Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 206(1): e0035623, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38169297

RESUMO

The termination factor Rho, an ATP-dependent RNA translocase, preempts pervasive transcription processes, thereby rendering genome integrity in bacteria. Here, we show that the loss of Rho function raised the intracellular pH to >8.0 in Escherichia coli. The loss of Rho function upregulates tryptophanase-A (TnaA), an enzyme that catabolizes tryptophan to produce indole, pyruvate, and ammonia. We demonstrate that the enhanced TnaA function had produced the conjugate base ammonia, raising the cellular pH in the Rho-dependent termination defective strains. On the other hand, the constitutively overexpressed Rho lowered the cellular pH to about 6.2, independent of cellular ammonia levels. Since Rho overexpression may increase termination activities, the decrease in cellular pH could result from an excess H+ ion production during ATP hydrolysis by overproduced Rho. Furthermore, we performed in vivo termination assays to show that the efficiency of Rho-dependent termination was increased at both acidic and basic pH ranges. Given that the Rho level remained unchanged, the alkaline pH increases the termination efficiency by stimulating Rho's catalytic activity. We conducted the Rho-mediated RNA release assay from a stalled elongation complex to show an efficient RNA release at alkaline pH, compared to the neutral or acidic pH, that supports our in vivo observation. Whereas acidic pH appeared to increase the termination function by elevating the cellular level of Rho. This study is the first to link Rho function to the cellular pH homeostasis in bacteria. IMPORTANCE The current study shows that the loss or gain of Rho-dependent termination alkalizes or acidifies the cytoplasm, respectively. In the case of loss of Rho function, the tryptophanase-A enzyme is upregulated, and degrades tryptophan, producing ammonia to alkalize cytoplasm. We hypothesize that Rho overproduction by deleting its autoregulatory DNA portion increases termination function, causing excessive ATP hydrolysis to produce H+ ions and cytoplasmic acidification. Therefore, this study is the first to unravel a relationship between Rho function and intrinsic cellular pH homeostasis. Furthermore, the Rho level increases in the absence of autoregulation, causing cytoplasmic acidification. As intracellular pH plays a critical role in enzyme function, such a connection between Rho function and alkalization will have far-reaching implications for bacterial physiology.


Assuntos
Transcrição Gênica , Triptofano , Triptofano/genética , Triptofano/metabolismo , Triptofanase/genética , Triptofanase/metabolismo , Amônia/metabolismo , Fator Rho/genética , Fator Rho/metabolismo , Escherichia coli/metabolismo , RNA/metabolismo , Homeostase , Trifosfato de Adenosina/metabolismo , Concentração de Íons de Hidrogênio
2.
J Mol Evol ; 91(6): 912-921, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38007709

RESUMO

Tryptophan indole-lyase (TIL), a pyridoxal-5-phosphate-dependent enzyme, catalyzes the hydrolysis of L-tryptophan (L-Trp) to indole and ammonium pyruvate. TIL is widely distributed among bacteria and bacterial TILs consist of a D2-symmetric homotetramer. On the other hand, TIL genes are also present in several metazoans. Cephalopods have two TILs, TILα and TILß, which are believed to be derived from a gene duplication that occurred before octopus and squid diverged. However, both TILα and TILß individually contain disruptive amino acid substitutions for TIL activity, and neither was active when expressed alone. When TILα and TILß were coexpressed, however, they formed a heterotetramer that exhibited low TIL activity. The loss of TIL activity of the heterotetramer following site-directed mutagenesis strongly suggests that the active heterotetramer contains the TILα/TILß heterodimer. Metazoan TILs generally have lower kcat values for L-Trp than those of bacterial TILs, but such low TIL activity may be rather suitable for metazoan physiology, where L-Trp is in high demand. Therefore, reduced activity may have been a less likely target for purifying selection in the evolution of cephalopod TILs. Meanwhile, the unusual evolution of cephalopod TILs may indicate the difficulty of post-gene duplication evolution of enzymes with catalytic sites contributed by multiple subunits, such as TIL.


Assuntos
Cefalópodes , Triptofanase , Animais , Triptofanase/genética , Triptofanase/metabolismo , Cefalópodes/genética , Cefalópodes/metabolismo , Triptofano/genética , Triptofano/metabolismo , Substituição de Aminoácidos , Bactérias/genética , Cinética
3.
Nat Chem Biol ; 17(1): 104-112, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139950

RESUMO

Tyrian purple, mainly composed of 6,6'-dibromoindigo (6BrIG), is an ancient dye extracted from sea snails and was recently demonstrated as a biocompatible semiconductor material. However, its synthesis remains limited due to uncharacterized biosynthetic pathways and the difficulty of regiospecific bromination. Here, we introduce an effective 6BrIG production strategy in Escherichia coli using tryptophan 6-halogenase SttH, tryptophanase TnaA and flavin-containing monooxygenase MaFMO. Since tryptophan halogenases are expressed in highly insoluble forms in E. coli, a flavin reductase (Fre) that regenerates FADH2 for the halogenase reaction was used as an N-terminal soluble tag of SttH. A consecutive two-cell reaction system was designed to overproduce regiospecifically brominated precursors of 6BrIG by spatiotemporal separation of bromination and bromotryptophan degradation. These approaches led to 315.0 mg l-1 6BrIG production from tryptophan and successful synthesis of regiospecifically dihalogenated indigos. Furthermore, it was demonstrated that 6BrIG overproducing cells can be directly used as a bacterial dye.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , FMN Redutase/genética , Regulação Bacteriana da Expressão Gênica , Indóis/metabolismo , Oxirredutases/genética , Oxigenases/genética , Triptofano/metabolismo , Triptofanase/genética , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Clonagem Molecular , Corantes/isolamento & purificação , Corantes/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , FMN Redutase/metabolismo , Flavina-Adenina Dinucleotídeo/análogos & derivados , Flavina-Adenina Dinucleotídeo/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Halogenação , Índigo Carmim/isolamento & purificação , Índigo Carmim/metabolismo , Indóis/isolamento & purificação , Engenharia Metabólica/métodos , Oxirredutases/metabolismo , Oxigenases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Semicondutores , Estereoisomerismo , Triptofanase/metabolismo
4.
Appl Microbiol Biotechnol ; 107(5-6): 1621-1634, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36786915

RESUMO

Indole has an increasing interest in the flavor and fragrance industry. It is used in dairy products, tea drinks, and fine fragrances due to its distinct floral odor typical of jasmine blossoms. The current production of indole based on isolation from coal tar is non-sustainable and its isolation from plants is often unprofitable due to low yields. To offer an alternative to the conventional production, biosynthesis of indole has been studied recently. A glucose-based indole production was achieved by employing the Corynebacterium glutamicum tryptophan synthase α-subunit (TrpA) or indole-3-glycerol phosphate lyase (IGL) from wheat Triticum aestivum in a genetically-engineered C. glutamicum strain. In addition, a highly efficient bioconversion process using C. glutamicum heterologously expressing tryptophanase gene (tnaA) from Providencia rettgeri as a biocatalyst was developed. In this work, de novo indole production from glucose was enabled by expressing the P. rettgeri tnaA in a tryptophan-producing C. glutamicum strain. By metabolic engineering of a C. glutamicum shikimate accumulating base strain, tryptophan production of 2.14 ± 0.02 g L-1 was achieved. Introduction of the tryptophanase form P. rettgeri enabled indole production, but to low titers, which could be improved by sequestering indole into the water-immiscible solvent tributyrin during fermentation and a titer of 1.38 ± 0.04 g L-1 was achieved. The process was accelerated by decoupling growth from production increasing the volumetric productivity about 4-fold to 0.08 g L-1 h-1. KEY POINTS: • Efficient de novo indole production via tryptophanases from glucose • Increased indole titers by product sequestration and improved precursor supply • Decoupling growth from production accelerated indole production.


Assuntos
Corynebacterium glutamicum , Triptofanase , Triptofanase/metabolismo , Corynebacterium glutamicum/genética , Triptofano/metabolismo , Glucose/metabolismo , Engenharia Metabólica , Fermentação , Indóis/metabolismo
5.
J Am Chem Soc ; 144(7): 2861-2866, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142504

RESUMO

Aetokthonotoxin (AETX) is a cyanobacterial neurotoxin that causes vacuolar myelinopathy, a neurological disease that is particularly deadly to bald eagles in the United States. The recently characterized AETX is structurally unique among cyanotoxins and is composed of a pentabrominated biindole nitrile. Herein we report the discovery of an efficient, five-enzyme biosynthetic pathway that the freshwater cyanobacterium Aetokthonos hydrillicola uses to convert two molecules of tryptophan to AETX. We demonstrate that the biosynthetic pathway follows a convergent route in which two functionalized indole monomers are assembled and then reunited by biaryl coupling catalyzed by the cytochrome P450 AetB. Our results revealed enzymes with novel biochemical functions, including the single-component flavin-dependent tryptophan halogenase AetF and the iron-dependent nitrile synthase AetD.


Assuntos
Indóis , Neurotoxinas , Nitrilas , Cianobactérias/genética , Cianobactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Indóis/metabolismo , Família Multigênica , Neurotoxinas/biossíntese , Nitrilas/metabolismo , Oxirredutases/metabolismo , Triptofano/metabolismo , Triptofanase/metabolismo
6.
Biochem Biophys Res Commun ; 590: 158-162, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34974305

RESUMO

The progression of chronic kidney disease (CKD) increases the risks of cardiovascular morbidity and end-stage kidney disease. Indoxyl sulfate (IS), which is derived from dietary l-tryptophan by the action of bacterial l-tryptophan indole-lyase (TIL) in the gut, serves as a uremic toxin that exacerbates CKD-related kidney disorder. A mouse model previously showed that inhibition of TIL by 2-aza-l-tyrosine effectively reduced the plasma IS level, causing the recovery of renal damage. In this study, we found that (+)-sesamin and related lignans, which occur abundantly in sesame seeds, inhibit intestinal bacteria TILs. Kinetic studies revealed that (+)-sesamin and sesamol competitively inhibited Escherichia coli TIL (EcTIL) with Ki values of 7 µM and 14 µM, respectively. These Ki values were smaller than that of 2-aza-l-tyrosine (143 µM). Molecular docking simulation of (+)-sesamin- (or sesamol-)binding to EcTIL predicted that these inhibitors potentially bind near the active site of EcTIL, where the cofactor pyridoxal 5'-phosphate is bound, consistent with the kinetic results. (+)-Sesamin is a phytochemical with a long history of consumption and is generally regarded as safe. Hence, dietary supplementation of (+)-sesamin encapsulated in enteric capsules could be a promising mechanism-based strategy to prevent CKD progression. Moreover, the present findings would provide a new structural basis for designing more potent TIL inhibitors for the development of mechanism-based therapeutic drugs to treat CKD.


Assuntos
Dioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Microbioma Gastrointestinal , Lignanas/farmacologia , Insuficiência Renal Crônica/enzimologia , Insuficiência Renal Crônica/etiologia , Sesamum/química , Triptofanase/antagonistas & inibidores , Benzodioxóis/química , Benzodioxóis/farmacologia , Dioxóis/química , Microbioma Gastrointestinal/efeitos dos fármacos , Cinética , Lignanas/química , Simulação de Acoplamento Molecular , Fenóis/química , Fenóis/farmacologia , Triptofanase/metabolismo
7.
Chembiochem ; 23(9): e202200007, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224830

RESUMO

The aromatic amino acid l-tryptophan serves as a precursor for many valuable compounds such as neuromodulators, indoleamines and indole alkaloids. In this work, tryptophan biosynthesis was extended by halogenation followed by decarboxylation to the respective tryptamines or cleavage to the respective indoles. Either the tryptophanase genes tnaAs from E. coli and Proteus vulgaris or the aromatic amino acid decarboxylase genes AADCs from Bacillus atrophaeus, Clostridium sporogenes, and Ruminococcus gnavus were expressed in Corynebacterium glutamicum strains producing (halogenated) tryptophan. Regarding indoles, final titers of 16 mg L-1 7-Cl-indole and 23 mg L-1 7-Br-indole were attained. Tryptamine production led to a much higher titer of 2.26 g L-1 upon expression of AADC from B. atrophaeus. AADC enzymes were shown to be active with halogenated tryptophan in vitro and in vivo and supported production of 0.36 g L-1 7-Br-tryptamine with a volumetric productivity of 8.3 mg L-1 h-1 in a fed-batch fermentation.


Assuntos
Corynebacterium glutamicum , Triptofanase , Corynebacterium glutamicum/genética , Escherichia coli , Fermentação , Indóis , Triptofano
8.
Arch Microbiol ; 204(8): 486, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834134

RESUMO

In this study, the oxygen-tolerant mutant strain Clostridium sp. Aeroto-AUH-JLC108 was found to produce indole when grown aerobically. The tnaA gene coding for tryptophanase responsible for the production of indole was cloned. The tnaA gene from Aeroto-AUH-JLC108 is 1677 bp and has one point mutation (C36G) compared to the original anaerobic strain AUH-JLC108. Phylogenetic analyses based on the amino acid sequence showed significant homology to that of TnaA from Flavonifractor. Furthermore, we found that the tnaA gene also exhibited cysteine desulfhydrase activity. The production of hydrogen sulfide (H2S) was accompanied by decrease in the amount of the dissolved oxygen in the culture medium. Similarly, the amount of indole produced by strain Aeroto-AUH-JLC108 obviously decreased the oxidation-reduction potential (ORP) in BHI liquid medium. The results demonstrated that production of indole and H2S helped to form a hypoxic microenvironment for strain Aeroto-AUH-JLC108 when grown aerobically.


Assuntos
Clostridium , Sulfeto de Hidrogênio , Indóis , Triptofanase , Clostridium/genética , Clostridium/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hipóxia/metabolismo , Indóis/metabolismo , Oxigênio/metabolismo , Filogenia , Triptofanase/genética , Triptofanase/metabolismo
9.
Lett Appl Microbiol ; 68(1): 87-95, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30382577

RESUMO

We have reported that bicarbonate (NaHCO3 ) potentiates the activity of aminoglycosides in Escherichia coli, but the action mechanism was not identified. To eventually understand how NaHCO3 can potentiate antibiotics, we thought that a rational first step was to examine the effect of NaHCO3 separately and to inspect initial gene expression changes triggered by it. In this work, we started by confirming that NaHCO3 can reduce the number of viable E. coli bacteria. We then investigated, via RNAseq, gene expression changes induced by NaHCO3 . There were upregulated and downregulated genes, among the top upregulated genes c. 10-fold increase in expression) was tnaA, the gene encoding tryptophanase, the enzyme that degrades tryptophan to indole. Considering that higher expression of tnaA likely led to increases in indole, we tested the effect of indole and found both growth inhibition and synergy with NaHCO3 . We suggest that indole may participate in growth inhibition of E. coli. The RNAseq analysis also revealed upregulation (≥4-fold) of genes encoding proteins for the acquisition of iron and downregulation (≥16-fold) of genes encoding iron-sulphur-holding proteins; hence NaHCO3 apparently triggered also an iron-deficit response. We suggest that iron deficiency may also be involved in growth inhibition by NaHCO3 . SIGNIFICANCE AND IMPACT OF THE STUDY: Bicarbonate (NaHCO3 ) can enhance the activity of various antibiotics. This work investigated its action mechanism. We carried out a transcriptional analysis in Escherichia coli with the aim of defining initial bacterial changes potentially linked to the enhancing activity of NaHCO3 . Our approach differed from the longer term exposure to NaHCO3 recently used by other researchers, who noticed changes in the bacterial proton motive force. Based on our analysis, we propose two routes possibly linked to the effect of NaHCO3 . Conceivably, those routes are potential targets that could be manipulated by alternative means to augment the effect of antibiotics.


Assuntos
Bicarbonatos/farmacologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Triptofanase/genética , Aminoglicosídeos/metabolismo , Antibacterianos/metabolismo , Proteínas de Escherichia coli/biossíntese , Indóis , Ferro/metabolismo , Ativação Transcricional/efeitos dos fármacos , Triptofano/metabolismo , Triptofanase/biossíntese , Regulação para Cima/efeitos dos fármacos
10.
Biochemistry ; 57(4): 446-450, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29171270

RESUMO

We report the genetically encoded chemical decaging strategy for protein activation in living bacterial cells. In contrast to the metabolically labile photocaging groups inside Escherichia coli, our chemical decaging strategy that relies on the inverse electron-demand Diels-Alder (iDA) reaction is compatible with the intracellular environment of bacteria, which can be a general tool for gain-of-function study of a given protein in prokaryotic systems. By applying this strategy for in situ activation of the indole-producing enzyme TnaA, we built an orthogonal and chemically inducible indole production pathway inside E. coli cells, which revealed the role of indole in bacterial antibiotic tolerance.


Assuntos
Proteínas de Escherichia coli/química , Triptofanase/química , Ciclo-Octanos , Ativação Enzimática/efeitos da radiação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Indóis/metabolismo , Mutagênese Sítio-Dirigida , Nitrobenzenos , Fotoquímica , Triptofanase/genética , Triptofanase/efeitos da radiação , Raios Ultravioleta
11.
Rapid Commun Mass Spectrom ; 32(3): 195-200, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29164709

RESUMO

RATIONALE: Pyridoxal 5'-phosphate (PLP) cooperates with a variety of enzymes in all organisms for many important biological processes. The development of mass spectrometry-based methodology for high-throughput modification analyses could provide an alternative way for PLP identification. The present study aims to identify PLP modification. METHODS: More PLP site-determining information was obtained by introducing multistage activation (MSA)-assisted collision-induced dissociation (CID). We then utilized immobilized metal ion affinity chromatography (IMAC) with Ti4+ to enrich the PLP peptides. In addition, alkaline phosphatase (ALP) was used to remove the phosphoryl group and further confirm the PLP modification site. RESULTS: MSA was able to greatly enhance the identification and localization of PLP modification. We applied this strategy to analyze PLP-modified proteins in Escherichia coli samples and accurately determine PLP site K270 in tryptophanase. CONCLUSIONS: MSA-assisted CID was used to provide better identification of PLP-modified peptides. Furthermore, tryptophanase with PLP modification at K270 in E. coli was identified with Ti4+ -IMAC enrichment followed by ALP treatment. This method provides a promising alternative for investigating biological functions of PLP-modified proteins.


Assuntos
Peptídeos/análise , Peptídeos/química , Fosfato de Piridoxal/química , Espectrometria de Massas em Tandem/métodos , Fosfatase Alcalina/química , Cromatografia de Afinidade , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/química , Estabilidade Proteica , Triptofanase/análise , Triptofanase/química
12.
Biotechnol Appl Biochem ; 64(3): 315-326, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26913738

RESUMO

Escherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2. For purified CYP264A1 and CYP21A2, the half maximal inhibitory indole concentration was determined to be 140 and 500 µM, which is within the physiological concentration range occurring during cultivation of E. coli in complex medium. Biotransformations with C43(DE3)_∆tnaA achieved a 30% higher product formation in the case of CYP21A2 and an even fourfold increase with CYP264A1 compared with C43(DE3) cells. In whole-cell conversion based on CYP109D1, which converts indole to indigo, we could successfully avoid this reaction. Results in microplate format indicate that our newly designed strain is a suitable host for a fast and efficient screening of indole-influenced cytochromes P450 in complex medium.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/biossíntese , Proteínas de Escherichia coli/genética , Escherichia coli , Deleção de Genes , Indóis , Triptofanase/deficiência , Animais , Bovinos , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
13.
Eur J Nutr ; 55(8): 2445-2458, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26410393

RESUMO

INTRODUCTION: During growth, protein deprivation impairs epiphyseal growth plate (EGP) height, bone volume (BV) and endochondral ossification. During catch-up growth, Ca availability becomes essential to ensure the extra amount needed to achieve optimal peak bone mass and strength. GOS and FOS improve mineral absorption in the colon. PURPOSE: The effect of a mixture of GOS/FOS® 9:1 added to a 0.5 %Ca (NCa) and a 0.3 %Ca (LCa) diets on Ca, P and Mg absorptions and bone mineralization, density and structure using an experimental model of growing rats recovering from early protein malnutrition was investigated. METHODS: To induce protein malnutrition, rats were fed a low protein diet: 4 % (LPD) during 1 week and then were randomly assigned to recovery groups (R) until day 50 (T = 50) as follows: R0.5 %: NCa; RP0.5 %: NCa + 5.3 % GOS/FOS®; R0.3 %: LCa and RP0.3 %: LCa + 5.3 % GOS/FOS®. Control groups received the 0.5 %Ca or 0.3 %Ca diet from weaning until day 40 or 50. RESULTS: Body weight and length increased in C groups throughout the study; both were arrested in all R during LPD consumption and increased immediately after re-feeding. Independently of dietary Ca content, LS counts, ß-glucosidase and Ca, P and Mg absorption increased, whereas cecum pH, ß-glucuronidase, urease and tryptophanase decreased in RP0.5 %: and RP0.3 %: as compared to the other studied groups (p < 0.01). Prebiotic consumption decreased CTX levels and increased femur Ca, Mg and P contents, total skeleton bone mineral content, proximal tibia and spine BMD, BV, EGP height and hypertrophic zone thickness, stiffness and elastic modulus as compared to recovery groups fed the prebiotic-free diets. CONCLUSION: Under the present experimental conditions, GOS/FOS® mixture induced colonic positive effects, which increased Ca, P and Mg absorption. Thus, consuming the prebiotic-containing diet resulted in an extra amount of minerals that improved bone development in growing rats recovering from protein malnutrition.


Assuntos
Cálcio da Dieta/farmacocinética , Oligossacarídeos/administração & dosagem , Desnutrição Proteico-Calórica/tratamento farmacológico , Trissacarídeos/administração & dosagem , Animais , Disponibilidade Biológica , Peso Corporal , Densidade Óssea/efeitos dos fármacos , Desenvolvimento Ósseo/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Cálcio da Dieta/administração & dosagem , Cálcio da Dieta/sangue , Ceco/efeitos dos fármacos , Ceco/metabolismo , Dieta , Fezes/química , Fêmur/efeitos dos fármacos , Fêmur/fisiologia , Glucuronidase/metabolismo , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/fisiologia , Absorção Intestinal , Magnésio/administração & dosagem , Magnésio/sangue , Magnésio/farmacocinética , Masculino , Oligossacarídeos/sangue , Oligossacarídeos/farmacocinética , Fósforo na Dieta/administração & dosagem , Fósforo na Dieta/sangue , Fósforo na Dieta/farmacocinética , Prebióticos/administração & dosagem , Desnutrição Proteico-Calórica/sangue , Ratos , Ratos Wistar , Trissacarídeos/sangue , Trissacarídeos/farmacocinética , Triptofanase/metabolismo , Urease/metabolismo
14.
Nucleic Acids Res ; 42(2): 1245-56, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24137004

RESUMO

A transcriptional attenuation mechanism regulates expression of the bacterial tnaCAB operon. This mechanism requires ribosomal arrest induced by the regulatory nascent TnaC peptide in response to free L-tryptophan (L-Trp). In this study we demonstrate, using genetic and biochemical analyses, that in Escherichia coli, TnaC residue I19 and 23S rRNA nucleotide A2058 are essential for the ribosome's ability to sense free L-Trp. We show that the mutational change A2058U in 23S rRNA reduces the concentration dependence of L-Trp-mediated tna operon induction, whereas the TnaC I19L change suppresses this phenotype, restoring the sensitivity of the translating A2058U mutant ribosome to free L-Trp. These findings suggest that interactions between TnaC residue I19 and 23S rRNA nucleotide A2058 contribute to the creation of a regulatory L-Trp binding site within the translating ribosome.


Assuntos
Proteínas de Escherichia coli/metabolismo , Biossíntese de Proteínas , RNA Ribossômico 23S/metabolismo , Ribossomos/metabolismo , Triptofano/metabolismo , Sítios de Ligação , Proteínas de Escherichia coli/química , Mutação , Peptídeos/química , Peptídeos/metabolismo , RNA Ribossômico 23S/química , RNA de Transferência de Triptofano/metabolismo , Triptofanase/metabolismo
15.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2364-71, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627645

RESUMO

Tryptophanase (Trpase) is a pyridoxal 5'-phosphate (PLP)-dependent homotetrameric enzyme which catalyzes the degradation of L-tryptophan. Trpase is also known for its cold lability, which is a reversible loss of activity at low temperature (2°C) that is associated with the dissociation of the tetramer. Escherichia coli Trpase dissociates into dimers, while Proteus vulgaris Trpase dissociates into monomers. As such, this enzyme is an appropriate model to study the protein-protein interactions and quaternary structure of proteins. The aim of the present study was to understand the differences in the mode of dissociation between the E. coli and P. vulgaris Trpases. In particular, the effect of mutations along the molecular axes of homotetrameric Trpase on its dissociation was studied. To answer this question, two groups of mutants of the E. coli enzyme were created to resemble the amino-acid sequence of P. vulgaris Trpase. In one group, residues 15 and 59 that are located along the molecular axis R (also termed the noncatalytic axis) were mutated. The second group included a mutation at position 298, located along the molecular axis Q (also termed the catalytic axis). Replacing amino-acid residues along the R axis resulted in dissociation of the tetramers into monomers, similar to the P. vulgaris Trpase, while replacing amino-acid residues along the Q axis resulted in dissociation into dimers only. The crystal structure of the V59M mutant of E. coli Trpase was also determined in its apo form and was found to be similar to that of the wild type. This study suggests that in E. coli Trpase hydrophobic interactions along the R axis hold the two monomers together more strongly, preventing the dissociation of the dimers into monomers. Mutation of position 298 along the Q axis to a charged residue resulted in tetramers that are less susceptible to dissociation. Thus, the results indicate that dissociation of E. coli Trpase into dimers occurs along the molecular Q axis.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/química , Subunidades Proteicas/química , Proteus vulgaris/química , Triptofano/química , Triptofanase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteus vulgaris/enzimologia , Proteus vulgaris/genética , Fosfato de Piridoxal/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Homologia Estrutural de Proteína , Triptofano/metabolismo , Triptofanase/genética , Triptofanase/metabolismo
16.
Environ Microbiol ; 17(4): 1275-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25041421

RESUMO

Persister cells survive antibiotic and other environmental stresses by slowing metabolism. Since toxins of toxin/antitoxin (TA) systems have been postulated to be responsible for persister cell formation, we investigated the influence of toxin YafQ of the YafQ/DinJ Escherichia coli TA system on persister cell formation. Under stress, YafQ alters metabolism by cleaving transcripts with in-frame 5'-AAA-G/A-3' sites. Production of YafQ increased persister cell formation with multiple antibiotics, and by investigating changes in protein expression, we found that YafQ reduced tryptophanase levels (TnaA mRNA has 16 putative YafQ cleavage sites). Consistently, TnaA mRNA levels were also reduced by YafQ. Tryptophanase is activated in the stationary phase by the stationary-phase sigma factor RpoS, which was also reduced dramatically upon production of YafQ. Tryptophanase converts tryptophan into indole, and as expected, indole levels were reduced by the production of YafQ. Corroborating the effect of YafQ on persistence, addition of indole reduced persistence. Furthermore, persistence increased upon deleting tnaA, and persistence decreased upon adding tryptophan to the medium to increase indole levels. Also, YafQ production had a much smaller effect on persistence in a strain unable to produce indole. Therefore, YafQ increases persistence by reducing indole, and TA systems are related to cell signalling.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Fator sigma/metabolismo , Triptofanase/metabolismo , Antitoxinas/genética , Toxinas Bacterianas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Indóis/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Triptofano/química , Triptofanase/biossíntese , Triptofanase/genética
17.
Appl Environ Microbiol ; 81(5): 1610-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25527549

RESUMO

Abrin is a toxic protein produced by the ornamental plant Abrus precatorius, and it is of concern as a biothreat agent. The small coextracting molecule N-methyl-l-tryptophan (l-abrine) is specific to members of the genus Abrus and thus can be used as a marker for the presence or ingestion of abrin. Current methods for the detection of abrin or l-abrine in foods and other matrices require complex sample preparation and expensive instrumentation. To develop a fast and portable method for the detection of l-abrine in beverages and foods, the Escherichia coli proteins N-methyltryptophan oxidase (MTOX) and tryptophanase were expressed and purified. The two enzymes jointly degraded l-abrine to products that included ammonia and indole, and colorimetric assays for the detection of those analytes in beverage and food samples were evaluated. An indole assay using a modified version of Ehrlich's/Kovac's reagent was more sensitive and less subject to negative interferences from components in the samples than the Berthelot ammonia assay. The two enzymes were added into food and beverage samples spiked with l-abrine, and indole was detected as a degradation product, with the visual lower detection limit being 2.5 to 10.0 µM (∼0.6 to 2.2 ppm) l-abrine in the samples tested. Results could be obtained in as little as 15 min. Sample preparation was limited to pH adjustment of some samples. Visual detection was found to be about as sensitive as detection with a spectrophotometer, especially in milk-based matrices.


Assuntos
Abrina/análise , Biomarcadores/análise , Enzimas , Proteínas de Escherichia coli , Análise de Perigos e Pontos Críticos de Controle/métodos , Alcaloides Indólicos/análise , Oxirredutases N-Desmetilantes , Triptofanase , Colorimetria/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Fatores de Tempo , Triptofanase/genética , Triptofanase/metabolismo
18.
BMC Microbiol ; 15: 14, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25650045

RESUMO

BACKGROUND: The Escherichia coli enzyme tryptophanase (TnaA) converts tryptophan to indole, which triggers physiological changes and regulates interactions between bacteria and their mammalian hosts. Tryptophanase production is induced by external tryptophan, but the activity of TnaA is also regulated by other, more poorly understood mechanisms. For example, the enzyme accumulates as a spherical inclusion (focus) at midcell or at one pole, but how or why this localization occurs is unknown. RESULTS: TnaA activity is low when the protein forms foci during mid-logarithmic growth but its activity increases as the protein becomes more diffuse, suggesting that foci may represent clusters of inactive (or less active) enzyme. To determine what protein characteristics might mediate these localization effects, we constructed 42 TnaA variants: 6 truncated forms and 36 missense mutants in which different combinations of 83 surface-exposed residues were converted to alanine. A truncated TnaA protein containing only domains D1 and D3 (D1D3) localized to the pole. Mutations affecting the D1D3-to-D1D3 interface did not affect polar localization of D1D3 but did delay assembly of wild type TnaA foci. In contrast, alterations to the D1D3-to-D2 domain interface produced diffuse localization of the D1D3 variant but did not affect the wild type protein. Altering several surface-exposed residues decreased TnaA activity, implying that tetramer assembly may depend on interactions involving these sites. Interestingly, changing any of three amino acids at the base of a loop near the catalytic pocket decreased TnaA activity and caused it to form elongated ovoid foci in vivo, indicating that the alterations affect focus formation and may regulate how frequently tryptophan reaches the active site. CONCLUSIONS: The results suggest that TnaA activity is regulated by subcellular localization and by a loop-associated occlusion of its active site. Equally important, these new TnaA variants are immediately available to the research community and should be useful for investigating how tryptophanase is localized and assembled, how substrate accesses its active site, the functional role of acetylation, and other structural and functional questions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Triptofanase/metabolismo , Substituição de Aminoácidos , Domínio Catalítico , Análise Mutacional de DNA , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Sequência , Triptofanase/genética
19.
Plasmid ; 78: 59-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25446541

RESUMO

Regulation by non-coding RNAs was found to be widespread among plasmids and other mobile elements of bacteria well before its ubiquity in the eukaryotic world was suspected. As an increasing number of examples was characterised, a common mechanism began to emerge. Non-coding RNAs, such as CopA and Sok from plasmid R1, or RNAI from ColE1, exerted regulation by refolding the secondary structures of their target RNAs or modifying their translation. One regulatory RNA that seemed to swim against the tide was Rcd, encoded within the multimer resolution site of ColE1. Required for high fidelity maintenance of the plasmid in recombination-proficient hosts, Rcd was found to have a protein target, elevating indole production by stimulating tryptophanase. Rcd production is up-regulated in dimer-containing cells and the consequent increase in indole is part of the response to the rapid accumulation of dimers by over-replication (known as the dimer catastrophe). It is proposed that indole simultaneously inhibits cell division and plasmid replication, stopping the catastrophe and allowing time for the resolution of dimers to monomers. The idea of a plasmid-mediated cell division checkpoint, proposed but then discarded in the 1980s, appears to be enjoying a revival.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Plasmídeos/genética , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , ATPases Transportadoras de Cobre , Replicação do DNA , Escherichia coli/citologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Indóis/metabolismo , Triptofanase/genética , Triptofanase/metabolismo
20.
Microbiology (Reading) ; 160(Pt 9): 2079-2088, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25061041

RESUMO

When Escherichia coli is grown in a medium lacking glucose or another preferred carbohydrate, the concentration of cAMP-cAMP receptor protein (cAMP-CRP) increases, and this latter complex regulates the expression of more than 180 genes. To respond rapidly to changes in carbohydrate availability, E. coli must maintain a suitable intracellular concentration of cAMP by either exporting or degrading excess cAMP. Currently, cAMP export via the TolC protein is thought to be more efficient at reducing these levels than is CpdA-mediated degradation of cAMP. Here, we compared the contributions of TolC and CpdA by measuring the expression of cAMP-regulated genes that encode tryptophanase (TnaA) and ß-galactosidase. In the presence of exogenous cAMP, a tolC mutant produced intermediate levels of these enzymes, suggesting that cAMP levels were held in check by CpdA. Conversely, a cpdA mutant produced much higher amounts of these enzymes, indicating that CpdA was more efficient than TolC at reducing cAMP levels. Surprisingly, expression of the tnaA gene halted rapidly when glucose was added to cells lacking both TolC and CpdA, even though under these conditions cAMP could not be removed by either pathway and tnaA expression should have remained high. This result suggests the existence of an additional mechanism that eliminates intracellular cAMP or terminates expression of some cAMP-CRP-regulated genes. In addition, adding glucose and other carbohydrates rapidly inhibited the function of pre-formed TnaA, indicating that TnaA is regulated by a previously unknown carbohydrate-dependent post-translational mechanism.


Assuntos
Metabolismo dos Carboidratos , AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Triptofanase/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Meios de Cultura/química , Proteínas de Membrana Transportadoras/metabolismo , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA