Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 517
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(3): e3002031, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36917567

RESUMO

Obsessive-compulsive disorder (OCD) and pathological gambling (PG) are accompanied by deficits in behavioural flexibility. In reinforcement learning, this inflexibility can reflect asymmetric learning from outcomes above and below expectations. In alternative frameworks, it reflects perseveration independent of learning. Here, we examine evidence for asymmetric reward-learning in OCD and PG by leveraging model-based functional magnetic resonance imaging (fMRI). Compared with healthy controls (HC), OCD patients exhibited a lower learning rate for worse-than-expected outcomes, which was associated with the attenuated encoding of negative reward prediction errors in the dorsomedial prefrontal cortex and the dorsal striatum. PG patients showed higher and lower learning rates for better- and worse-than-expected outcomes, respectively, accompanied by higher encoding of positive reward prediction errors in the anterior insula than HC. Perseveration did not differ considerably between the patient groups and HC. These findings elucidate the neural computations of reward-learning that are altered in OCD and PG, providing a potential account of behavioural inflexibility in those mental disorders.


Assuntos
Jogo de Azar , Transtorno Obsessivo-Compulsivo , Humanos , Reforço Psicológico , Recompensa , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Imageamento por Ressonância Magnética
2.
Brain ; 147(6): 2230-2244, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38584499

RESUMO

Despite a theory that an imbalance in goal-directed versus habitual systems serve as building blocks of compulsions, research has yet to delineate how this occurs during arbitration between the two systems in obsessive-compulsive disorder. Inspired by a brain model in which the inferior frontal cortex selectively gates the putamen to guide goal-directed or habitual actions, this study aimed to examine whether disruptions in the arbitration process via the fronto-striatal circuit would underlie imbalanced decision-making and compulsions in patients. Thirty patients with obsessive-compulsive disorder [mean (standard deviation) age = 26.93 (6.23) years, 12 females (40%)] and 30 healthy controls [mean (standard deviation) age = 24.97 (4.72) years, 17 females (57%)] underwent functional MRI scans while performing the two-step Markov decision task, which was designed to dissociate goal-directed behaviour from habitual behaviour. We employed a neurocomputational model to account for an uncertainty-based arbitration process, in which a prefrontal arbitrator (i.e. inferior frontal gyrus) allocates behavioural control to a more reliable strategy by selectively gating the putamen. We analysed group differences in the neural estimates of uncertainty of each strategy. We also compared the psychophysiological interaction effects of system preference (goal-directed versus habitual) on fronto-striatal coupling between groups. We examined the correlation between compulsivity score and the neural activity and connectivity involved in the arbitration process. The computational model captured the subjects' preferences between the strategies. Compared with healthy controls, patients had a stronger preference for the habitual system (t = -2.88, P = 0.006), which was attributed to a more uncertain goal-directed system (t = 2.72, P = 0.009). Before the allocation of controls, patients exhibited hypoactivity in the inferior frontal gyrus compared with healthy controls when this region tracked the inverse of uncertainty (i.e. reliability) of goal-directed behaviour (P = 0.001, family-wise error rate corrected). When reorienting behaviours to reach specific goals, patients exhibited weaker right ipsilateral ventrolateral prefronto-putamen coupling than healthy controls (P = 0.001, family-wise error rate corrected). This hypoconnectivity was correlated with more severe compulsivity (r = -0.57, P = 0.002). Our findings suggest that the attenuated top-down control of the putamen by the prefrontal arbitrator underlies compulsivity in obsessive-compulsive disorder. Enhancing fronto-striatal connectivity may be a potential neurotherapeutic approach for compulsivity and adaptive decision-making.


Assuntos
Tomada de Decisões , Objetivos , Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Feminino , Adulto , Masculino , Imageamento por Ressonância Magnética/métodos , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/psicologia , Incerteza , Tomada de Decisões/fisiologia , Adulto Jovem , Modelos Neurológicos , Comportamento Compulsivo/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Putamen/fisiopatologia , Putamen/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Simulação por Computador
3.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38102948

RESUMO

The insula plays a significant role in the neural mechanisms of obsessive-compulsive disorder. Previous studies have identified functional and structural abnormalities in insula in obsessive-compulsive disorder patients. The predictive coding model in the context of interoception can explain the psychological and neuropathological manifestations observed in obsessive-compulsive disorder. The model is based on the degree of laminar differentiation of cerebral cortex. The interindividual differences in a local measure of brain structure often covary with interindividual differences in other brain regions. We investigated the anatomical network involving the insula in a drug-naïve obsessive-compulsive disorder sample. We recruited 58 obsessive-compulsive disorder patients and 84 matched health controls. The cortical thickness covariance maps between groups were compared at each vertex. We also evaluated the modulation of Yale-Brown Obsessive-Compulsive Scale scores and obsessive-compulsive disorder duration on thickness covariance. Our findings indicated that the thickness covariance seeded from granular and dysgranular insula are different compared with controls. The duration and severity of obsessive-compulsive disorder can modulate the thickness covariance of granular and dysgranular insula with posterior cingulate cortex and rostral anterior cingulate cortex. Our results revealed aberrant insular structural characteristics and cortical thickness covariance in obsessive-compulsive disorder patients, contributing to a better understanding of the involvement of insula in the pathological mechanisms underlying obsessive-compulsive disorder.


Assuntos
Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral/patologia , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Giro do Cíngulo , Encéfalo
4.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39152672

RESUMO

Obsessive-compulsive disorder (OCD) is a debilitating psychiatric condition that is difficult to treat due to our limited understanding of its pathophysiology. Functional connectivity in brain networks, as evaluated through neuroimaging studies, plays a pivotal role in understanding OCD. While both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been extensively employed in OCD research, few have fully synthesized their findings. To bridge this gap, we reviewed 166 studies (10 EEG, 156 fMRI) published up to December 2023. In EEG studies, OCD exhibited lower connectivity in delta and alpha bands, with inconsistent findings in other frequency bands. Resting-state fMRI studies reported conflicting connectivity patterns within the default mode network (DMN) and sensorimotor cortico-striato-thalamo-cortical (CSTC) circuitry. Many studies observed decreased resting-state connectivity between the DMN and salience network (SN), implicating the 'triple network model' in OCD. Task-related hyperconnectivity within the DMN-SN and hypoconnectivity between the SN and frontoparietal network suggest OCD-related cognitive inflexibility, potentially due to triple network dysfunction. In conclusion, our review highlights diverse connectivity differences in OCD, revealing complex brain network interplay that contributes to symptom manifestation. However, the presence of conflicting findings underscores the necessity for targeted research to achieve a comprehensive understanding of the pathophysiology of OCD.


Assuntos
Encéfalo , Eletroencefalografia , Imageamento por Ressonância Magnética , Rede Nervosa , Transtorno Obsessivo-Compulsivo , Humanos , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Conectoma/métodos
5.
Neuroimage ; 288: 120527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286272

RESUMO

Treatment-resistant obsessive-compulsive disorder (OCD) generally improves with deep-brain stimulation (DBS), thought to modulate neural activity at both the implantation site and in connected brain regions. However, its invasive nature, side-effects, and lack of customization, make non-invasive treatments preferable. Harnessing the established remote effects of cortical transcranial magnetic stimulation (TMS), connectivity-based approaches have emerged for depression that aim at influencing distant regions connected to the stimulation site. We here investigated whether effective OCD DBS targets (here subthalamic nucleus [STN] and nucleus accumbens [NAc]) could be modulated non-invasively with TMS. In a proof-of-concept study with nine healthy individuals, we used 7T magnetic resonance imaging (MRI) and probabilistic tractography to reconstruct the fiber tracts traversing manually segmented STN/NAc. Two TMS targets were individually selected based on the strength of their structural connectivity to either the STN, or both the STN and NAc. In a sham-controlled, within-subject cross-over design, TMS was administered over the personalized targets, located around the precentral and middle frontal gyrus. Resting-state functional 3T MRI was acquired before, and at 5 and 25 min after stimulation to investigate TMS-induced changes in the functional connectivity of the STN and NAc with other regions of the brain. Static and dynamic seed-to-voxel correlation analyses were conducted. TMS over both targets was able to modulate the functional connectivity of the STN and NAc, engaging both overlapping and distinct regions, and unfolding following different temporal dynamics. Given the relevance of the engaged connected regions to OCD pathology, we argue that a personalized, connectivity-based procedure is worth investigating as potential treatment for refractory OCD.


Assuntos
Conectoma , Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Humanos , Estimulação Encefálica Profunda/métodos , Encéfalo/diagnóstico por imagem , Estimulação Magnética Transcraniana , Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/terapia
6.
J Neurosci Res ; 102(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284840

RESUMO

The trajectory of voxel-mirrored homotopic connectivity (VMHC) after medical treatment in obsessive-compulsive disorder (OCD) and its value in prediction of treatment response remains unclear. This study aimed to investigate the pathophysiological mechanism of OCD, as well as biomarkers for prediction of pharmacological efficacy. Medication-free patients with OCD and healthy controls (HCs) underwent magnetic resonance imaging. The patients were scanned again after a 4-week treatment with paroxetine. The acquired data were subjected to VMHC, support vector regression (SVR), and correlation analyses. Compared with HCs (36 subjects), patients with OCD (34 subjects after excluding two subjects with excessive head movement) exhibited significantly lower VMHC in the bilateral superior parietal lobule (SPL), postcentral gyrus, and calcarine cortex, and VMHC in the postcentral gyrus was positively correlated with cognitive function. After treatment, the patients showed increased VMHC in the bilateral posterior cingulate cortex/precuneus (PCC/PCu) with the improvement of symptoms. SVR results showed that VMHC in the postcentral gyrus at baseline could aid to predict a change in the scores of OCD scales. This study revealed that SPL, postcentral gyrus, and calcarine cortex participate in the pathophysiological mechanism of OCD while PCC/PCu participate in the pharmacological mechanism. VMHC in the postcentral gyrus is a potential predictive biomarker of the treatment effects in OCD.


Assuntos
Transtorno Obsessivo-Compulsivo , Lobo Parietal , Humanos , Lobo Parietal/diagnóstico por imagem , Córtex Somatossensorial , Cognição , Giro do Cíngulo , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/tratamento farmacológico
7.
Psychol Med ; 54(4): 710-720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37642202

RESUMO

BACKGROUND: Obsessive-compulsive disorder (OCD) is a classic disorder on the compulsivity spectrum, with diverse comorbidities. In the current study, we sought to understand OCD from a dimensional perspective by identifying multimodal neuroimaging patterns correlated with multiple phenotypic characteristics within the striatum-based circuits known to be affected by OCD. METHODS: Neuroimaging measurements of local functional and structural features and clinical information were collected from 110 subjects, including 51 patients with OCD and 59 healthy control subjects. Linked independent component analysis (LICA) and correlation analysis were applied to identify associations between local neuroimaging patterns across modalities (including gray matter volume, white matter integrity, and spontaneous functional activity) and clinical factors. RESULTS: LICA identified eight multimodal neuroimaging patterns related to phenotypic variations, including three related to symptoms and diagnosis. One imaging pattern (IC9) that included both the amplitude of low-frequency fluctuation measure of spontaneous functional activity and white matter integrity measures correlated negatively with OCD diagnosis and diagnostic scales. Two imaging patterns (IC10 and IC27) correlated with compulsion symptoms: IC10 included primarily anatomical measures and IC27 included primarily functional measures. In addition, we identified imaging patterns associated with age, gender, and emotional expression across subjects. CONCLUSIONS: We established that data fusion techniques can identify local multimodal neuroimaging patterns associated with OCD phenotypes. The results inform our understanding of the neurobiological underpinnings of compulsive behaviors and OCD diagnosis.


Assuntos
Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral , Neuroimagem , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Comportamento Compulsivo/diagnóstico por imagem , Encéfalo
8.
Psychol Med ; 54(2): 350-358, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37310178

RESUMO

BACKGROUND: Obsessive-compulsive disorder (OCD) is a chronic mental illness characterized by abnormal functional connectivity among distributed brain regions. Previous studies have primarily focused on undirected functional connectivity and rarely reported from network perspective. METHODS: To better understand between or within-network connectivities of OCD, effective connectivity (EC) of a large-scale network is assessed by spectral dynamic causal modeling with eight key regions of interests from default mode (DMN), salience (SN), frontoparietal (FPN) and cerebellum networks, based on large sample size including 100 OCD patients and 120 healthy controls (HCs). Parametric empirical Bayes (PEB) framework was used to identify the difference between the two groups. We further analyzed the relationship between connections and Yale-Brown Obsessive Compulsive Scale (Y-BOCS). RESULTS: OCD and HCs shared some similarities of inter- and intra-network patterns in the resting state. Relative to HCs, patients showed increased ECs from left anterior insula (LAI) to medial prefrontal cortex, right anterior insula (RAI) to left dorsolateral prefrontal cortex (L-DLPFC), right dorsolateral prefrontal cortex (R-DLPFC) to cerebellum anterior lobe (CA), CA to posterior cingulate cortex (PCC) and to anterior cingulate cortex (ACC). Moreover, weaker from LAI to L-DLPFC, RAI to ACC, and the self-connection of R-DLPFC. Connections from ACC to CA and from L-DLPFC to PCC were positively correlated with compulsion and obsession scores (r = 0.209, p = 0.037; r = 0.199, p = 0.047, uncorrected). CONCLUSIONS: Our study revealed dysregulation among DMN, SN, FPN, and cerebellum in OCD, emphasizing the role of these four networks in achieving top-down control for goal-directed behavior. There existed a top-down disruption among these networks, constituting the pathophysiological and clinical basis.


Assuntos
Mapeamento Encefálico , Transtorno Obsessivo-Compulsivo , Humanos , Teorema de Bayes , Vias Neurais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem
9.
Psychol Med ; 54(2): 374-384, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37427558

RESUMO

BACKGROUND: There is growing evidence for the use of acceptance-commitment therapy (ACT) for the treatment of obsessive-compulsive disorder (OCD). However, few fully implemented ACT have been conducted on the neural mechanisms underlying its effect on OCD. Thus, this study aimed to elucidate the neural correlates of ACT in patients with OCD using task-based and resting-state functional magnetic resonance imaging (fMRI). METHODS: Patients with OCD were randomly assigned to the ACT (n = 21) or the wait-list control group (n = 21). An 8-week group-format ACT program was provided to the ACT group. All participants underwent an fMRI scan and psychological measurements before and after 8 weeks. RESULTS: Patients with OCD showed significantly increased activation in the bilateral insula and superior temporal gyri (STG), induced by the thought-action fusion task after ACT intervention. Further psycho-physiological interaction analyses with these regions as seeds revealed that the left insular-left inferior frontal gyrus (IFG) connectivity was strengthened in the ACT group after treatment. Increased resting-state functional connectivity was also found in the posterior cingulate cortex (PCC), precuneus, and lingual gyrus after ACT intervention Most of these regions showed significant correlations with ACT process measures while only the right insula was correlated with the obsessive-compulsive symptom measure. CONCLUSIONS: These findings suggest that the therapeutic effect of ACT on OCD may involve the salience and interoception processes (i.e. insula), multisensory integration (i.e. STG), language (i.e. IFG), and self-referential processes (i.e. PCC and precuneus). These areas or their interactions could be important for understanding how ACT works psychologically.


Assuntos
Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Córtex Pré-Frontal , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/terapia , Giro do Cíngulo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
10.
Psychol Med ; 54(9): 2283-2290, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38515276

RESUMO

BACKGROUND: Previous studies have suggested that the habenula (Hb) may be involved in the mechanism of obsessive-compulsive disorder (OCD). However, the specific role of Hb in OCD remains unclear. This study aimed to explore the structural and functional abnormalities of Hb in OCD and their relationship with the clinical symptoms. METHODS: Eighty patients with OCD and 85 healthy controls (HCs) were recruited as the primary dataset. The grey matter volume, resting-state functional connectivity (FC), and effective connectivity (EC) of the Hb were calculated and compared between OCD group and HCs. An independent replication dataset was used to verify the stability and robustness of the results. RESULTS: Patients with OCD exhibited smaller Hb volume and increased FC of right Hb-left hippocampus than HCs. Dynamic causal model revealed an increased EC from left hippocampus to right Hb and a less inhibitory causal influence from the right Hb to left hippocampus in the OCD group compared to HCs. Similar results were found in the replication dataset. CONCLUSIONS: This study suggested that abnormal structure of Hb and hippocampus-Hb connectivity may contribute to the pathological basis of OCD.


Assuntos
Habenula , Hipocampo , Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Habenula/fisiopatologia , Habenula/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Masculino , Feminino , Adulto , Hipocampo/fisiopatologia , Hipocampo/diagnóstico por imagem , Adulto Jovem , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Estudos de Casos e Controles
11.
Cerebellum ; 23(2): 778-801, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37291229

RESUMO

Previous neuroimaging studies have suggested that obsessive-compulsive disorder (OCD) is associated with altered resting-state functional connectivity of the cerebellum. In this study, we aimed to describe the most significant and reproducible microstructural abnormalities and cerebellar changes associated with obsessive-compulsive disorder (OCD) using diffusion tensor imaging (DTI) investigations. PubMed and EMBASE were searched for relevant studies using the PRISMA 2020 protocol. A total of 17 publications were chosen for data synthesis after screening titles and abstracts, full-text examination, and executing the inclusion criteria. The patterns of cerebellar white matter (WM) integrity loss, determined by fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) metrics, varied across studies and symptoms. Changes in fractional anisotropy (FA) values were described in six publications, which were decreased in four and increased in two studies. An increase in diffusivity parameters of the cerebellum (i.e., MD, RD, and AD) in OCD patients was reported in four studies. Alterations of the cerebellar connectivity with other brain areas were also detected in three studies. Heterogenous results were found in studies that investigated cerebellar microstructural abnormalities in correlation with symptom dimension or severity. OCD's complex phenomenology may be characterized by changes in cerebellar WM connectivity across wide networks, as shown by DTI studies on OCD patients in both children and adults. Classification features in machine learning and clinical tools for diagnosing OCD and determining the prognosis of the disorder might both benefit from using cerebellar DTI data.


Assuntos
Transtorno Obsessivo-Compulsivo , Substância Branca , Adulto , Criança , Humanos , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Anisotropia
12.
Mol Psychiatry ; 28(7): 3075-3082, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37198261

RESUMO

Obsessive-compulsive disorder (OCD) is an impairing psychiatric condition, which often onsets in childhood. Growing research highlights dopaminergic alterations in adult OCD, yet pediatric studies are limited by methodological constraints. This is the first study to utilize neuromelanin-sensitive MRI as a proxy for dopaminergic function among children with OCD. N = 135 youth (6-14-year-olds) completed high-resolution neuromelanin-sensitive MRI across two sites; n = 64 had an OCD diagnosis. N = 47 children with OCD completed a second scan after cognitive-behavioral therapy. Voxel-wise analyses identified that neuromelanin-MRI signal was higher among children with OCD compared to those without (483 voxels, permutation-corrected p = 0.018). Effects were significant within both the substania nigra pars compacta (p = 0.004, Cohen's d = 0.51) and ventral tegmental area (p = 0.006, d = 0.50). Follow-up analyses indicated that more severe lifetime symptoms (t = -2.72, p = 0.009) and longer illness duration (t = -2.22, p = 0.03) related to lower neuromelanin-MRI signal. Despite significant symptom reduction with therapy (p < 0.001, d = 1.44), neither baseline nor change in neuromelanin-MRI signal associated with symptom improvement. Current results provide the first demonstration of the utility of neuromelanin-MRI in pediatric psychiatry, specifically highlighting in vivo evidence for midbrain dopamine alterations in treatment-seeking youth with OCD. Neuromelanin-MRI likely indexes accumulating alterations over time, herein, implicating dopamine hyperactivity in OCD. Given evidence of increased neuromelanin signal in pediatric OCD but negative association with symptom severity, additional work is needed to parse potential longitudinal or compensatory mechanisms. Future studies should explore the utility of neuromelanin-MRI biomarkers to identify early risk prior to onset, parse OCD subtypes or symptom heterogeneity, and explore prediction of pharmacotherapy response.


Assuntos
Dopamina , Transtorno Obsessivo-Compulsivo , Adulto , Adolescente , Humanos , Criança , Imageamento por Ressonância Magnética/métodos , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/psicologia , Área Tegmentar Ventral
13.
J Neural Transm (Vienna) ; 131(3): 281-286, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38289491

RESUMO

Autoimmune-mediated obsessive-compulsive disorder (OCD) can occur in multiple sclerosis (MS). Here, a well-studied case study of a patient with OCD and MS-compatible diagnostic findings is presented. The 42-year-old female patient had displayed OCD symptoms for 6 years. Magnetic resonance imaging (MRI) identified several periventricular and one brainstem lesion suggestive of demyelination. Cerebrospinal fluid (CSF) analyses detected an increased white blood cell count, intrathecal immunoglobulin (Ig) G and IgM synthesis, CSF-specific oligoclonal bands, and a positive MRZ reaction. Neopterin was increased, but sarcoidosis was excluded. In the absence of neurological attacks and clues for MRI-based dissemination in time, a radiologically isolated syndrome, the pre-disease stage of MS, was diagnosed. Neurotransmitter measurements of CSF detected reduced serotonin levels. In the absence of visible strategic demyelinating lesions within the cortico-striato-thalamo-cortical circuits, OCD symptoms may relate to reduced intrathecal serotonin levels and mild neuroinflammatory processes. Serotonin abnormalities in MS should be studied further, as they could potentially explain the association between neuroinflammation and mental illnesses.


Assuntos
Esclerose Múltipla , Transtorno Obsessivo-Compulsivo , Feminino , Humanos , Adulto , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Serotonina , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Imunoglobulina G , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
14.
Brain ; 146(4): 1322-1327, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36380526

RESUMO

The diagnosis of obsessive-compulsive disorder (OCD) has been linked with changes in frontostriatal resting-state connectivity. However, replication of prior findings is lacking, and the mechanistic understanding of these effects is incomplete. To confirm and advance knowledge on changes in frontostriatal functional connectivity in OCD, participants with OCD and matched healthy controls underwent resting-state functional, structural and diffusion neuroimaging. Functional connectivity changes in frontostriatal systems were here replicated in individuals with OCD (n = 52) compared with controls (n = 45). OCD participants showed greater functional connectivity (t = 4.3, PFWE = 0.01) between the nucleus accumbens (NAcc) and the orbitofrontal cortex (OFC) but lower functional connectivity between the dorsal putamen and lateral prefrontal cortex (t = 3.8, PFWE = 0.04) relative to controls. Computational modelling suggests that NAcc-OFC connectivity changes reflect an increased influence of NAcc over OFC activity and reduced OFC influence over NAcc activity (posterior probability, Pp > 0.66). Conversely, dorsal putamen showed reduced modulation over lateral prefrontal cortex activity (Pp > 0.90). These functional deregulations emerged on top of a generally intact anatomical substrate. We provide out-of-sample replication of opposite changes in ventro-anterior and dorso-posterior frontostriatal connectivity in OCD and advance the understanding of the neural underpinnings of these functional perturbations. These findings inform the development of targeted therapies normalizing frontostriatal dynamics in OCD.


Assuntos
Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Núcleo Accumbens , Putamen/diagnóstico por imagem , Mapeamento Encefálico
15.
Eur Arch Psychiatry Clin Neurosci ; 274(1): 207-225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37421444

RESUMO

The past 20 years of research on EEG microstates has yielded the hypothesis that the imbalance pattern in the temporal dynamics of microstates C (increased) and D (decreased) is specific to schizophrenia. A similar microstate imbalance has been recently found in obsessive-compulsive disorder (OCD). The aim of the present high-density EEG study was to examine whether this pathological microstate pattern is co-specific to schizophrenia and OCD. We compared microstate temporal dynamics using Bayesian analyses, transition probabilities analyses and the Topographic Electrophysiological State Source-Imaging method for source reconstruction in 24 OCD patients and 28 schizophrenia patients, respectively, free of comorbid psychotic and OCD symptoms, and 27 healthy controls. OCD and schizophrenia patients exhibited the same increased contribution of microstate C, decreased duration and contribution of microstate D and greater D → C transition probabilities, compared with controls. A Bayes factor of 4.424 for the contribution of microstate C, 4.600 and 3.824, respectively, for the duration and contribution of microstate D demonstrated that there was no difference in microstate patterns between the two disorders. Source reconstruction further showed undistinguishable dysregulations between the Salience Network (SN), associated with microstate C, and the Executive Control Network (ECN), associated with microstate D, and between the ECN and cognitive cortico-striato-thalamo-cortical (CSTC) loop in the two disorders. The ECN/CSTC loop dysconnectivity was slightly worsened in schizophrenia. Our findings provide substantial evidence for a common aetiological pathway in schizophrenia and OCD, i.e. microstate co-specificity, and same anomalies in salience and external attention processing, leading to co-expression of symptoms.


Assuntos
Transtorno Obsessivo-Compulsivo , Esquizofrenia , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Teorema de Bayes , Eletroencefalografia , Mapeamento Encefálico , Transtorno Obsessivo-Compulsivo/complicações , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
16.
Eur Arch Psychiatry Clin Neurosci ; 274(1): 165-180, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37000246

RESUMO

Numerous neuroimaging studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed abnormalities in specific brain regions in obsessive-compulsive disorder (OCD), but results have been inconsistent. We conducted a whole-brain voxel-wise meta-analysis on resting-state functional imaging and VBM studies that investigated differences of functional activity and gray matter volume (GMV) between patients with OCD and healthy controls (HCs) using seed-based d mapping (SDM) software. A total of 41 independent studies (51 datasets) for resting-state functional imaging and 42 studies (46 datasets) for VBM were included by a systematic literature search. Overall, patients with OCD displayed increased spontaneous functional activity in the bilateral inferior frontal gyrus (IFG) (extending to the bilateral insula) and bilateral medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC), as well as decreased spontaneous functional activity in the bilateral paracentral lobule, bilateral cerebellum, left caudate nucleus, left inferior parietal gyri, and right precuneus cortex. For the VBM meta-analysis, patients with OCD displayed increased GMV in the bilateral thalamus (extending to the bilateral cerebellum), right striatum, and decreased GMV in the bilateral mPFC/ACC and left IFG (extending to the left insula). The conjunction analyses found that the bilateral mPFC/ACC, left IFG (extending to the left insula) showed decreased GMV with increased intrinsic function in OCD patients compared to HCs. This meta-analysis demonstrated that OCD exhibits abnormalities in both function and structure in the bilateral mPFC/ACC, insula, and IFG. A few regions exhibited only functional or only structural abnormalities in OCD, such as the default mode network, striatum, sensorimotor areas, and cerebellum. It may provide useful insights for understanding the underlying pathophysiology of OCD and developing more targeted and efficacious treatment and intervention strategies.


Assuntos
Encéfalo , Transtorno Obsessivo-Compulsivo , Humanos , Encéfalo/diagnóstico por imagem , Córtex Cerebral , Substância Cinzenta , Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem
17.
Cereb Cortex ; 33(6): 2593-2611, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35739579

RESUMO

The dysfunctional patterns of microstates dynamics in obsessive-compulsive disorder (OCD) remain uncertain. Using high-density electrical neuroimaging (EEG) at rest, we explored microstates deterioration in OCD and whether abnormal microstates patterns are associated with a dysregulation of the resting-state networks interplay. We used EEG microstates analyses, TESS method for sources reconstruction, and General Linear Models to test for the effect of disease severity on neural responses. OCD patients exhibited an increased contribution and decreased duration of microstates C and D, respectively. Activity was decreased in the Salience Network (SN), associated with microstate C, but increased in the Default Mode Network (DMN) and Executive Control Network (ECN), respectively, associated with microstates E and D. The hyperactivity of the right angular gyrus in the ECN correlated with the symptoms severity. The imbalance between microstates C and D invalidates the hypothesis that this electrophysiological pattern is specific to psychosis. Demonstrating that the SN-ECN dysregulation manifests as abnormalities in microstates C and D, we confirm that the SN deterioration in OCD is accompanied by a failure of the DMN to deactivate and aberrant compensatory activation mechanisms in the ECN. These abnormalities explain typical OCD clinical features but also detachment from reality, shared with psychosis.


Assuntos
Encéfalo , Transtorno Obsessivo-Compulsivo , Humanos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Lobo Parietal , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem
18.
Cereb Cortex ; 33(14): 8913-8920, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37160357

RESUMO

Gyrification patterns reflect early neurodevelopment and could be highly heritable. While some discrepant results have been reported, the most consistent finding was that patients with obsessive-compulsive disorder showed altered gyrification patterns in the orbitofrontal cortex. Nevertheless, no study has investigated the alterations in gyrification in unaffected first-degree relatives of patients with obsessive-compulsive disorder. We measured local gyrification by the FreeSurfer software in 23 unaffected first-degree relatives of patients with obsessive-compulsive disorder and 52 healthy control participants. We explored differences in the local gyrification index using vertex-wise whole-brain analysis and a region of interest-based approach in the medial and lateral orbitofrontal cortex. There was no significant difference in the local gyrification index between the 2 groups in the vertex-wise whole-brain analysis. Region of interest analyses showed that, compared with healthy controls, first-degree relatives showed significantly reduced local gyrification index in the left medial and lateral orbitofrontal cortex. A negative correlation was observed between the reduced local gyrification index in lateral orbitofrontal cortex and the subclinical anxiety scores of first-degree relatives. Our results showed that first-degree relatives of patients with obsessive-compulsive disorder had an altered local gyrification index in the orbitofrontal cortex. Especially, reduced local gyrification index in lateral orbitofrontal cortex associated with subclinical anxiety symptom could be a potential neurodevelopmental marker for the illness onset.


Assuntos
Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/genética , Encéfalo
19.
Cereb Cortex ; 33(5): 1659-1668, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35470393

RESUMO

BACKGROUND: The high heterogeneity of obsessive-compulsive disorder (OCD) denies attempts of traditional case-control studies to derive neuroimaging biomarkers indicative of precision diagnosis and treatment. METHODS: To handle the heterogeneity, we uncovered subject-level altered structural covariance by adopting individualized differential structural covariance network (IDSCN) analysis. The IDSCN measures how structural covariance edges in a patient deviated from those in matched healthy controls (HCs) yielding subject-level differential edges. One hundred patients with OCD and 106 HCs were recruited and whose T1-weighted anatomical images were acquired. We obtained individualized differential edges and then clustered patients into subtypes based on these edges. RESULTS: Patients presented tremendously low overlapped altered edges while frequently shared altered edges within subcortical-cerebellum network. Two robust neuroanatomical subtypes were identified. Subtype 1 presented distributed altered edges while subtype 2 presented decreased edges between default mode network and motor network compared with HCs. Altered edges in subtype 1 predicted the total Yale-Brown Obsessive Compulsive Scale score while that in subtype 2 could not. CONCLUSIONS: We depict individualized structural covariance aberrance and identify that altered connections within subcortical-cerebellum network are shared by most patients with OCD. These 2 subtypes provide new insights into taxonomy and facilitate potential clues to precision diagnosis and treatment of OCD.


Assuntos
Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Cerebelo , Estudos de Casos e Controles , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem
20.
Cereb Cortex ; 33(13): 8667-8678, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37150510

RESUMO

Obsessive-compulsive disorder (OCD) is a spectrum disorder with high interindividual heterogeneity. We propose a comprehensible framework integrating normative model and non-negative matrix factorization (NMF) to quantitatively estimate the neuroanatomical heterogeneity of OCD from a dimensional perspective. T1-weighted magnetic resonance images of 98 first-episode untreated patients with OCD and matched healthy controls (HCs, n = 130) were acquired. We derived individualized differences in gray matter morphometry using normative model and parsed them into latent disease factors using NMF. Four robust disease factors were identified. Each patient expressed multiple factors and exhibited a unique factor composition. Factor compositions of patients were significantly correlated with severity of symptom, age of onset, illness duration, and exhibited sex differences, capturing sources of clinical heterogeneity. In addition, the group-level morphological differences obtained with two-sample t test could be quantitatively derived from the identified disease factors, reconciling the group-level and subject-level findings in neuroimaging studies. Finally, we uncovered two distinct subtypes with opposite morphological differences compared with HCs from factor compositions. Our findings suggest that morphological differences of individuals with OCD are the unique combination of distinct neuroanatomical patterns. The proposed framework quantitatively estimating neuroanatomical heterogeneity paves the way for precision medicine in OCD.


Assuntos
Encéfalo , Transtorno Obsessivo-Compulsivo , Humanos , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Córtex Cerebral/patologia , Imageamento por Ressonância Magnética/métodos , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA