TvGSTOs have been studied previously for their ligandin role and are interesting models to study protein‒ligand interactions. First, we determined the X-ray structure of the TvGSTO3S isoform bound to the dinitrosyl glutathionyl iron complex (DNGIC), a physiological compound involved in the storage of nitric oxide. Our results suggested a different binding mode compared to the one previously described in human GST Pi 1 (GSTP1). Then, we investigated the manner in which TvGSTO3S binds three nonphysiological metal-nitrosyl compounds with different metal cores (iron, ruthenium and osmium). We assayed sodium nitroprusside, a well-studied vasodilator used in cases of hypertensive crises or heart failure. Our results showed that the tested GST can bind metal-nitrosyls at two distinct binding sites. Thermal shift analysis with six isoforms of TvGSTOs identified TvGSTO6S as the best interactant. Using the Griess method, TvGSTO6S was found to improve the release of nitric oxide from sodium nitroprusside in vitro, whereas the effects of human GST alpha 1 (GSTA1) and GSTP1 were moderate. Our results open new structural perspectives for understanding the interactions of glutathione transferases with metal-nitrosyl compounds associated with the biochemical mechanisms of NO uptake/release in biological systems.


Assuntos
Óxido Nítrico , Trametes , Humanos , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Trametes/metabolismo , Glutationa Transferase/metabolismo , Ferro/metabolismo , Glutationa/metabolismo
12.
BMC Microbiol ; 23(1): 29, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703110

RESUMO

BACKGROUND: Trametes gibbosa, which is a white-rot fungus of the Polyporaceae family found in the cold temperate zone, causes spongy white rot on wood. Laccase can oxidize benzene homologs and is one of the important oxidases for white rot fungi to degrade wood. However, the pathway of laccase synthesis in white rot fungi is unknown. RESULTS: The peak value of laccase activity reached 135.75 U/min/L on the 9th day. For laccase activity and RNA-seq data, gene expression was segmented into 24 modules. Turquoise and blue modules had greater associations with laccase activity (positively 0.94 and negatively -0.86, respectively). For biology function, these genes were concentrated on the cell cycle, citrate cycle, nicotinate, and nicotinamide metabolism, succinate dehydrogenase activity, flavin adenine dinucleotide binding, and oxidoreductase activity which are highly related to the laccase synthetic pathway. Among them, gene_8826 (MW199767), gene_7458 (MW199766), gene_61 (MW199765), gene_1741 (MH257605), and gene_11087 (MK805159) were identified as central genes. CONCLUSION: Laccase activity steadily increased in wood degradation. Laccase oxidation consumes oxygen to produce hydrogen ions and water during the degradation of wood. Some of the hydrogen ions produced can be combined by Flavin adenine dinucleotide (FAD) to form reduced Flavin dinucleotide (FADH2), which can be transmitted. Also, the fungus was starved of oxygen throughout fermentation, and the NADH and FADH2 are unable to transfer hydrogen under hypoxia, resulting in the inability of NAD and FAD to regenerate and inhibit the tricarboxylic acid cycle of cells. These key hub genes related to laccase activity play important roles in the molecular mechanisms of laccase synthesis for exploring industrial excellent strains.


Assuntos
Lacase , Polyporaceae , Lacase/genética , Lacase/metabolismo , Trametes/genética , Trametes/metabolismo , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Transcriptoma , Prótons , Polyporaceae/metabolismo , Oxigênio
13.
J Med Virol ; 95(1): e28345, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36424458

RESUMO

The balance of the segmented genome derived from naturally occurring influenza A viruses (IAVs) is delicate and vulnerable to foreign insertions, thus most reporter IAVs up to date are generated using the backbone of the laboratory-adapted strains. In this study, we constructed a reporter influenza A/H3N2 virus (A/NY-HiBiT) which was derived from a clinical isolate, by placing a minimized HiBiT tag to the N-terminus of the viral nuclear-export protein (NEP). Here, we show that this 11-amino acid HiBiT tag did not adversely impact the viral genome balance, and the recombinant A/NY-HiBiT virus maintains its relative stability. Moreover, the replication profile of the HiBiT-tagged virus can be measured by a simple Nano-Glo assay, providing a robust high-throughput screening (THS) platform. We used this platform to evaluate a collection of the pre-purified fractions which were derived from rare Chinese medicinal materials, and we identified three fractions, including wild Trametes robiniophila (50% methanol fraction), Ganoderma (water fraction), and wild Phellinus igniarius (ethyl acetate fraction), as potent anti-IAV actives. Our results demonstrate that this IAV reporter can be used as a powerful HTS platform for antiviral development.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Trametes/metabolismo , Influenza Humana/genética , Proteínas Virais/genética , Replicação Viral
14.
Int Microbiol ; 26(1): 91-98, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36089618

RESUMO

Paddy is an important crop in Malaysia. There are various pathogens able to infect paddy causing a loss in yield's production. In this study, dual culture method, volatile organic compound (VOC) analysis, and non-volatile compound analysis were used to assess the ability of mushroom to control fungal rice pathogens including Curvularia lunata, Bipolaris panici-miliacei, and Nigrospora sp. Four mushroom isolates were further analysed for their antagonistic activity against rice pathogen. The highest percentage inhibition of radial growth (PIRG) was recorded between 45.55 and 73.68% observed in isolate 42b. The 4 isolates with the highest PIRG based on the dual culture analysis were then tested for their production of VOCs and non-volatile compound. Internal transcribed spacer (ITS) region analysis of the 4 mushroom isolates revealed their identity as Coprinellus disseminates (isolate 12b), Marasmiellus palmivorus (isolate 42b), Trametes maxima (isolate 56e), and Lentinus sajor-caju (isolate 60a). This study showed that mushroom isolates have the potential of antagonistic effect on various fungal rice pathogens tested by the production of secondary metabolites and mycoparasitic interaction.


Assuntos
Agaricales , Oryza , Trametes , Malásia
15.
Fish Shellfish Immunol ; 137: 108773, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105422

RESUMO

Misuse and overuse of antibiotics in aquaculture has proven to be an unsustainable practice leading to increased bacterial resistance. An alternative strategy involves the inclusion of immunostimulants in fish diets, especially fungal and herbal compounds already authorized for human consumption, hence without environmental or public health concerns. In this study, we used a holistic and cross-disciplinary pipeline to assess the immunostimulatory properties of two fungi: Trametes versicolor and Ganoderma lucidum; one herbal supplement, capsaicin in the form of Espelette pepper (Capsicum annuum), and a combination of these fungal and herbal additives on rainbow trout (Oncorhynchus mykiss). We investigated the impact of diet supplementation for 7 weeks on survival, growth performance, cellular, humoral, and molecular immune parameters, as well as the intestinal microbial composition of the fish. Uptake of herbal and fungal compounds influenced the expression of immune related genes, without generating an inflammatory response. Significant differences were detected in the spleen-tlr2 gene expression. Supplementation with herbal additives correlated with structural changes in the fish intestinal microbiota and enhanced overall intestinal microbial diversity. Results demonstrated that the different treatments had no adverse effect on growth performance and survival, suggesting the safety of the different feed additives at the tested concentrations. While the mechanisms and multifactorial interactions remain unclear, this study provides insights not only in regard to nutrition and safety of these compounds, but also how a combined immune and gut microbiota approach can shed light on efficacy of immunostimulant compounds for potential commercial inclusion as feed supplements.


Assuntos
Oncorhynchus mykiss , Humanos , Animais , Trametes , Ração Animal/análise , Suplementos Nutricionais , Intestinos/microbiologia , Dieta/veterinária
16.
Org Biomol Chem ; 21(45): 8975-8978, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37933470

RESUMO

Laccase from Trametes versicolor was found to oxidize non-phenolic arenes and enable the trifluoromethylation of arenes in the presence of in situ generated CF3 radicals at a catalyst loading as low as 0.0034%. The biocatalytic trifluoromethylation proceeded under mild conditions and could increase the yield by up to 12 fold, compared to the control.


Assuntos
Lacase , Trametes , Lacase/metabolismo , Trametes/metabolismo , Catálise , Biocatálise
17.
Environ Sci Technol ; 57(32): 11977-11987, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37526086

RESUMO

While carbon dots (CDs) have the potential to support the agricultural revolution, it remains obscure about their environmental fate and bioavailability by plants. Fungal laccase-mediated biotransformation of carbon nanomaterials has received little attention despite its known capacity to eliminate recalcitrant contaminants. Herein, we presented the initial investigation into the transformation of CDs by fungal laccase. The degradation rates of CDs were determined to be first-order in both substrate and enzyme. Computational docking studies showed that CDs preferentially bonded to the pocket of laccase on the basal plane rather than the edge through hydrogen bonds and hydrophobic interactions. Electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS) and other characterizations revealed that the phenolic/amino lignins and tannins portions in CDs are susceptible to laccase transformation, resulting in graphitic structure damage and smaller-sized fragments. By using the 13C stable isotope labeling technique, we quantified the uptake and translocation of 13C-CDs by mung bean plants. 13C-CDs (10 mg L-1) accumulated in the root, stem, and leaf were estimated to be 291, 239, and 152 µg g-1 at day 5. We also evidenced that laccase treatment alters the particle size and surface chemistry of CDs, which could facilitate the uptake of CDs by plants and reduce their nanotoxicity to plants.


Assuntos
Carbono , Lacase , Lacase/química , Lacase/metabolismo , Biodegradação Ambiental , Espectrometria de Massas , Biotransformação , Trametes/metabolismo
18.
Curr Oncol Rep ; 25(6): 569-587, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36995535

RESUMO

PURPOSE OF REVIEW: Patients seek clinical guidance on mushroom supplements that can be given alongside conventional treatments, but most research on such fungi has been preclinical. The current systematic review focused on clinical studies of mushrooms in cancer care conducted in the past 10 years. We searched Medline (Ovid), Embase (Ovid), Scopus (Wiley), and Cochrane Library to identify all mushroom studies conducted in humans published from January 2010 through December 2020. Two authors independently assessed papers for inclusion. RECENT FINDINGS: Of 136 clinical studies identified by screening 2349, 39 met inclusion criteria. The studies included 12 different mushroom preparations. A survival benefit was reported using Huaier granules (Trametes robiniophila Murr) in 2 hepatocellular carcinoma studies and 1 breast cancer study. A survival benefit was also found in 4 gastric cancer studies using polysaccharide-K (polysaccharide-Kureha; PSK) in the adjuvant setting. Eleven studies reported a positive immunological response. Quality-of-life (QoL) improvement and/or reduced symptom burden was reported in 14 studies using various mushroom supplements. Most studies reported adverse effects of grade 2 or lower, mainly nausea, vomiting, diarrhea, and muscle pain. Limitations included small sample size and not using randomized controlled trial design. Many of the reviewed studies were small and observational. Most showed favorable effects of mushroom supplements in reducing the toxicity of chemotherapy, improving QoL, favorable cytokine response, and possibly better clinical outcomes. Nevertheless, the evidence is inconclusive to recommend the routine use of mushrooms for cancer patients. More trials are needed to explore mushroom use during and after cancer treatment.


Assuntos
Agaricales , Neoplasias da Mama , Humanos , Feminino , Qualidade de Vida , Trametes , Náusea
19.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36626729

RESUMO

AIMS: This study aimed to identify endophytic fungi from Anthemis altissima, Matricaria parthenium, Cichorium intybus, Achillea millefolium, and A. filipendulina with plant-promoting ability on the ZP684 maize hybrid-cultivar. METHODS AND RESULTS: Plants were collected from northeast-Iran and endophytic fungi were isolated and identified using partial large subunit nrDNA, internal transcribed spacer, translation elongation factor, and ß-tubulin genetic markers. Endophytic fungi that improved seed germination were studied under greenhouse conditions. Ninety-seven endophytic fungi were identified. Preussia africana, Bjerkandera adusta, Schizophyllum commune, Alternaria embellisia, Trichaptum biforme, Septoria malagutii, A. consortiale, Verticillium dahliae, Fusarium avenacearum, and Trametes versicolor significantly improved seed-germination. Alternaria consortiale produced the highest level of indole-3-acetic acid-like compounds and maize growth-promoting. CONCLUSIONS: Plant fungal colonization frequency increased with orthometric height. Sampling location Chahar Bagh at 2230 m contained the most endophytic fungi. Fusarium and Alternaria were the most frequently isolated endophytic genera. Therefore, medicinal plants are potential hosts for endophytic fungi that may be suitable biofertilizer agents in agriculture. SIGNIFICANCE AND IMPACT OF THE STUDY: This study helps to better understand the ecosystem functions by investigating of endophytic fungi distribution under different ecological conditions. Finding effective isolates among these microorganisms with a suitable plant-promoting ability on crops may help to reduce the use of chemical fertilizers in an agroecosystem.


Assuntos
Fusarium , Plantas Medicinais , Zea mays/microbiologia , Plantas Medicinais/microbiologia , Ecossistema , Trametes , Endófitos , Fungos
20.
Environ Res ; 231(Pt 2): 116207, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244498

RESUMO

Dye-contaminated wastewaters from the printing batik industry are hazardous if discharged into the environment without any treatment. Finding an optimization and reusability assessment of a new fungal-material composite for dye-contaminated wastewater treatment is important for efficiency. The study purposes to optimize fungal mycelia Trametes hirsuta EDN 082 - light expanded clay aggregate (myco-LECA) composite for real priting batik dye wastewater treatment by using Response Surface Methodology with Central Composite Design (RSM-CCD). The factors included myco-LECA weight (2-6 g), wastewater volume (20-80 mL), and glucose concentration (0-10%) were applied for 144 h of incubation time. The result showed that the optimum condition was achieved at 5.1 g myco-LECA, at 20 mL wastewater, and at 9.1% glucose, respectively. In this condition, the decolorization values with an incubation time of 144 h were 90, 93, and 95%, at wavelengths 570, 620, and 670 nm, respectively. A reusability assessment was conducted for 19 cycles and the result showed that decolorization effectiveness was still above 96%. GCMS analysis showed the degradation of most compounds in the wastewater and the degradation products of the wastewater demonstrated detoxification against Vigna radiata and Artemia salina. The study suggests that myco-LECA composite has a good performance and therefore is a promising method for the treatment of printing batik wastewater.


Assuntos
Águas Residuárias , Purificação da Água , Argila , Biodegradação Ambiental , Trametes/metabolismo , Glucose/metabolismo , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA