Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 467, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807057

RESUMO

BACKGROUND: There is a lack of knowledge on the combined effects of different stresses on plants, in particular different stresses that occur during winter in temperate climates. Perennial herbaceous plants in temperate regions are exposed to many different stresses during winter, but except for the fact that cold temperatures induce resistance to a number of them, very little is known about their interaction effects. Knowledge about stress interactions is needed in order to predict effects of climate change on both agricultural production and natural ecosystems, and to develop adaptation strategies, e.g., through plant breeding. Here, we conducted a series of experiments under controlled conditions to study the interactions between cold (low positive temperature), clover rot infection (caused by Sclerotinia trifoliorum) and freezing, in red clover (Trifolium pratense) accessions. We also compared our results with winter survival in field experiments and studied associations between stress and shoot growth. RESULTS: Exposure to low positive temperatures (cold acclimation) induced resistance to clover rot. There was a clear negative interaction effect between freezing stress and clover rot infection, resulting in up to 37% lower survival rate compared to what would have been expected from the additive effect of freezing and infection alone. Freezing tolerance could continue to improve during incubation under artificial snow cover at 3 °C in spite of darkness, and we observed compensatory shoot growth following freezing after prolonged incubation. At the accession level, resistance to clover rot was negatively correlated with growth in the field during the previous year at a Norwegian location. It was also negatively correlated with the shoot regrowth of control plants after incubation. Clover rot resistance tests under controlled conditions showed limited correlation with clover rot resistance observed in the field, suggesting that they may reveal variation in more specific resistance mechanisms. CONCLUSIONS: We here demonstrate, for the first time, a strong negative interaction between freezing and infection with a winter pathogen. We also characterize the effects of cold acclimation and incubation in darkness at different temperatures on winter stress tolerance, and present data that support the notion that annual cycles of growth and stress resistance are associated at the genetic level.


Assuntos
Congelamento , Estações do Ano , Trifolium , Trifolium/fisiologia , Trifolium/microbiologia , Trifolium/crescimento & desenvolvimento , Estresse Fisiológico , Temperatura Baixa , Doenças das Plantas/microbiologia , Aclimatação , Ascomicetos/fisiologia
2.
BMC Plant Biol ; 24(1): 523, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853237

RESUMO

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.


Assuntos
Alelopatia , Antioxidantes , Extratos Vegetais , Reguladores de Crescimento de Plantas , Rumex , Trifolium , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Rumex/crescimento & desenvolvimento , Rumex/metabolismo , Rumex/efeitos dos fármacos , Rumex/química , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metanol , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Feromônios/farmacologia , Feromônios/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Brotos de Planta/química
3.
BMC Microbiol ; 24(1): 304, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138453

RESUMO

BACKGROUND: Ectomycorrhizal (ECM and ECM-like) structures associated with plant root systems are a challenge for scientists. The dispersion pattern of roots within the soil profile and the nutritional conditions are both favourable factors to motivate the plants to make ECM associations. RESULTS: This study discusses the colonization of mycorrhizal associations in Kobresia and Polygonum species including Polygonum viviparum, Kobresia filicina, K. myosuroides, Alnus nitida, Betula pendula, Pinus sylvestris, and Trifolium repens grown naturally in cold stressed soils of Gilgit-Baltistan (high-altitude alpine Deosai plains), Hazara, Swat, Dir, and Bajaur. Sieved soil batches were exposed to +5 °C (control), -10, -20, -30, -40, -50, -125 °C for 5 h, and selected plants were sown to these soils for 10 weeks under favourable conditions for ECM colonization. Ectomycorrhizal associations were examined in the above mentioned plants. Some ECM fungi have dark mycelia that look like the mantle and Hartig net. Examples of these are Kobresia filicina, K. myosuroides, and Polygonum viviparum. Findings of this study revealed that K. myosuroides excelled in ECM root tip length, dry mass, and NH4 concentration at -125 °C. Contrarily, A. nitida demonstrated the lower values, indicated its minimum tolerance. Notably, T. repens boasted the highest nitrogen concentration (18.7 ± 1.31 mg/g), while P. sylvestris led in phosphorus (3.2 ± 0.22 mg/g). The B. pendula showed the highest potassium concentration (9.4 ± 0.66 mg/g), emphasising species-specific nutrient uptake capabilities in extreme cold conditions. The PCA analysis revealed that the parameters, e.g., NH4 in soil mix (NH4), NO3 in soil mix (NO3), phosphorus in soil in species of Polygonum viviparum, Kobresia filicina, K. myosuroides, Alnus nitida, Betula pendula, Pinus sylvestris, and Trifolium repens are most accurately represented in cases of + 5 °C, -10 °C, and -20 °C temperatures. On the other hand, the parameters for ECM root tips (ECM) and Dry Mass (DM) are best described in -40 °C, -50 °C, and - 125 °C temperatures. All parameters have a strong influence on the variability of the system indicated the efficiency of ECM. The heatmap supported the nutrients positively correlated with ECM colonization with the host plants. CONCLUSION: At lower temperatures, hyphae and spores in roots were reduced, while soluble phosphorus concentrations of leaves were increased in cold stress soils. Maximum foliar nutrient concentrations were found in K. myosuroides at the lowest temperature treatments due to efficient functioning and colonization of ECM.


Assuntos
Temperatura Baixa , Micorrizas , Raízes de Plantas , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Trifolium/microbiologia , Trifolium/crescimento & desenvolvimento , Solo/química , Nutrientes/metabolismo , Cyperaceae/microbiologia , Cyperaceae/crescimento & desenvolvimento , Estresse Fisiológico , Simbiose , Polygonum/microbiologia , Polygonum/crescimento & desenvolvimento , Fósforo/metabolismo , Fósforo/análise
4.
Mol Ecol ; 33(17): e17484, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39072878

RESUMO

Species that repeatedly evolve phenotypic clines across environmental gradients have been highlighted as ideal systems for characterizing the genomic basis of local environmental adaptation. However, few studies have assessed the importance of observed phenotypic clines for local adaptation: conspicuous traits that vary clinally may not necessarily be the most critical in determining local fitness. The present study was designed to fill this gap, using a plant species characterized by repeatedly evolved adaptive phenotypic clines. White clover is naturally polymorphic for its chemical defence cyanogenesis (HCN release with tissue damage); climate-associated cyanogenesis clines have evolved throughout its native and introduced range worldwide. We performed landscape genomic analyses on 415 wild genotypes from 43 locations spanning much of the North American species range to assess the relative importance of cyanogenesis loci vs. other genomic factors in local climatic adaptation. We find clear evidence of local adaptation, with temperature-related climatic variables best describing genome-wide differentiation between sampling locations. The same climatic variables are also strongly correlated with cyanogenesis frequencies and gene copy number variations (CNVs) at cyanogenesis loci. However, landscape genomic analyses indicate no significant contribution of cyanogenesis loci to local adaptation. Instead, several genomic regions containing promising candidate genes for plant response to seasonal cues are identified - some of which are shared with previously identified QTLs for locally adaptive fitness traits in North American white clover. Our findings suggest that local adaptation in white clover is likely determined primarily by genes controlling the timing of growth and flowering in response to local seasonal cues. More generally, this work suggests that caution is warranted when considering the importance of conspicuous phenotypic clines as primary determinants of local adaptation.


Assuntos
Adaptação Fisiológica , Temperatura , Trifolium , Adaptação Fisiológica/genética , Clima , Variações do Número de Cópias de DNA , Genética Populacional , Genótipo , Cianeto de Hidrogênio/metabolismo , América do Norte , Fenótipo , Trifolium/genética , Trifolium/crescimento & desenvolvimento
5.
Physiol Plant ; 176(5): e14499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221485

RESUMO

Improving the cultivation mode and technology for traditional Chinese medicine has become important for its sustainable development. Monoculture enhances plant diseases, which decreases yield and quality. Intercropping is an effective measure to counterbalance that negative effect. In this study, we focused on Panax quinquefolium L. (ginseng) and four treatments were set up: the control without intercropping, P. quinquefolius + ryegrass (Lolium perenne L.), P. quinquefolius + red clover (Trifolium pratense L.), and P. quinquefolius + ryegrass + red clover. An LC-MS/MS system was used to detect the changes in the P. quinquefolius secondary metabolites, and high-throughput sequencing technology was used to determine the changes in the P. quinquefolius' rhizosphere soil microorganisms. Ginsenoside content, soil enzyme activities, and arbuscular mycorrhizal infection rate of P. quinquefolius were also measured using HPLC, ELISA kits, and microscopy, respectively. Co-intertia and Pearson's analysis were performed to explore the relationship between the metabolites and the P. quinquefolius microorganisms. Intercropping significantly increased the content of ginsenoside metabolites and recruited a large number of beneficial bacteria to the P. quinquefolius rhizosphere. The P. quinquefolius secondary metabolites were associated with the rhizosphere microbial community. For example, the dominant microorganisms, such as Acidobacteriota and Chloroflexi, played a key role in promoting the synthesis of ginsenoside Rd and (20R) ginsenoside Rg3 by P. quinquefolius. Intercropping led to changes in the P. quinquefolius secondary metabolites by driving and reshaping the rhizosphere microorganisms. These findings revealed the potential application of intercropping for improving the quality of P. quinquefolius.


Assuntos
Ginsenosídeos , Panax , Rizosfera , Panax/microbiologia , Panax/metabolismo , Panax/fisiologia , Panax/crescimento & desenvolvimento , Ginsenosídeos/metabolismo , Microbiologia do Solo , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Agricultura/métodos , Trifolium/microbiologia , Trifolium/metabolismo , Trifolium/crescimento & desenvolvimento , Trifolium/fisiologia
6.
Physiol Plant ; 176(4): e14433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994561

RESUMO

Cadmium (Cd) is a leading environmental issue worldwide. The current study was conducted to investigate Cd tolerance of 10 commercial white clover (Trifolium repens) cultivars during seed germination and to further explore differences in lipid remodelling, glycometabolism, and the conversion of lipids into sugars contributing to Cd tolerance in the early phase of seedling establishment as well as the accumulation of Cd in seedlings and mature plants. The results show that Cd stress significantly reduced seed germination of 10 cultivars. Compared to Cd-sensitive Sulky, Cd-tolerant Pixie accelerated amylolysis to produce more glucose, fructose, and sucrose by maintaining higher amylase and sucrase activities under Cd stress. Pixie maintained higher contents of various lipids, higher DGDG/MGDG ratio, and lower unsaturation levels of lipids, which could be beneficial to membrane stability and integrity as well as signal transduction in cells after being subjected to Cd stress. In addition, Pixie upregulated expression levels of key genes (TrACX1, TrACX4, TrSDP6, and TrPCK1) involved in the conversion of lipids into sugars for early seedling establishment under Cd stress. These findings indicate that lipid remodelling, enhanced glycometabolism, and accelerated conversion of lipids into sugars are important adaptive strategies for white clover seed germination and subsequent seedling establishment under Cd stress. In addition, Pixie not only accumulated more Cd in seedlings and mature plants than Sulky but also had significantly better growth and phytoremediation efficiency under Cd stress. Pixie could be used as a suitable and critical germplasm for the rehabilitation and re-establishment of Cd-contaminated areas.


Assuntos
Cádmio , Germinação , Sementes , Trifolium , Cádmio/toxicidade , Germinação/efeitos dos fármacos , Trifolium/efeitos dos fármacos , Trifolium/metabolismo , Trifolium/genética , Trifolium/crescimento & desenvolvimento , Trifolium/fisiologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Açúcares/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
7.
Molecules ; 29(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38792226

RESUMO

The study investigated compounds present in the invasive grass Hordeum murinum L. subsp. murinum and tested the allelopathic potential of this plant against common meadow species Festuca rubra L. and Trifolium repens L. Gas chromatography-mass spectrometry (GC-MS) performed separately on the ears and stalks with leaves of wall barley revealed 32 compounds, including secondary metabolites, that may play an important role in allelopathy. Two compounds, N-butylbenzenesulfonamide (NBBS) and diphenylsulfone (DDS), were described for the first time for wall barley and the Poaceae family. The presence of 6,10,14-trimethylpentadecan-2-one (TMP) has also been documented. Aqueous extracts of H. murinum organs (ears and stalks with leaves) at concentrations of 2.5%, 5%, and 7.5% were used to evaluate its allelopathic potential. Compared to the control, all extracts inhibited germination and early growth stages of meadow species. The inhibitory effect was strongest at the highest concentration for both the underground and aboveground parts of the seedlings of the meadow species tested. Comparing the allelopathic effect, Trifolium repens proved to be more sensitive. In light of the results of the study, the removal of wall barley biomass appears to be important for the restoration of habitats where this species occurs due to its allelopathic potential.


Assuntos
Alelopatia , Hordeum , Extratos Vegetais , Hordeum/química , Hordeum/crescimento & desenvolvimento , Hordeum/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espécies Introduzidas , Trifolium/química , Trifolium/crescimento & desenvolvimento , Trifolium/efeitos dos fármacos , Folhas de Planta/química , Cromatografia Gasosa-Espectrometria de Massas , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Festuca/efeitos dos fármacos , Festuca/crescimento & desenvolvimento , Festuca/química
8.
BMC Plant Biol ; 22(1): 14, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979930

RESUMO

BACKGROUND: Unreduced gametes, a driving force in the widespread polyploidization and speciation of flowering plants, occur relatively frequently in interspecific or intergeneric hybrids. Studies of the mechanisms leading to 2n gamete formation, mainly in the wheat tribe Triticeae have shown that unreductional meiosis is often associated with chromosome asynapsis during the first meiotic division. The present study explored the mechanisms of meiotic nonreduction leading to functional unreduced gametes in an interspecific Trifolium (clover) hybrid with three sub-genomes from T. ambiguum and one sub-genome from T. occidentale. RESULTS: Unreductional meiosis leading to 2n gametes occurred when there was a high frequency of asynapsis during the first meiotic division. In this hybrid, approximately 39% of chromosomes were unpaired at metaphase I. Within the same cell at anaphase I, sister chromatids of univalents underwent precocious separation and formed laggard chromatids whereas paired chromosomes segregated without separation of sister chromatids as in normal meiosis. This asynchrony was frequently accompanied by incomplete or no movement of chromosomes toward the poles and restitution leading to unreduced chromosome constitutions. Reductional meiosis was restored in progeny where asynapsis frequencies were low. Two progeny plants with approximately 5 and 7% of unpaired chromosomes at metaphase I showed full restoration of reductional meiosis. CONCLUSIONS: The study revealed that formation of 2n gametes occurred when asynapsis (univalent) frequency at meiosis I was high, and that normal gamete production was restored in the next generation when asynapsis frequencies were low. Asynapsis-dependent 2n gamete formation, previously supported by evidence largely from wheat and its relatives and grasshopper, is also applicable to hybrids from the dicotyledonous plant genus Trifolium. The present results align well with those from these widely divergent organisms and strongly suggest common molecular mechanisms involved in unreduced gamete formation.


Assuntos
Células Germinativas Vegetais/crescimento & desenvolvimento , Meiose , Trifolium/crescimento & desenvolvimento , Células Germinativas Vegetais/metabolismo , Hibridização Genética , Trifolium/genética
9.
Theor Appl Genet ; 135(1): 125-143, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34628514

RESUMO

KEY MESSAGE: Accurate genomic prediction of yield within and across generations was achieved by estimating the genetic merit of individual white clover genotypes based on extensive genetic replication using cloned material. White clover is an agriculturally important forage legume grown throughout temperate regions as a mixed clover-grass crop. It is typically cultivated with low nitrogen input, making yield dependent on nitrogen fixation by rhizobia in root nodules. Here, we investigate the effects of clover and rhizobium genetic variation by monitoring plant growth and quantifying dry matter yield of 704 combinations of 145 clover genotypes and 170 rhizobium inocula. We find no significant effect of rhizobium variation. In contrast, we can predict yield based on a few white clover markers strongly associated with plant size prior to nitrogen fixation, and the prediction accuracy for polycross offspring yield is remarkably high. Several of the markers are located near a homolog of Arabidopsis thaliana GIGANTUS 1, which regulates growth rate and biomass accumulation. Our work provides fundamental insight into the genetics of white clover yield and identifies specific candidate genes as breeding targets.


Assuntos
Genes de Plantas , Fixação de Nitrogênio , Rhizobium leguminosarum/fisiologia , Trifolium/genética , Variação Genética , Genótipo , Modelos Genéticos , Desenvolvimento Vegetal/genética , Rhizobium leguminosarum/classificação , Rhizobium leguminosarum/isolamento & purificação , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/microbiologia
10.
BMC Plant Biol ; 21(1): 95, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588756

RESUMO

BACKGROUND: Red clover (Trifolium pratense) is globally used as a fodder plant due its high nutritional value and soil improving qualities. In response to mowing, red clover exhibits specific morphological traits to compensate the loss of biomass. The morphological reaction is well described, but the underlying molecular mechanisms and its role for plants grown in the field are unclear. RESULTS: Here, we characterize the global transcriptional response to mowing of red clover by comparing plants grown under greenhouse conditions with plants growing on agriculturally used fields. Unexpectedly, we found that biotic and abiotic stress related changes of plants grown in the field overlay their regrowth related transcriptional changes and characterized transcription related protein families involved in these processes. Further, we can show that gibberellins, among other phytohormones, also contribute to the developmental processes related to regrowth after biomass-loss. CONCLUSIONS: Our findings show that massive biomass loss triggers less transcriptional changes in field grown plants than their struggle with biotic and abiotic stresses and that gibberellins also play a role in the developmental program related to regrowth after mowing in red clover. Our results provide first insights into the physiological and developmental processes of mowing on red clover and may serve as a base for red clover yield improvement.


Assuntos
Proteínas de Plantas/genética , Transcrição Gênica , Trifolium/genética , Perfilação da Expressão Gênica , Giberelinas/metabolismo , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo
11.
Molecules ; 26(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801201

RESUMO

Interest in finding plant-based herbicides to supplement synthesized herbicides is increasing. Although the extract of Sapindus mukorossi Gaertn has been reported to have herbicidal activity, little is known about phytotoxic substances and their efficacy of weed control in the field. To identify phytotoxic substances, the bioassay-guided fractionation by column chromatography and high-speed counter-current chromatography (HSCCC) was carried out. The phytotoxic activity assay, performed by the agar medium method, showed that the 70% ethanol fraction exhibited strong root growth inhibition against Trifolium pratense with an 50% inhibitory concentration (IC50) value of 35.13 mg/L. An active compound was isolated from the 70% ethanol fraction and identified as hederagenin 3-o-ß-D-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside (Compound A). Compound A had an IC50 value of 16.64 mg/L. Finally, a new formulation was prepared based on the 70% ethanol fraction, which exhibited good efficacy against broadleaf weeds in a carrot field. The fresh weight control efficacy was 78.7% by 45 days after treatment at the dose of 1500 g a. i./ha. Hence, the extract of S. mukorossi pulp could be a promising supplement to the synthesized herbicides. Furthermore, compound A from S. mukorossi may be responsible for its phytotoxic activity.


Assuntos
Alcaloides/farmacologia , Extratos Vegetais/farmacologia , Sapindus/química , Saponinas/farmacologia , Toxinas Biológicas/farmacologia , Trifolium/crescimento & desenvolvimento , Controle de Plantas Daninhas , Trifolium/efeitos dos fármacos
12.
J Sci Food Agric ; 101(9): 3767-3777, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33300619

RESUMO

BACKGROUND: The utilization of Trifolium subterraneum L. cover crops may represent an innovative and efficient option in low-input and organic farming, especially in Mediterranean agroecosystems where low and irregular rainfall require frequent soil tillage and use of herbicides to reduce moisture losses and weed competitiveness. Since imbalances of soil macro- and micro-nutrients due to cover cropping establishment could be responsible for numerous problems in specialized orchards, such as disturbances in the normal tree growth and quality of fruits, the objective of this study was to investigate, the cumulative effects of a 3-years established T. subterraneum cover cropping, compared with a spontaneous flora and a conventional management (as a control), on the levels of mineral nutrients in the apricot leaves and fruits. RESULTS: Our findings indicated that T. subterraneum cover cropping tended to stimulate higher leaf macro- and micro-nutrients content than conventional management and flora spontaneous cover cropping. In addition, the presence of T. subterraneum cover cropping, especially with the incorporation of dead mulches into the soil, increased the content of potassium (K), nitrogen (N), calcium (Ca), iron (Fe) and manganese (Mn) in apricot fruits. CONCLUSION: Taking also into account the effects of T. subterraneum cover cropping on both the reduction of soil weed and enhancement of bacteria communities involved in the soil N-cycle, we may suggest its application in Mediterranean orchards as an eco-friendly alternative to synthetic herbicides for weed control and mineral N fertilizers, while enhancing the apricot tree nutritional status and fruit quality. © 2020 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Frutas/química , Prunus armeniaca/crescimento & desenvolvimento , Trifolium/crescimento & desenvolvimento , Fertilizantes/análise , Frutas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Estado Nutricional , Prunus armeniaca/química , Solo/química
13.
BMC Plant Biol ; 20(1): 429, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938399

RESUMO

BACKGROUND: Caucasian clover (Trifolium ambiguum M. Bieb.) is a strongly rhizomatous, low-crowned perennial leguminous and ground-covering grass. The species may be used as an ornamental plant and is resistant to cold, arid temperatures and grazing due to a well-developed underground rhizome system and a strong clonal reproduction capacity. However, the posttranscriptional mechanism of the development of the rhizome system in caucasian clover has not been comprehensively studied. Additionally, a reference genome for this species has not yet been published, which limits further exploration of many important biological processes in this plant. RESULT: We adopted PacBio sequencing and Illumina sequencing to identify differentially expressed genes (DEGs) in five tissues, including taproot (T1), horizontal rhizome (T2), swelling of taproot (T3), rhizome bud (T4) and rhizome bud tip (T5) tissues, in the caucasian clover rhizome. In total, we obtained 19.82 GB clean data and 80,654 nonredundant transcripts were analysed. Additionally, we identified 78,209 open reading frames (ORFs), 65,227 coding sequences (CDSs), 58,276 simple sequence repeats (SSRs), 6821 alternative splicing (AS) events, 2429 long noncoding RNAs (lncRNAs) and 4501 putative transcription factors (TFs) from 64 different families. Compared with other tissues, T5 exhibited more DEGs, and co-upregulated genes in T5 are mainly annotated as involved in phenylpropanoid biosynthesis. We also identified betaine aldehyde dehydrogenase (BADH) as a highly expressed gene-specific to T5. A weighted gene co-expression network analysis (WGCNA) of transcription factors and physiological indicators were combined to reveal 11 hub genes (MEgreen-GA3), three of which belong to the HB-KNOX family, that are up-regulated in T3. We analysed 276 DEGs involved in hormone signalling and transduction, and the largest number of genes are associated with the auxin (IAA) signalling pathway, with significant up-regulation in T2 and T5. CONCLUSIONS: This study contributes to our understanding of gene expression across five different tissues and provides preliminary insight into rhizome growth and development in caucasian clover.


Assuntos
Rizoma/crescimento & desenvolvimento , Transcriptoma , Trifolium/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Repetições de Microssatélites/genética , Fases de Leitura Aberta/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , Rizoma/genética , Rizoma/metabolismo , Análise de Sequência de DNA , Trifolium/genética , Trifolium/metabolismo
14.
Ecotoxicol Environ Saf ; 202: 110958, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800230

RESUMO

Phytoremediation is an effective way to repair heavy metal contaminated soil and rhizosphere microorganisms play an important role in plant regulation. Nevertheless, little information is known about the variation of microbial metabolic activities and community structure in rhizosphere during phytoremediation. In this study, the rhizosphere soil microbial metabolic activities and community structure of Trifolium repensL. during Cd-contaminated soil phytoremediation, were analyzed by Biolog EcoPlate™ and high-throughput sequencing. The uptake in the roots of Trifolium repensL. grown in 5.68 and 24.23 mg/kg Cd contaminated soil was 33.51 and 84.69 mg/kg respectively, causing the acid-soluble Cd fractions decreased 7.3% and 5.4%. Phytoremediation significantly influenced microbial community and Trifolium repensL. planting significantly increased the rhizosphere microbial population, diversity, the relative abundance of plant growth promoting bacteria (Kaistobacter and Flavisolibacter), and the utilization of difficultly metabolized compounds. The correlation analysis among substrate utilization and microbial communities revealed that the relative abundance increased microorganisms possessed stronger carbon utilization capacity, which was beneficial to regulate the stability of plant-microbial system. Collectively, the results of this study provide fundamental insights into the microbial metabolic activities and community structure during heavy metal contaminated soil phytoremediation, which may aid in the bioregulation of phytoremediation.


Assuntos
Cádmio/toxicidade , Microbiota/efeitos dos fármacos , Rizosfera , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Trifolium/efeitos dos fármacos , Biodegradação Ambiental , Cádmio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Poluentes do Solo/metabolismo , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/microbiologia
15.
Molecules ; 25(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429231

RESUMO

Identification and quantification of polyphenols in plant material are of great interest since they make a significant contribution to its total bioactivity. In the present study, an UPLC-Orbitrap-MS/MS approach using the variable data acquisition mode (vDIA) was developed and applied for rapid separation, identification, and quantification of the main polyphenolic compounds in Medicago sativa L. and Trifolium pratense L. sprouts in different germination stages. Based on accurate MS data and fragment ions identification strategy, a total of 29 compounds were identified by comparing their accurate masses, fragment ions, retention times, and literatures. Additionally, a number of 30 compounds were quantified by comparing to the reference standards. Data were statistically analysed. For both plant species, the sprouts of the third germination day are valuable sources of bioactive compounds and could be used in phytotherapy and nutrition. Although Trifolium pratense L. (Red Clover) is considered to be a reference for natural remedies in relieving menopause disorders, alfalfa also showed a high level of biological active compounds with estrogenic activity.


Assuntos
Flavonoides/química , Medicago sativa/química , Polifenóis/química , Plântula/química , Trifolium/química , Cromatografia Líquida de Alta Pressão , Flavonoides/classificação , Flavonoides/isolamento & purificação , Germinação/fisiologia , Limite de Detecção , Espectrometria de Massas , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/metabolismo , Extratos Vegetais/química , Polifenóis/classificação , Polifenóis/isolamento & purificação , Padrões de Referência , Plântula/metabolismo , Fatores de Tempo , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo
16.
J Sci Food Agric ; 100(10): 3857-3865, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32297331

RESUMO

BACKGROUND: Berseem clover is the main forage crop grown in Mediterranean regions. There are plenty of cultivars that possess variability in their productivity and quality among the different cuts. Therefore, accurate agronomic and qualitative characterization is crucial for selecting the most promising cultivars for breeding and feeding purposes. In the present study, the agronomic characteristics, ruminal degradability and fermentation measures of five cuts of the five most prominent Egyptian beseem clover cultivars (Helaly, Serw, Giza6, Gemmeza1 and Sakha4) were evaluated. RESULTS: The Giza6 cultivar produced a significantly higher fresh yield and high whole plant dry matter content on the 3rd cut. Giza6 was among the superior cultivars in crude protein content and had the highest values of gas production at the 3rd cut, and ruminal degraded acid detergent fiber and propionate concentrations at the 2nd cut, at the same time as presenting the lowest ammonia concentrations at the 3rd and 5th cuts. Overall, the 3rd cut produced significantly higher fresh yield across all cultivars, except for Sakha4. The 3rd cut also produced a higher leaf to stem ratio compared to the 4th and 5th cuts. The 1st three cuts had higher degraded neutral detergent fiber than the 4th and 5th cuts. The 1st cut was characterized by low propionate concentration in the Helaly and Gemmeza1 cultivars compared to the other cuts. CONCLUSION: Expanded production of the high-yielding, high-quality cultivar Giza6 is recommended. When harvesting, three cuts is optimal for berseem clover cultivation for breeding and feeding programs. © 2020 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Trifolium/química , Trifolium/crescimento & desenvolvimento , Amônia/análise , Amônia/metabolismo , Animais , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Gado , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Trifolium/classificação , Trifolium/metabolismo
17.
Am Nat ; 193(2): 200-212, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30720367

RESUMO

Coexistence requires that stabilizing niche differences, which cause species to limit themselves more than others, outweigh relative fitness differences, which cause competitive exclusion. Interactions with shared mutualists, which can differentially affect host fitness and change in magnitude with host frequency, can satisfy these conditions for coexistence, yet empirical tests of mutualist effects on relative fitness and stabilizing niche differences are largely lacking within the framework of coexistence theory. Here, we show that N-fixing rhizobial mutualists mediate coexistence in four naturally co-occurring congeneric legume (Trifolium) species. Using experimental greenhouse communities, we quantified relative fitness and stabilizing niche differences for each species in the presence of rhizobia originating from conspecific or congeneric hosts. Rhizobia stabilized coexistence by increasing the self-limitation of Trifolium species grown with rhizobia isolated from conspecifics, thus allowing congeners to increase when rare. Greenhouse-measured invasion growth rates predicted natural, unmanipulated coexistence dynamics of Trifolium species over 2 years at our field sites. Our results demonstrate that interactions with shared mutualists can stabilize the coexistence of closely related species.


Assuntos
Nodulação , Rhizobium leguminosarum/fisiologia , Trifolium/microbiologia , Especificidade da Espécie , Simbiose , Trifolium/crescimento & desenvolvimento
18.
Planta ; 250(6): 2033-2046, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31542810

RESUMO

MAIN CONCLUSION: ß-sitosterol influences amino acids, carbohydrates, organic acids, and other metabolite metabolism and homeostasis largely contributing to better tolerance to water stress in white clover. ß-sitosterol (BS) could act as an important plant growth regulator when plants are subjected to harsh environmental conditions. Objective of this study was to examine effects of BS on growth and water stress tolerance in white clover based on physiological responses and metabolomics. White clover was pretreated with or without BS and then subjected to water stress for 7 days in controlled growth chambers. Physiological analysis demonstrated that exogenous application of BS (120 µM) could significantly improve stress tolerance associated with better growth performance and photosynthesis, higher leaf relative water content, and less oxidative damage in white clover in response to water stress. Metabolic profiling identified 78 core metabolites involved in amino acids, organic acids, sugars, sugar alcohols, and other metabolites in leaves of white clover. For sugars and sugar alcohol metabolism, the BS treatment enhanced the accumulation of fructose, glucose, maltose, and myo-inositol contributing to better antioxidant capacity, growth maintenance, and osmotic adjustment in white clover under water stress. The application of BS was inclined to convert glutamic acid into proline, 5-oxoproline, and chlorophyll instead of going to pyruvate and alanine; the BS treatment did not significantly affect intermediates of tricarboxylic acid cycle (citrate, aconitate, and malate), but promoted the accumulation of other organic acids including lactic acid, glycolic acid, glyceric acid, shikimic acid, galacturonic acid, and quinic acid in white clover subjected to water stress. In addition, cysteine, an important antioxidant metabolite, was also significantly improved by BS in white clover under water stress. These altered amino acids and organic acids metabolism could play important roles in growth maintenance and modulation of osmotic and redox balance against water stress in white clover. Current findings provide a new insight into BS-induced metabolic homeostasis related to growth and water stress tolerance in plants.


Assuntos
Reguladores de Crescimento de Plantas/fisiologia , Sitosteroides/metabolismo , Trifolium/metabolismo , Membrana Celular/metabolismo , Desidratação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica , Estresse Oxidativo , Fotossíntese , Reguladores de Crescimento de Plantas/metabolismo , Trifolium/crescimento & desenvolvimento , Trifolium/fisiologia
19.
Plant Cell Environ ; 42(6): 1987-2002, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30734927

RESUMO

Crops with improved uptake of fertilizer phosphorus (P) would reduce P losses and confer environmental benefits. We examined how P-sufficient 6-week-old soil-grown Trifolium subterraneum plants, and 2-week-old seedlings in solution culture, accumulated P in roots after inorganic P (Pi) addition. In contrast to our expectation that vacuoles would accumulate excess P, after 7 days, X-ray microanalysis showed that vacuolar [P] remained low (<12 mmol kg-1 ). However, in the plants after P addition, some cortex cells contained globular structures extraordinarily rich in P (often >3,000 mmol kg-1 ), potassium, magnesium, and sodium. Similar structures were evident in seedlings, both before and after P addition, with their [P] increasing threefold after P addition. Nuclear magnetic resonance (NMR) spectroscopy showed seedling roots accumulated Pi following P addition, and transmission electron microscopy (TEM) revealed large plastids. For seedlings, we demonstrated that roots differentially expressed genes after P addition using RNAseq mapped to the T. subterraneum reference genome assembly and transcriptome profiles. Among the most up-regulated genes after 4 hr was TSub_g9430.t1, which is similar to plastid envelope Pi transporters (PHT4;1, PHT4;4): expression of vacuolar Pi-transporter homologs did not change. We suggest that subcellular P accumulation in globular structures, which may include plastids, aids cytosolic Pi homeostasis under high-P availability.


Assuntos
Fósforo/metabolismo , Raízes de Plantas/metabolismo , Plastídeos/metabolismo , Plântula/metabolismo , Trifolium/metabolismo , Transporte Biológico , Fertilizantes , Regulação da Expressão Gênica de Plantas , Homeostase , Magnésio/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Potássio/metabolismo , Plântula/citologia , Sódio/metabolismo , Solo/química , Transcriptoma , Trifolium/genética , Trifolium/crescimento & desenvolvimento , Vacúolos/metabolismo
20.
Theor Appl Genet ; 132(10): 2899-2912, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31321473

RESUMO

KEY MESSAGE: The widely divergent species 4xTrifolium ambiguum and 2xT.occidentale are inter-fertile long after speciation (including polyploidisation) has occurred. Tri-species hybrids (T. repens × T. ambiguum × T. occidentale) have the potential to achieve introgression of stress resistant traits from both wild species into white clover. Trifolium ambiguum and T. occidentale are geographically, adaptionally and phenotypically contrasting species in the white clover section (Trifoliastrum) of the genus. T. ambiguum occurs as a high-altitude polyploid series (2x, 4x, 6x) in W Asia and NE Europe. T. occidentale is a diploid coastal species, occurring at sea level in W Europe. This study investigated hybridisation between 4xT. ambiguum and 2xT. occidentale and considered the significance of the hybrids for introgression breeding of white clover. Partially fertile F1 hybrids between 4xT. ambiguum and 2x and 4xT. occidentale were generated by embryo rescue. Hybrid plant morphology and fertility varied widely and hybrids generally expressed traits from both species. Advanced generation (F2-F5) 4x hybrids were highly fertile and constitute a new synthetic allotetraploid species. FISH analyses of 4x hybrids showed multivalent chromosome configurations with homoeologous associations between T. ambiguum and T. occidentale chromosomes. Crosses of the hybrids with T. repens produced fertile tri-species progeny. These very divergent species remain inter-fertile long after speciation (including polyploidisation) has occurred. Tri-species hybrids have the potential to achieve introgression of stress resistance traits from both wild species into white clover.


Assuntos
Genoma de Planta , Hibridização Genética , Melhoramento Vegetal/métodos , Poliploidia , Trifolium/genética , Genótipo , Geografia , Fenótipo , Trifolium/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA