Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 727
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 164(6): 953-965.e3, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736436

RESUMO

BACKGROUND & AIMS: Acute pancreatitis (AP) is a complex disease and the leading cause of gastrointestinal disease-related hospital admissions. Few therapeutic options exist for AP prevention. Blood proteins with causal evidence may represent promising drug targets, but few have been causally linked with AP. Our objective was to identify blood proteins linked with AP by combining genome-wide association meta-analysis and proteome-wide Mendelian randomization (MR) studies. METHODS: We performed a genome-wide association meta-analysis totalling 10,630 patients with AP and 844,679 controls and a series of inverse-variance weighted MR analyses using cis-acting variants on 4719 blood proteins from the deCODE study (N = 35,559) and 4979 blood proteins from the Fenland study (N = 10,708). RESULTS: The meta-analysis identified genome-wide significant variants (P <5 × 10-8) at 5 loci (ABCG5/8, TWIST2, SPINK1, PRSS2 and MORC4). The proteome-wide MR analyses identified 68 unique blood proteins that may causally be associated with AP, including 29 proteins validated in both data sets. Functional annotation of these proteins confirmed expression of many proteins in metabolic tissues responsible for digestion and energy metabolism, such as the esophagus, adipose tissue, and liver as well as acinar cells of the pancreas. Genetic colocalization and investigations into the druggable genome also identified potential drug targets for AP. CONCLUSIONS: This large genome-wide association study meta-analysis for AP identified new variants linked with AP as well as several blood proteins that may be causally associated with AP. This study provides new information on the genetic architecture of this disease and identified pathways related to AP, which may be further explored as possible therapeutic targets for AP.


Assuntos
Pancreatite , Proteoma , Humanos , Proteoma/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Doença Aguda , Pancreatite/genética , Proteínas Sanguíneas , Polimorfismo de Nucleotídeo Único , Tripsina/genética , Tripsinogênio/genética , Inibidor da Tripsina Pancreática de Kazal/genética , Proteínas Nucleares/genética
2.
Pestic Biochem Physiol ; 203: 105999, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084773

RESUMO

Abamectin has been extensively used in paddy fields to control insect pests. However, little information is available regarding its effects on non-target insects. In this study, we performed acute (3rd instar larvae) and chronic toxicity (newly hatched larvae <24 h) to determine the toxicity effects of abamectin on Chironomus kiiensis. The median lethal concentration (LC50) values of 24 h and 10 d were 0.57 mg/L and 68.12 µg/L, respectively. The chronic exposure significantly prolonged the larvae growth duration and inhibited pupation and emergence. The transcriptome and biochemical parameters were measured using 3rd instar larvae exposed to acute LC10 and LC25 for 24 h. Transcriptome data indicated that five trypsin and four chymotrypsin genes were downregulated, and RT-qPCR verified a significant expression decrease in trypsin3 and chymotrypsin1 genes. Meanwhile, abamectin could significantly inhibit the activities of the serine proteases trypsin and chymotrypsin. RNA interference showed that silencing trypsin3 and chymotrypsin1 genes led to higher mortality of C. kiiensis to abamectin. In conclusion, these findings indicated that trypsin and chymotrypsin are involved in the abamectin toxicity against C. kiiensis, which provides new insights into the mechanism of abamectin-induced ecotoxicity to chironomids.


Assuntos
Chironomidae , Quimotripsina , Ivermectina , Larva , Tripsina , Animais , Quimotripsina/metabolismo , Quimotripsina/genética , Chironomidae/efeitos dos fármacos , Chironomidae/genética , Tripsina/metabolismo , Tripsina/genética , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Larva/efeitos dos fármacos , Inseticidas/toxicidade
3.
Pestic Biochem Physiol ; 201: 105883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685249

RESUMO

Trypsin is one of the most diverse and widely studied protease hydrolases. However, the diversity and characteristics of the Trypsin superfamily of genes have not been well understood, and their role in insecticide resistance is yet to be investigated. In this study, a total of 342 Trypsin genes were identified and classified into seven families based on homology, characteristic domains and phylogenetics in Anopheles sinensis, and the LY-Domain and CLECT-Domain families are specific to the species. Four Trypsin genes, (Astry2b, Astry43a, Astry90, Astry113c) were identified to be associated with pyrethroid resistance based on transcriptome analyses of three field resistant populations and qRT-PCR validation, and the knock-down of these genes significantly decrease the pyrethroid resistance of Anopheles sinensis based on RNAi. The activity of Astry43a can be reduced by five selected insecticides (indoxacarb, DDT, temephos, imidacloprid and deltamethrin); and however, the Astry43a could not directly metabolize these five insecticides, like the trypsin NYD-Tr did in earlier reports. This study provides the overall information frame of Trypsin genes, and proposes the role of Trypsin genes to insecticide resistance. Further researches are necessary to investigate the metabolism function of these trypsins to insecticides.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Piretrinas , Tripsina , Animais , Anopheles/genética , Anopheles/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Tripsina/genética , Tripsina/metabolismo , Piretrinas/farmacologia , Filogenia , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Malária/transmissão , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
4.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891766

RESUMO

Despite the high quality of soybean protein, raw soybeans and soybean meal cannot be directly included in animal feed mixtures due to the presence of Kunitz (KTi) and Bowman-Birk protease inhibitors (BBis), which reduces animal productivity. Heat treatment can substantially inactivate trypsin and chymotrypsin inhibitors (BBis), but such treatment is energy-intensive, adds expense, and negatively impacts the quality of seed proteins. As an alternative approach, we have employed CRISPR/Cas9 gene editing to create mutations in BBi genes to drastically lower the protease inhibitor content in soybean seed. Agrobacterium-mediated transformation was used to generate several stable transgenic soybean events. These independent CRISPR/Cas9 events were examined in comparison to wild-type plants using Sanger sequencing, proteomic analysis, trypsin/chymotrypsin inhibitor activity assays, and qRT-PCR. Collectively, our results demonstrate the creation of an allelic series of loss-of-function mutations affecting the major BBi gene in soybean. Mutations in two of the highly expressed seed-specific BBi genes lead to substantial reductions in both trypsin and chymotrypsin inhibitor activities.


Assuntos
Edição de Genes , Glycine max , Inibidor da Tripsina de Soja de Bowman-Birk , Quimotripsina/metabolismo , Quimotripsina/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Glycine max/genética , Glycine max/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Sementes/genética , Sementes/metabolismo , Tripsina/metabolismo , Tripsina/genética , Tripsina/química , Inibidor da Tripsina de Soja de Bowman-Birk/metabolismo , Inibidor da Tripsina de Soja de Bowman-Birk/genética , Inibidores da Tripsina/metabolismo
5.
Pancreatology ; 23(5): 481-490, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321941

RESUMO

Chymotrypsin C (CTRC) is a digestive serine protease produced by the pancreas that regulates intrapancreatic trypsin activity and provides a defensive mechanism against chronic pancreatitis (CP). CTRC exerts its protective effect by promoting degradation of trypsinogen, the precursor to trypsin. Loss-of-function missense and microdeletion variants of CTRC are found in around 4% of CP cases and increase disease risk by approximately 3-7-fold. In addition, a commonly occurring synonymous CTRC variant c.180C>T (p.Gly60=) was reported to increase CP risk in various cohorts but a global analysis of its impact has been lacking. Here, we analyzed the frequency and effect size of variant c.180C>T in Hungarian and pan-European cohorts, and performed meta-analysis of the new and published genetic association data. When allele frequency was considered, meta-analysis revealed an overall frequency of 14.2% in patients and 8.7% in controls (allelic odds ratio (OR) 2.18, 95% confidence interval (CI) 1.72-2.75). When genotypes were examined, c.180TT homozygosity was observed in 3.9% of CP patients and in 1.2% of controls, and c.180CT heterozygosity was present in 22.9% of CP patients and in 15.5% of controls. Relative to the c.180CC genotype, the genotypic OR values were 5.29 (95% CI 2.63-10.64), and 1.94 (95% CI 1.57-2.38), respectively, indicating stronger CP risk in homozygous carriers. Finally, we obtained preliminary evidence that the variant is associated with reduced CTRC mRNA levels in the pancreas. Taken together, the results indicate that CTRC variant c.180C>T is a clinically relevant risk factor, and should be considered when genetic etiology of CP is investigated.


Assuntos
Pancreatite Crônica , Humanos , Tripsina/genética , Pancreatite Crônica/genética , Quimotripsina/genética , Quimotripsina/metabolismo , Estudos de Casos e Controles , Predisposição Genética para Doença , Mutação
6.
Pancreatology ; 23(1): 48-56, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36517351

RESUMO

BACKGROUND: PRSS1 and PRSS2 constitute the only functional copies of a tandemly-arranged five-trypsinogen-gene cluster (i.e., PRSS1, PRSS3P1, PRSS3P2, TRY7 and PRSS2) on chromosome 7q35. Variants in PRSS1 and PRSS2, including missense and copy number variants (CNVs), have been reported to predispose to or protect against chronic pancreatitis (CP). We wondered whether a common trypsinogen pseudogene deletion CNV (that removes two of the three trypsinogen pseudogenes, PRSS3P2 and TRY7) might be associated with CP causation/predisposition. METHODS: We analyzed the common PRSS3P2 and TRY7 deletion CNV in a total of 1536 CP patients and 3506 controls from France, Germany, India and Japan by means of quantitative fluorescent multiplex polymerase chain reaction. RESULTS: We demonstrated that the deletion CNV variant was associated with a protective effect against CP in the French, German and Japanese cohorts whilst a trend toward the same association was noted in the Indian cohort. Meta-analysis under a dominant model yielded a pooled odds ratio (OR) of 0.68 (95% confidence interval (CI) 0.52-0.89; p = 0.005) whereas an allele-based meta-analysis yielded a pooled OR of 0.84 (95% CI 0.77-0.92; p = 0.0001). This protective effect is explicable by reference to the recent finding that the still functional PRSS3P2/TRY7 pseudogene enhancers upregulate pancreatic PRSS2 expression. CONCLUSIONS: The common PRSS3P2 and TRY7 deletion CNV was associated with a reduced risk for CP. This finding provides additional support for the emerging view that dysregulated PRSS2 expression represents a discrete mechanism underlying CP predisposition or protection.


Assuntos
Pancreatite Crônica , Tripsinogênio , Humanos , Alelos , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Genótipo , Mutação , Pancreatite Crônica/genética , Tripsina/genética , Tripsinogênio/genética
7.
Pancreatology ; 23(2): 131-142, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36797199

RESUMO

Mutation p.R122H in human cationic trypsinogen (PRSS1) is the most frequently identified cause of hereditary pancreatitis. The mutation blocks protective degradation of trypsinogen by chymotrypsin C (CTRC), which involves an obligatory trypsin-mediated cleavage at Arg122. Previously, we found that C57BL/6N mice are naturally deficient in CTRC, and trypsinogen degradation is catalyzed by chymotrypsin B1 (CTRB1). Here, we used biochemical experiments to demonstrate that the cognate p.R123H mutation in mouse cationic trypsinogen (isoform T7) only partially prevented CTRB1-mediated degradation. We generated a novel C57BL/6N mouse strain harboring the p.R123H mutation in the native T7 trypsinogen locus. T7R123H mice developed no spontaneous pancreatitis, and severity parameters of cerulein-induced pancreatitis trended only slightly higher than those of C57BL/6N mice. However, when treated with cerulein for 2 days, more edema and higher trypsin activity was seen in the pancreas of T7R123H mice compared to C57BL/6N controls. Furthermore, about 40% of T7R123H mice progressed to atrophic pancreatitis in 3 days, whereas C57BL/6N animals showed full histological recovery. Taken together, the observations indicate that mutation p.R123H inefficiently blocks chymotrypsin-mediated degradation of mouse cationic trypsinogen, and modestly increases cerulein-induced intrapancreatic trypsin activity and pancreatitis severity. The findings support the notion that the pathogenic effect of the PRSS1 p.R122H mutation in hereditary pancreatitis is dependent on its ability to defuse chymotrypsin-dependent defenses.


Assuntos
Quimotripsina , Pancreatite , Camundongos , Humanos , Animais , Quimotripsina/genética , Tripsina/genética , Tripsinogênio/genética , Ceruletídeo , Camundongos Endogâmicos C57BL , Pancreatite/patologia , Mutação
8.
Pancreatology ; 23(4): 358-366, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37149461

RESUMO

Serine protease inhibitor Kazal type 1 (SPINK1) is a trypsin-selective inhibitor protein secreted by the exocrine pancreas. Loss-of-function SPINK1 mutations predispose to chronic pancreatitis through either reduced expression, secretion, or impaired trypsin inhibition. In this study, we aimed to characterize the inhibitory activity of mouse SPINK1 against cationic (T7) and anionic (T8, T9, T20) mouse trypsin isoforms. Kinetic measurements with a peptide substrate, and digestion experiments with ß-casein indicated that the catalytic activity of all mouse trypsins is comparable. Human SPINK1 and its mouse ortholog inhibited mouse trypsins with comparable efficiency (KD range 0.7-2.2 pM), with the sole exception of T7 trypsin, which was inhibited less effectively by the human inhibitor (KD 21.9 pM). Characterization of four chronic pancreatitis-associated human SPINK1 mutations in the context of the mouse inhibitor revealed that the reactive-loop mutations R42N (human K41N) and I43M (human I42M) impaired SPINK1 binding to trypsin (KD 60 nM and 47.5 pM, respectively), whereas mutations D35S (human N34S) and A56S (human P55S) had no impact on trypsin inhibition. Our results confirmed that high-affinity trypsin inhibition by SPINK1 is conserved in the mouse, and the functional consequences of human pancreatitis-associated SPINK1 mutations can be replicated in the mouse inhibitor.


Assuntos
Pancreatite Crônica , Inibidor da Tripsina Pancreática de Kazal , Humanos , Animais , Camundongos , Inibidor da Tripsina Pancreática de Kazal/genética , Tripsina/genética , Doença Crônica , Mutação , Pancreatite Crônica/genética , Isoformas de Proteínas/genética , Predisposição Genética para Doença
9.
Pancreatology ; 23(5): 491-506, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37581535

RESUMO

BACKGROUND: PRSS1 was the first reported chronic pancreatitis (CP) gene. The existence of both gain-of-function (GoF) and gain-of-proteotoxicity (GoP) pathological PRSS1 variants, together with the fact that PRSS1 variants have been identified in CP subtypes spanning the range from monogenic to multifactorial, has made the classification of PRSS1 variants very challenging. METHODS: All currently reported PRSS1 variants (derived primarily from two databases) were manually reviewed with respect to their clinical genetics, functional analysis and population allele frequency. They were classified by variant type and pathological mechanism within the framework of our recently proposed ACMG/AMP guidelines-based seven-category system. RESULTS: The total number of distinct germline PRSS1 variants included for analysis was 100, comprising 3 copy number variants (CNVs), 12 5' and 3' variants, 19 intronic variants, 5 nonsense variants, 1 frameshift deletion variant, 6 synonymous variants, 1 in-frame duplication, 3 gene conversions and 50 missense variants. Based upon a combination of clinical genetic and functional analysis, population data and in silico analysis, we classified 26 variants (all 3 CNVs, the in-frame duplication, all 3 gene conversions and 19 missense) as "pathogenic", 3 variants (missense) as "likely pathogenic", 5 variants (four missense and one promoter) as "predisposing", 13 variants (all missense) as "unknown significance", 2 variants (missense) as "likely benign", and all remaining 51 variants as "benign". CONCLUSIONS: We describe an expert classification of the 100 PRSS1 variants reported to date. The results have immediate implications for reclassifying many ClinVar-registered PRSS1 variants as well as providing optimal guidelines/standards for reporting PRSS1 variants.


Assuntos
População do Leste Asiático , Pancreatite Crônica , Humanos , Alelos , Frequência do Gene , Predisposição Genética para Doença , Mutação/genética , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Tripsina/genética , Tripsinogênio/genética , China , França
10.
Org Biomol Chem ; 21(23): 4893-4908, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37259568

RESUMO

Radiosumins are a structurally diverse family of low molecular weight natural products that are produced by cyanobacteria and exhibit potent serine protease inhibition. Members of this family are dipeptides characterized by the presence of two similar non-proteinogenic amino acids. Here we used a comparative bioinformatic analysis to identify radiosumin biosynthetic gene clusters from the genomes of 13 filamentous cyanobacteria. We used direct pathway cloning to capture and express the entire 16.8 kb radiosumin biosynthetic gene cluster from Dolichospermum planctonicum UHCC 0167 in Escherichia coli. Bioinformatic analysis demonstrates that radiosumins represent a new group of chorismate-derived non-aromatic secondary metabolites. High-resolution liquid chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy and chemical degradation analysis revealed that cyanobacteria produce a cocktail of novel radiosumins. We report the chemical structure of radiosumin D, an N-methyl dipeptide, containing a special Aayp (2-amino-3-(4-amino-2-cyclohexen-1-ylidene) propionic acid) with R configuration that differs from radiosumin A-C, an N-Me derivative of Aayp (Amyp) and two acetyl groups. Radiosumin C inhibits all three human trypsin isoforms at micromolar concentrations with preference for trypsin-1 and -3 (IC50 values from 1.7 µM to >7.2 µM). These results provide a biosynthetic logic to explore the genetic and chemical diversity of the radiosumin family and suggest that these natural products may be a source of drug leads for selective human serine proteases inhibitors.


Assuntos
Produtos Biológicos , Biologia Computacional , Humanos , Tripsina/genética , Tripsina/metabolismo , Dipeptídeos/metabolismo , Clonagem Molecular , Família Multigênica , Produtos Biológicos/metabolismo , Vias Biossintéticas/genética
11.
Virus Genes ; 59(4): 572-581, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37103648

RESUMO

Newcastle disease (ND) is the most important infectious disease in poultry, which is caused by avian orthoavulavirus type 1 (AOAV-1), previously known as Newcastle disease virus (NDV). In this study, an NDV strain SD19 (GenBank accession number OP797800) was isolated, and phylogenetic analysis suggested the virus belongs to the class II genotype VII. After generating wild-type rescued SD19 (rSD19), the attenuating strain (raSD19) was generated by mutating the F protein cleavage site. To explore the potential role of the transmembrane protease, serine S1 member 2 (TMPRSS2), the TMPRSS2 gene was inserted into the region between the P and M genes of raSD19 to generate raSD19-TMPRSS2. Besides, the coding sequence of the enhanced green fluorescent protein (EGFP) gene was inserted in the same region as a control (rSD19-EGFP and raSD19-EGFP). The Western blot, indirect immunofluorescence assay (IFA), and real-time quantitative PCR were employed to determine the replication activity of these constructs. The results reveal that all the rescued viruses can replicate in chicken embryo fibroblast (DF-1) cells; however, the proliferation of raSD19 and raSD19-EGFP needs additional trypsin. We next evaluated the virulence of these constructs, and our results reveal that the SD19, rSD19, and rSD19-EGFP are velogenic; the raSD19 and raSD19-EGFP are lentogenic; and the raSD19-TMPRSS2 are mesogenic. Moreover, due to the enzymatic hydrolysis of serine protease, the raSD19-TMPRSS2 can support itself to proliferate in the DF-1 cells without adding exogenous trypsin. These results may provide a new method for the NDV cell culture and contribute to ND's vaccine development.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Embrião de Galinha , Vírus da Doença de Newcastle , Tripsina/genética , Filogenia , Genética Reversa , Galinhas , Genoma Viral/genética , Genótipo , Tropismo , Vacinas Virais/genética
12.
J Pediatr Gastroenterol Nutr ; 76(4): 483-488, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599151

RESUMO

OBJECTIVES: Recently, a genetic risk for chronic pancreatitis (CP) was found to be conferred by pathogenic variants in the transient receptor potential cation channel, subfamily V, member 6 ( TRPV6 ). Interestingly, 20%-57% of patients with functionally defective TRPV6 variants have other susceptibility genes such as cationic trypsinogen, serine protease inhibitor Kazal type 1, chymotrypsin C, cystic fibrosis transmembrane conductance regulator, and carboxypeptidase A1. In this study, we focused on pediatric patients with acute recurrent pancreatitis or CP with at least 1 variant in these 5 genes and investigated the presence of coexisting TRPV6 mutations. METHODS: Ninety Japanese pediatric patients (median age at first onset, 8.0 years) who had at least 1 variant of these 5 genes were enrolled in this study. DNA samples were extracted for analysis from peripheral blood leukocytes. Coding regions of TRPV6 were screened by Sanger sequencing. RESULTS: Regardless of functional defects or non-defects in TRPV6 variants, 14 of the 90 patients (15.6%) were trans-heterozygous for TRPV6 variants [p.A18S (n = 3), p.C197R (n = 3), p.I223T (n = 3), p.D324N (n = 4), p.M418V (n = 3), p.V540F (n = 1), p.A606T (n = 1), and p.M721T (n = 3)] and the 5 susceptibility genes noted above. Of these variants, p.D324N, p.V540F, and p.A606T are associated with pancreatitis. Three patients had the ancestral haplotype [p.C197R + p.M418V + p.M721T]. CONCLUSIONS: Overall, 4 of 90 patients (4.4%) had the coexistence of clearly pathogenic TRPV6 variants with pancreatitis-associated variants. The cumulative accumulation of these genetic factors may contribute to the development of pancreatitis at a young age.


Assuntos
Pancreatite Crônica , Humanos , Criança , Pancreatite Crônica/complicações , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Mutação , Tripsina/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Transporte/genética , Inibidor da Tripsina Pancreática de Kazal/genética , Predisposição Genética para Doença , Canais de Cálcio/genética , Canais de Cátion TRPV/genética
13.
Vopr Pitan ; 92(1): 85-91, 2023.
Artigo em Russo | MEDLINE | ID: mdl-36883543

RESUMO

The study of genetic and environmental factors on the risk of acute alcoholic-alimentary pancreatitis (AАAР) is especially relevant to interpret individual links of pathogenesis, to reduce the incidence by eliminating the impact of harmful factors and improve the quality of life of the population through the introduction of optimal nutrition, and a healthy lifestyle, which is especially important for carriers of risk genotypes. The aim of the research was to study the influence of environmental factors and polymorphic loci rs6580502 of the SPINK1 gene, rs10273639 of the PRSS1 gene, rs213950 of the CFTR gene on the risk of АAР. Material and methods. Blood DNA samples obtained from 547 patients with AАAР and 573 healthy individuals were used as the material for the study. The groups were comparable by sex and age. All participants were assessed qualitatively and quantitatively for risk factors, smoking and alcohol consumption, the frequency, quantity and regularity of intake of various types of foods, as well as the size and number of portions eaten. Genomic DNA was isolated by the standard phenol-chloroform extraction method, multiplex genotyping of SNPs was performed on a MALDI-TOF MassARRAY-4 genetic analyzer. Results. It was found that the T/T genotype (p=0.0012) of the rs6580502 SPINK1 was associated with an increased risk of AAAP, and the T allele (p=0.0001) and C/T and T/T genotypes (p=0.0001) of the rs10273639 PRSS1, A allele (p=0.01) and A/G and A/A genotypes (p=0.0006) of the rs213950 CFTR were associated with an decreased risk of the disease. The revealed effects of polymorphic loci of candidate genes were enhanced by the effect of alcohol consumption. The risk of AAAP was reduced by fat intake of less than 89 g per day in carriers of the A/G-A/A CFTR genotypes (rs213950), consumption of fresh vegetables and fruits of more than 27 g per day in carriers of the T/C-T/T PRSS1 genotypes (rs10273639), protein intake of more 84 g per day in carriers of T/C-T/T PRSS1 rs10273639 and A/G-A/A CFTR rs213950. The most significant models of gene-environment interactions included risk factors: deficiency in the diet of protein, fresh vegetables and fruits, smoking, and polymorphic variants of the PRSS1 (rs10273639) and SPINK (rs6580502) genes. Conclusion. In order to prevent the development of AAAP, carriers of risk genotypes of candidate genes need not only to exclude or significantly reduce alcohol consumption (in terms of volume, frequency and duration); but also carriers of the A/G-A/A CFTR genotypes (rs213950) need to balance the diet by reducing fat intake to less than 89 g per day and increasing protein intake to more than 84 g per day; carriers of the T/C-T/T PRSS1 (rs10273639) genotypes should increase their intake of fresh vegetables and fruits over 27 g/day and protein over 84 g/day.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Interação Gene-Ambiente , Pancreatite Alcoólica , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas Alimentares/uso terapêutico , Frutas , Pancreatite/etiologia , Pancreatite/genética , Pancreatite/prevenção & controle , Pancreatite Alcoólica/etiologia , Pancreatite Alcoólica/genética , Pancreatite Alcoólica/prevenção & controle , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Qualidade de Vida , Tripsina/genética , Inibidor da Tripsina Pancreática de Kazal/genética , Verduras , Estilo de Vida Saudável
14.
Hum Genet ; 141(8): 1327-1338, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35089416

RESUMO

Trypsinogen (PRSS1, PRSS2) copy number gains and regulatory variants have both been proposed to elevate pancreatitis risk through a gene dosage effect (i.e., by increasing the expression of wild-type protein). However, to date, their impact on pancreatitis risk has not been thoroughly evaluated whilst the underlying pathogenic mechanisms remain to be explicitly investigated in mouse models. Genetic studies of the rare trypsinogen duplication and triplication copy number variants (CNVs), and the common rs10273639C variant, were collated from PubMed and/or ClinVar. Mouse studies that analyzed the influence of a transgenically expressed wild-type human PRSS1 or PRSS2 gene on the development of pancreatitis were identified from PubMed. The genetic effects of the different risk genotypes, in terms of odds ratios, were calculated wherever appropriate. The genetic effects of the rare trypsinogen duplication and triplication CNVs were also evaluated by reference to their associated disease subtypes. We demonstrate a positive correlation between increased trypsinogen gene dosage and pancreatitis risk in the context of the rare duplication and triplication CNVs, and between the level of trypsinogen expression and disease risk in the context of the heterozygous and homozygous rs10273639C-tagged genotypes. We retrospectively identify three mouse transgenic studies that are informative in relation to the pathogenic mechanism underlying the trypsinogen gene dosage effect in pancreatitis. Trypsinogen gene dosage correlates with pancreatitis risk across genetic and transgenic studies, highlighting the fundamental role of dysregulated expression of wild-type trypsinogen in the etiology of pancreatitis. Specifically downregulating trypsinogen expression in the pancreas may serve as a potential therapeutic and/or prevention strategy for pancreatitis.


Assuntos
Pancreatite , Tripsina , Tripsinogênio , Animais , Animais Geneticamente Modificados , Dosagem de Genes , Humanos , Camundongos , Mutação , Pancreatite/genética , Estudos Retrospectivos , Tripsina/genética , Tripsina/metabolismo , Tripsinogênio/genética , Tripsinogênio/metabolismo
15.
Pancreatology ; 22(8): 1112-1119, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36369231

RESUMO

BACKGROUND: /Objectives: Sequence variants in several genes have been identified as being associated with an increased inherited risk to develop chronic pancreatitis (CP). In a genetic survey of a CP patient we identified in the PRSS1gene a new c.380C > G sequence variation, giving rise to a non-synonymous p.S127C mutation. Functional studies were performed to analyze the associated pathophysiology of the variant. METHODS: Following generation of an expression vector for the new PRSS1 variant we compared its expression, secretion and catalytic activity with already known PRSS1 risk variants in HEK 293T cells. The intracellular protein accumulation and induction of endoplasmic reticulum (ER)-stress was analyzed. RESULTS: Prediction tool analysis indicated a probably deleterious effect of the p.S127C variant on protein function which was confirmed by detection of a secretion defect in HEK293T cells leading to intracellular protein accumulation. While protein misfolding was associated with reduced trypsin activity, the increased expression of BIP and presence of spliced XBP1 indicated that the p.S127C variant induces ER stress and activates the UPR signaling pathway. CONCLUSIONS: The disease mechanism of the PRSS1 p.S127C variant involves defective protein secretion and the induction of ER-stress due to accumulation of presumably misfolded trypsinogen within the ER. The new variant should be considered disease-causing with an incomplete penetrance. Our results confirm that in addition to dysregulated trypsin-activity or reduced fluid secretion, ER-stress induction is an important trigger for acinar cell damage and the development of recurrent or chronic pancreatic inflammation.


Assuntos
Pancreatite Crônica , Humanos , Tripsina/genética , Tripsina/metabolismo , Células HEK293 , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Tripsinogênio/genética , Mutação
16.
Pancreatology ; 22(7): 880-886, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36038449

RESUMO

BACKGROUND: Premature intracellular trypsinogen activation has long been considered a key initiator of acute pancreatitis (AP). Cathepsin B (CTSB) activates trypsinogen, while cathepsin L (CTSL) inactivates trypsin(ogen), and both proteins play a role in the onset of AP. METHODS: AP was induced by 7 hourly intraperitoneal injections of cerulein (50 µg/kg) in wild-type and pancreas-specific conditional Ctsb knockout (CtsbΔpan), Ctsl knockout (CtslΔpan), and Ctsb;Ctsl double-knockout (CtsbΔpan;CtslΔpan) mice. Pancreatic samples were collected and analyzed by histology, immunohistochemistry, real-time PCR, and immunoblots. Trypsin activity was measured in pancreatic homogenates. Peripheral blood was collected, and serum amylase activity was measured. RESULTS: Double deletion of Ctsb and Cstl did not affect pancreatic development or mouse growth. After 7 times cerulein injections, double Ctsb and Ctsl deficiency in mouse pancreases increased trypsin activity to the same extent as that in Ctsl-deficient mice, while Ctsb deficiency decreased trypsin activity but did not affect the severity of AP. CtsbΔpan;CtslΔpan mice had comparable serum amylase activity and histopathological changes and displayed similar levels of proinflammatory cytokines, apoptosis, and autophagy activity compared with wild-type, CtsbΔpan, and CtslΔpan mice. CONCLUSION: Double deletion of Ctsb and Ctsl in the mouse pancreas altered intrapancreatic trypsin activity but did not affect disease severity and inflammatory response after cerulein-induced AP.


Assuntos
Catepsina B , Pancreatite , Animais , Camundongos , Doença Aguda , Amilases , Catepsina B/genética , Catepsina B/metabolismo , Ceruletídeo/toxicidade , Camundongos Knockout , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/metabolismo , Tripsina/genética , Tripsinogênio/genética , Tripsinogênio/metabolismo
17.
Fish Shellfish Immunol ; 126: 327-335, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35661766

RESUMO

Trypsin-like serine proteases (TLSs) play various roles in dietary protein digestion, hemolymph coagulation, antimicrobial peptide synthesis, and, in particular, the rapid immune pathways activated in response to pathogen detection. The cultured pearl industry, of which Pinctada fucata martensii is one of the most important species, is plagued by disease, thus leading to large economic losses. Herein, the molecular mechanisms underlying the innate immune response of P.f. martensii were explored. First, immune effector molecules from the P.f. martensii genome were screened and a TLS-like gene encoding a protein with a trypsin domain, herein designated as PmTLS, was identified. A multi-sequence alignment indicated a low sequence homology between PmTLS and other mollusk TLS-like proteins. Furthermore, a neighbor-joining phylogenetic analysis indicated that PmTLS has the closest genetic relationship to a Crassostrea gigas TLS. Additionally, real-time quantitative PCR (qPCR) analysis showed that PmTLS mRNA is constitutively expressed in all of the 6 examined P.f. martensii tissues, with significantly higher expression noted in hemocytes relative to the other tissues examined (p < 0.05). P.f. martensii samples were then challenged with various pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide, peptidoglycan, and polyinosinic acid. In the challenge groups, PmTLS was significantly upregulated in hemocytes at 48 h post-challenge when compared to the unchallenged controls. Furthermore, treatment with recombinant PmTLS (rPmTLS) also significantly inhibited the growth of most of the examined gram-negative bacteria tested in vitro (p < 0.05), but it had little effect on the growth of the examined gram-positive bacteria. When examining morphological changes via transmission electron microscopy, rPmTLS treated bacteria exhibited morphological changes such as plasma wall separation. Thus, rPmTLS appears to play a bactericidal role by destroying bacterial cell membranes or cell walls, which subsequently leads to a release of the cellular contents and cell death. The findings presented herein have enabled further characterization of the immune defense mechanisms in P.f. martensii and may lead to improved disease control methods for the pearl cultivation industry.


Assuntos
Pinctada , Sequência de Aminoácidos , Animais , Clonagem Molecular , Filogenia , Pinctada/genética , Serina Endopeptidases , Tripsina/genética
18.
Med J Aust ; 216(11): 578-582, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35578795

RESUMO

OBJECTIVE: To characterise the clinical phenotypes and genetic variants of hereditary pancreatitis in people diagnosed in South Australia. DESIGN, SETTING, PARTICIPANTS: Cross-sectional study of people who received molecular diagnoses of hereditary pancreatitis from one of four major diagnostic services in South Australia, 1 January 2006 - 30 June 2021. MAIN OUTCOME MEASURES: Genotypic and clinical features of people with hereditary pancreatitis, including age at onset, attack frequency, pain indices, use of opioid medications, and physical and mental health impact of hereditary pancreatitis. RESULTS: We identified 44 people from ten families who received molecular diagnoses of hereditary pancreatitis during 2006-21 (including 25 Indigenous people [57%] and 27 women [61%]): 36 with PRSS1, five with SPINK1, and three with PRSS1 and SPINK1 mutations (determined by whole exome sequencing). Symptom onset before the age of ten years was reported by 37 people (84%). Pancreatitis-related pain during the preceding four weeks was described as moderate or high by 35 people (79%); 38 people regularly used opioids (86%). Fifteen patients had diabetes mellitus (34%), and eight had undergone pancreatic surgery (18%). The estimated prevalence of hereditary pancreatitis was 1.1 (95% CI, 0.72-1.4) cases per 100 000 population for non-Indigenous and 71 (95% CI, 66-77) cases per 100 000 population for Indigenous South Australians. Among people with adult-onset chronic pancreatitis admitted to South Australian public hospitals during 2001-2019, the proportions of Indigenous people (12%) and women (38%) were smaller than we report for hereditary pancreatitis. CONCLUSION: The estimated prevalence of hereditary pancreatitis in South Australia is higher than in Europe. PRSS1 gene mutations are important causes, particularly among Indigenous young people.


Assuntos
Predisposição Genética para Doença , Pancreatite Crônica , Inibidor da Tripsina Pancreática de Kazal , Tripsina , Austrália , Estudos Transversais , Feminino , Humanos , Masculino , Mutação , Dor , Pancreatite Crônica/genética , Austrália do Sul/epidemiologia , Tripsina/genética , Inibidor da Tripsina Pancreática de Kazal/genética
19.
Arch Insect Biochem Physiol ; 111(3): e21963, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36039637

RESUMO

In insects, serine proteases and serine protease homologs (SPs/SPHs) are involved in a variety of physiological processes including digestion, development, and immunity. Here, we identified 112 SP and 88 SPH genes in the genome of the yellow mealworm, Tenebrio molitor. Based on the features of domain structure, they were divided into "S" group containing single Tryp-SPc or Tryp-SPHc domain, "C" group containing 1-4 CLIP domain (CLIPA-D) and "M" group containing the CBD, CUB, EGF, Fz, Gd, LDLa, PAN, SEA, SR, Sushi, and TSP domains, and have 115, 48, and 37 gene members, respectively. According to the active sites in the catalytic triad, the putative trypsin, chymotrypsin, or elastase-like enzyme specificity of the identified SPs/SPHs were predicted. Phylogenetic and genomic location analyses revealed that gene duplication exists in the large amount of SPs/SPHs. Gene expression profiling using RNA-seq data along with real time reverse transcription-polymerase chain reaction analysis showed that most SP/SPH genes display life stage specific expression patterns, indicating their important roles in development. Many SP/SPH genes are specifically or highly expressed in the gut, salivary gland, fat body, hemocyte, ovary, and testis, suggesting that they participate in digestion, immunity, and reproduction. The findings lay the foundation for further functional characterization of SPs/SPHs in T. molitor.


Assuntos
Serina Proteases , Tenebrio , Animais , Quimotripsina/genética , Fator de Crescimento Epidérmico/genética , Feminino , Masculino , Elastase Pancreática/genética , Filogenia , Serina Proteases/química , Tenebrio/genética , Tenebrio/metabolismo , Tripsina/genética
20.
PLoS Genet ; 15(2): e1008007, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30807572

RESUMO

Cystic Fibrosis (CF) exhibits morbidity in several organs, including progressive lung disease in all patients and intestinal obstruction at birth (meconium ileus) in ~15%. Individuals with the same causal CFTR mutations show variable disease presentation which is partly attributed to modifier genes. With >6,500 participants from the International CF Gene Modifier Consortium, genome-wide association investigation identified a new modifier locus for meconium ileus encompassing ATP12A on chromosome 13 (min p = 3.83x10(-10)); replicated loci encompassing SLC6A14 on chromosome X and SLC26A9 on chromosome 1, (min p<2.2x10(-16), 2.81x10(-11), respectively); and replicated a suggestive locus on chromosome 7 near PRSS1 (min p = 2.55x10(-7)). PRSS1 is exclusively expressed in the exocrine pancreas and was previously associated with non-CF pancreatitis with functional characterization demonstrating impact on PRSS1 gene expression. We thus asked whether the other meconium ileus modifier loci impact gene expression and in which organ. We developed and applied a colocalization framework called the Simple Sum (SS) that integrates regulatory and genetic association information, and also contrasts colocalization evidence across tissues or genes. The associated modifier loci colocalized with expression quantitative trait loci (eQTLs) for ATP12A (p = 3.35x10(-8)), SLC6A14 (p = 1.12x10(-10)) and SLC26A9 (p = 4.48x10(-5)) in the pancreas, even though meconium ileus manifests in the intestine. The meconium ileus susceptibility locus on chromosome X appeared shifted in location from a previously identified locus for CF lung disease severity. Using the SS we integrated the lung disease association locus with eQTLs from nasal epithelia of 63 CF participants and demonstrated evidence of colocalization with airway-specific regulation of SLC6A14 (p = 2.3x10(-4)). Cystic Fibrosis is realizing the promise of personalized medicine, and identification of the contributing organ and understanding of tissue specificity for a gene modifier is essential for the next phase of personalizing therapeutic strategies.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Antiporters/genética , Fibrose Cística/genética , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , ATPase Trocadora de Hidrogênio-Potássio/genética , Transportadores de Sulfato/genética , Tripsina/genética , Sistemas de Transporte de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Antiporters/metabolismo , Fibrose Cística/metabolismo , Feminino , Regulação da Expressão Gênica , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Humanos , Pulmão/metabolismo , Masculino , Especificidade de Órgãos , Pâncreas Exócrino/metabolismo , Transportadores de Sulfato/metabolismo , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA