Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(42): 17761-17768, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34637287

RESUMO

Expanding the chemical space of evolvable non-natural genetic polymers (XNAs) to include functional groups that enhance protein target binding affinity offers a promising route to therapeutic aptamers with high biological stability. Here we describe the chemical synthesis and polymerase recognition of 10 chemically diverse functional groups introduced at the C-5 position of α-l-threofuranosyl uridine nucleoside triphosphate (tUTP). We show that the set of tUTP substrates is universally recognized by the laboratory-evolved polymerase Kod-RSGA. Insights into the mechanism of TNA synthesis were obtained from a high-resolution X-ray crystal structure of the postcatalytic complex bound to the primer-template duplex. A structural analysis reveals a large cavity in the enzyme active site that can accommodate the side chain of C-5-modified tUTP substrates. Our findings expand the chemical space of evolvable nucleic acid systems by providing a synthetic route to artificial genetic polymers that are uniformly modified with diversity-enhancing functional groups.


Assuntos
DNA Polimerase Dirigida por DNA , Tetroses , Uridina Trifosfato , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Nucleosídeos/química , Ligação Proteica , Tetroses/síntese química , Tetroses/química , Tetroses/metabolismo , Thermococcus/enzimologia , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/síntese química , Uridina Trifosfato/metabolismo
2.
Chembiochem ; 21(11): 1605-1612, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31951306

RESUMO

3'-Deoxynucleotides are an important class of drugs because they interfere with the metabolism of nucleotides, and their incorporation into DNA or RNA terminates cell division and viral replication. These compounds are generally produced by multi-step chemical synthesis, and an enzyme with the ability to catalyse the removal of the 3'-deoxy group from different nucleotides has yet to be described. Here, using a combination of HPLC, HRMS and NMR spectroscopy, we demonstrate that a thermostable fungal radical S-adenosylmethionine (SAM) enzyme, with similarity to the vertebrate antiviral enzyme viperin (RSAD2), can catalyse the transformation of CTP, UTP and 5-bromo-UTP to their 3'-deoxy-3',4'-didehydro (ddh) analogues. We show that, unlike the fungal enzyme, human viperin only catalyses the transformation of CTP to ddhCTP. Using electron paramagnetic resonance spectroscopy and molecular docking and dynamics simulations in combination with mutagenesis studies, we provide insight into the origin of the unprecedented substrate promiscuity of the enzyme and the mechanism of dehydration of a nucleotide. Our findings highlight the evolution of substrate specificity in a member of the radical-SAM enzymes. We predict that our work will help in using a new class of the radical-SAM enzymes for the biocatalytic synthesis of 3'-deoxy nucleotide/nucleoside analogues.


Assuntos
Citidina Trifosfato/química , Proteínas Fúngicas/química , Proteínas/química , S-Adenosilmetionina/química , Sordariales/química , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Citidina Trifosfato/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Sordariales/classificação , Sordariales/enzimologia , Homologia Estrutural de Proteína , Especificidade por Substrato , Termodinâmica , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/química , Uridina Trifosfato/metabolismo
3.
Pharm Res ; 37(5): 89, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382808

RESUMO

PURPOSE: Capecitabine is an oral pre-pro-drug of the anti-cancer drug 5-fluorouracil (5-FU). The biological activity of the 5-FU degrading enzyme, dihydropyrimidine dehydrogenase (DPD), and the target enzyme thymidylate synthase (TS), are subject to circadian rhythmicity in healthy volunteers. The aim of this study was to determine the maximum tolerated dose (MTD), dose-limiting toxicity (DLT), safety, pharmacokinetics (PK) and pharmacodynamics (PD) of capecitabine therapy adapted to this circadian rhythm (chronomodulated therapy). METHODS: Patients aged ≥18 years with advanced solid tumours potentially benefitting from capecitabine therapy were enrolled. A classical dose escalation 3 + 3 design was applied. Capecitabine was administered daily without interruptions. The daily dose was divided in morning and evening doses that were administered at 9:00 h and 24:00 h, respectively. The ratio of the morning to the evening dose was 3:5 (morning: evening). PK and PD were examined on treatment days 7 and 8. RESULTS: A total of 25 patients were enrolled. The MTD of continuous chronomodulated capecitabine therapy was established at 750/1250 mg/m2/day, and was generally well tolerated. Circadian rhythmicity in the plasma PK of capecitabine, dFCR, dFUR and 5-FU was not demonstrated. TS activity was induced and DPD activity demonstrated circadian rhythmicity during capecitabine treatment. CONCLUSION: The MTD of continuous chronomodulated capecitabine treatment allows for a 20% higher dose intensity compared to the approved regimen (1250 mg/m2 bi-daily on day 1-14 of every 21-day cycle). Chronomodulated treatment with capecitabine is promising and could lead to improved tolerability and efficacy of capecitabine.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Capecitabina/administração & dosagem , Capecitabina/farmacologia , Cronofarmacoterapia , Neoplasias/tratamento farmacológico , Adulto , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/sangue , Capecitabina/efeitos adversos , Capecitabina/sangue , Ritmo Circadiano , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Feminino , Fluoruracila/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Timidilato Sintase/metabolismo , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/sangue
4.
Bioconjug Chem ; 29(5): 1614-1621, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29578692

RESUMO

Nucleotide surveillance enzymes play important roles in human health, by monitoring damaged monomers in the nucleotide pool and deactivating them before they are incorporated into chromosomal DNA or disrupt nucleotide metabolism. In particular, deamination of cytosine, leading to uracil in DNA and in the nucleotide pool, can be deleterious, causing DNA damage. The enzyme deoxyuridine triphosphatase (dUTPase) is currently under study as a therapeutic and prognostic target for cancer. Measuring the activity of this enzyme is important both in basic research and in clinical applications involving this pathway, but current methods are nonselective, detecting pyrophosphate, which is produced by many enzymes. Here we describe the design and synthesis of a dUTPase enzyme-specific chimeric dinucleotide (DUAL) that replaces the pyrophosphate leaving group of the native substrate with ATP, enabling sensitive detection via luciferase luminescence signaling. The DUAL probe functions sensitively and selectively to quantify enzyme activities in vitro and in cell lysates. We further report the first measurements of dUTPase activities in eight different cell lines, which are found to vary by a factor of 7-fold. We expect that the new probe can be of considerable utility in research involving this clinically significant enzyme.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Substâncias Luminescentes/química , Nucleotídeos/química , Pirofosfatases/análise , Uridina Trifosfato/análogos & derivados , Linhagem Celular Tumoral , Ensaios Enzimáticos/métodos , Células HEK293 , Humanos , Medições Luminescentes/métodos , Especificidade por Substrato
5.
Br J Clin Pharmacol ; 84(6): 1279-1289, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29451684

RESUMO

AIMS: Gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdC) is a prodrug that has to be phosphorylated within the tumour cell to become active. Intracellularly formed gemcitabine diphosphate (dFdCDP) and triphosphate (dFdCTP) are considered responsible for the antineoplastic effects of gemcitabine. However, a major part of gemcitabine is converted into 2',2'-difluoro-2'-deoxyuridine (dFdU) by deamination. In the cell, dFdU can also be phosphorylated to its monophosphate (dFdUMP), diphosphate (dFdUDP) and triphosphate (dFdUTP). In vitro data suggest that these dFdU nucleotides might also contribute to the antitumour effects, although little is known about their intracellular pharmacokinetics (PK). Therefore, the objective of the present study was to gain insight into the intracellular PK of all dFdC and dFdU nucleotides formed during gemcitabine treatment. METHODS: Peripheral blood mononuclear cell (PBMC) samples were collected from 38 patients receiving gemcitabine, at multiple time points after infusion. Gemcitabine, dFdU and their nucleotides were quantified in PBMCs. In addition, gemcitabine and dFdU plasma concentrations were monitored. The individual PK parameters in plasma and in PBMCs were determined. RESULTS: Both in plasma and in PBMCs, dFdU was present in higher concentrations than gemcitabine [mean intracellular area under the concentration-time curve from time zero to 24 h (AUC0-24 h ) 1650 vs. 95 µM*h]. However, the dFdUMP, dFdUDP and dFdUTP concentrations in PBMCs were much lower than the dFdCDP and dFdCTP concentrations. The mean AUC0-24 h for dFdUTP was 312 µM*h vs. 2640 µM*h for dFdCTP. CONCLUSIONS: The study provides the first complete picture of all nucleotides that are formed intracellularly during gemcitabine treatment. Low intracellular dFdU nucleotide concentrations were found, which calls into question the relevance of these nucleotides for the cytotoxic effects of gemcitabine.


Assuntos
Antimetabólitos Antineoplásicos/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Citidina Trifosfato/análogos & derivados , Desoxicitidina/análogos & derivados , Floxuridina/análogos & derivados , Leucócitos Mononucleares/metabolismo , Uridina Trifosfato/sangue , Ativação Metabólica , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/sangue , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Citidina Trifosfato/sangue , Desaminação , Desoxicitidina/administração & dosagem , Desoxicitidina/sangue , Desoxicitidina/farmacocinética , Feminino , Floxuridina/sangue , Humanos , Fosforilação , Uridina Trifosfato/análogos & derivados , Gencitabina
6.
Org Biomol Chem ; 16(32): 5800-5807, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30063056

RESUMO

We synthesized a small library of eighteen 5-substituted pyrimidine or 7-substituted 7-deazapurine nucleoside triphosphates bearing methyl, ethynyl, phenyl, benzofuryl or dibenzofuryl groups through cross-coupling reactions of nucleosides followed by triphosphorylation or through direct cross-coupling reactions of halogenated nucleoside triphosphates. We systematically studied the influence of the modification on the efficiency of T7 RNA polymerase catalyzed synthesis of modified RNA and found that modified ATP, UTP and CTP analogues bearing smaller modifications were good substrates and building blocks for the RNA synthesis even in difficult sequences incorporating multiple modified nucleotides. Bulky dibenzofuryl derivatives of ATP and GTP were not substrates for the RNA polymerase. In the case of modified GTP analogues, a modified procedure using a special promoter and GMP as initiator needed to be used to obtain efficient RNA synthesis. The T7 RNA polymerase synthesis of modified RNA can be very efficiently used for synthesis of modified RNA but the method has constraints in the sequence of the first three nucleotides of the transcript, which must contain a non-modified G in the +1 position.


Assuntos
Bacteriófago T7/enzimologia , RNA Polimerases Dirigidas por DNA/metabolismo , Nucleosídeos de Purina/metabolismo , Purinas/metabolismo , Nucleosídeos de Pirimidina/metabolismo , RNA/metabolismo , Proteínas Virais/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Citidina Trifosfato/análogos & derivados , Citidina Trifosfato/metabolismo , Nucleosídeos de Purina/química , Purinas/química , Nucleosídeos de Pirimidina/química , RNA/química , Especificidade por Substrato , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/metabolismo
7.
Nucleic Acids Res ; 44(2): e16, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26384420

RESUMO

Cellular RNA labeling strategies based on bioorthogonal chemical reactions are much less developed in comparison to glycan, protein and DNA due to its inherent instability and lack of effective methods to introduce bioorthogonal reactive functionalities (e.g. azide) into RNA. Here we report the development of a simple and modular posttranscriptional chemical labeling and imaging technique for RNA by using a novel toolbox comprised of azide-modified UTP analogs. These analogs facilitate the enzymatic incorporation of azide groups into RNA, which can be posttranscriptionally labeled with a variety of probes by click and Staudinger reactions. Importantly, we show for the first time the specific incorporation of azide groups into cellular RNA by endogenous RNA polymerases, which enabled the imaging of newly transcribing RNA in fixed and in live cells by click reactions. This labeling method is practical and provides a new platform to study RNA in vitro and in cells.


Assuntos
Azidas/química , RNA Polimerases Dirigidas por DNA/química , RNA/química , Coloração e Rotulagem/métodos , Uridina Trifosfato/química , Proteínas Virais/química , Bacteriófago T7/química , Bacteriófago T7/enzimologia , Química Click , Corantes Fluorescentes/química , Células HeLa , Humanos , Processamento Pós-Transcricional do RNA , Uridina Trifosfato/análogos & derivados
8.
Int J Mol Sci ; 18(2)2017 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-28146050

RESUMO

Platelet P2Y12 is an important adenosine diphosphate (ADP) receptor that is involved in agonist-induced platelet aggregation and is a valuable target for the development of anti-platelet drugs. Here we characterise the effects of thio analogues of uridine triphosphate (UTP) on ADP-induced platelet aggregation. Using human platelet-rich plasma, we demonstrate that UTP inhibits P2Y12 but not P2Y1 receptors and antagonises 10 µM ADP-induced platelet aggregation in a concentration-dependent manner with an IC50 value of ~250 °µM. An eight-fold higher platelet inhibitory activity was observed with a 2-thio analogue of UTP (2S-UTP), with an IC50 of 30 µM. The 4-thio analogue (4S-UTP) with an IC50 of 7.5 µM was 33-fold more effective. A three-fold decrease in inhibitory activity, however, was observed by introducing an isobutyl group at the 4S- position. A complete loss of inhibition was observed with thio-modification of the γ phosphate of the sugar moiety, which yields an enzymatically stable analogue. The interaction of UTP analogues with P2Y12 receptor was verified by P2Y12 receptor binding and cyclic AMP (cAMP) assays. These novel data demonstrate for the first time that 2- and 4-thio analogues of UTP are potent P2Y12 receptor antagonists that may be useful for therapeutic intervention.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/metabolismo , Uridina Trifosfato/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Adulto , Moléculas de Adesão Celular/metabolismo , AMP Cíclico/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Masculino , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Estrutura Molecular , Fosfoproteínas/metabolismo , Fosforilação , Plasma Rico em Plaquetas , Uridina Trifosfato/análogos & derivados , Adulto Jovem
9.
Br J Clin Pharmacol ; 81(5): 949-57, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26718616

RESUMO

AIM: Three intracellularly formed metabolites are responsible for the antineoplastic effect of capecitabine: 5-fluorouridine 5'-triphosphate (FUTP), 5-fluoro-2'-deoxyuridine 5'-triphosphate (FdUTP), and 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP). The objective of this study was to explore the pharmacokinetics of these intracellular metabolites during capecitabine treatment. METHODS: Serial plasma and peripheral blood mononuclear cell (PBMC) samples were collected from 13 patients treated with capecitabine 1000 mg QD (group A) and eight patients receiving capecitabine 850 mg m(-2) BID for fourteen days, every three weeks (group B). Samples were collected on day 1 and, for four patients of group B, also on day 14. The capecitabine and 5-fluorouracil (5-FU) plasma concentrations and intracellular metabolite concentrations were determined using LC-MS/MS. Pharmacokinetic parameters were estimated using non-compartmental analysis. RESULTS: Only FUTP could be measured in the PBMC samples. The FdUTP and FdUMP concentrations were below the detection limits (LOD). No significant correlation was found between the plasma 5-FU and intracellular FUTP exposure. The FUTP concentration-time profiles demonstrated considerable inter-individual variation and accumulation of the metabolite in PBMCs. FUTP levels ranged between

Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Capecitabina/uso terapêutico , Nucleotídeos de Desoxiuracil/farmacocinética , Desoxiuridina/análogos & derivados , Neoplasias/tratamento farmacológico , Uridina Trifosfato/análogos & derivados , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/sangue , Área Sob a Curva , Capecitabina/administração & dosagem , Capecitabina/sangue , Cromatografia Líquida , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Nucleotídeos de Desoxiuracil/análise , Desoxiuridina/análise , Desoxiuridina/farmacocinética , Fluoruracila/sangue , Humanos , Leucócitos Mononucleares/metabolismo , Espectrometria de Massas em Tandem , Uridina Trifosfato/análise , Uridina Trifosfato/farmacocinética
10.
RNA ; 19(9): 1309-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23887148

RESUMO

2-Selenouridine ((Se)U) is one of the naturally occurring modifications of Se-tRNAs ((Se)U-RNA) at the wobble position of the anticodon loop. Its role in the RNA-RNA interaction, especially during the mRNA decoding, is elusive. To assist the research exploration, herein we report the enzymatic synthesis of the (Se)U-RNA via 2-selenouridine triphosphate ((Se)UTP) synthesis and RNA transcription. Moreover, we have demonstrated that the synthesized (Se)UTP is stable and recognizable by T7 RNA polymerase. Under the optimized conditions, the transcription yield of (Se)U-RNA can reach up to 85% of the corresponding native RNA. Furthermore, the transcribed (Se)U-hammerhead ribozyme has the similar activity as the corresponding native, which suggests usefulness of (Se)U-RNAs in function and structure studies of noncoding RNAs, including the Se-tRNAs.


Assuntos
Compostos Organosselênicos/síntese química , RNA/genética , Transcrição Gênica , Uridina Trifosfato/análogos & derivados , Anticódon , Catálise , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Compostos Organosselênicos/química , RNA/química , RNA Catalítico/química , RNA Catalítico/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Uridina Trifosfato/síntese química , Uridina Trifosfato/química , Proteínas Virais/química , Proteínas Virais/genética
11.
Purinergic Signal ; 11(4): 533-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26431833

RESUMO

Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels, and corresponding transcripts were expressed in duct cells. Direct stimulation of intracellular Ca(2+) and cAMP signalling and ethanol application had negligible effects on ATP release. The released ATP was sequentially dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting adenylate kinase (AK1) and nucleoside diphosphate kinase (NDPK) enzymes (NME1, 2), which contribute to metabolism and regeneration of extracellular ATP and other nucleotides (ADP, uridine diphosphate (UDP) and uridine triphosphate (UTP)). In conclusion, we illustrate a complex regulation of extracellular purine homeostasis in a pancreatic duct cell model involving: ATP release by several mechanisms and subsequent nucleotide breakdown and ATP regeneration via counteracting nucleotide-inactivating and nucleotide-phosphorylating ecto-enzymes. We suggest that extracellular ATP homeostasis in pancreatic ducts may be important in pancreas physiology and potentially in pancreas pathophysiology.


Assuntos
Trifosfato de Adenosina/metabolismo , Pâncreas Exócrino/metabolismo , Ductos Pancreáticos/metabolismo , Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Ácidos e Sais Biliares/metabolismo , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Concentração Osmolar , Pâncreas Exócrino/citologia , Ductos Pancreáticos/citologia , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Estresse Fisiológico , Difosfato de Uridina/análogos & derivados , Difosfato de Uridina/farmacologia , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/farmacologia
12.
Antimicrob Agents Chemother ; 58(7): 3636-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24733478

RESUMO

Ribonucleotide analog inhibitors of the RNA-dependent RNA polymerase of hepatitis C virus (HCV) represent one of the most exciting recent developments in HCV antiviral therapy. Although it is well established that these molecules cause chain termination by competing at the triphosphate level with natural nucleotides for incorporation into elongating RNA, strategies to rationally optimize antiviral potency based on enzyme kinetics remain elusive. In this study, we used the isolated HCV polymerase elongation complex to determine the pre-steady-state kinetics of incorporation of 2'F-2'C-Me-UTP, the active metabolite of the anti-HCV drug sofosbuvir. 2'F-2'C-Me-UTP was efficiently incorporated by HCV polymerase with apparent Kd (equilibrium constant) and kpol (rate of nucleotide incorporation at saturating nucleotide concentration) values of 113 ± 28 µM and 0.67 ± 0.05 s(-1), respectively, giving an overall substrate efficiency (kpol/Kd) of 0.0059 ± 0.0015 µM(-1) s(-1). We also measured the substrate efficiency of other UTP analogs and found that substitutions at the 2' position on the ribose can greatly affect their level of incorporation, with a rank order of OH > F > NH2 > F-C-Me > C-Me > N3 > ara. However, the efficiency of chain termination following the incorporation of UMP analogs followed a different order, with only 2'F-2'C-Me-, 2'C-Me-, and 2'ara-UTP causing complete and immediate chain termination. The chain termination profile of the 2'-modified nucleotides explains the apparent lack of correlation observed across all molecules between substrate efficiency at the single-nucleotide level and their overall inhibition potency. To our knowledge, these results provide the first attempt to use pre-steady-state kinetics to uncover the mechanism of action of 2'-modified NTP analogs against HCV polymerase.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/farmacologia , Algoritmos , Guanosina Trifosfato/metabolismo , Humanos , Cinética
13.
Chem Asian J ; 19(18): e202400475, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38949615

RESUMO

We report a systematic study on controlling the enzyme activity of a terminal uridylyl transferase (TUTase) called SpCID1, which provides methods to effect site-specific incorporation of a single modified nucleotide analog at the 3'-end of an RNA oligonucleotide (ON). Responsive heterocycle-modified fluorescent UTP probes that are useful in analyzing non-canonical nucleic acid structures and azide- and alkyne-modified UTP analogs that are compatible for chemoenzymatic functionalization were used as study systems. In the first strategy, we balanced the concentration of essential metal ion cofactors (Mg2+ and Mn2+ ions) to restrict the processivity of the enzyme, which gave a very good control on the incorporation of clickable nucleotide analogs. In the second approach, borate that complexes with 2' and 3' oxygen atoms of a ribose sugar was used as a reversibly binding chelator to block repeated addition of nucleotide analogs. Notably, in the presence of heterocycle-modified fluorescent UTPs, we obtained single-nucleotide incorporated RNA products in reasonable yields, while with clickable nucleotides yields were very good. Further, 3'-end azide- and alkyne-labeled RNA ONs were post-enzymatically functionalized by CuAAC and SPAAC reactions with fluorescent probes. These strategies broaden the scope of TUTase in site-specifically installing modifications of different types onto RNA for various applications.


Assuntos
Química Click , Corantes Fluorescentes , Oligonucleotídeos , RNA , Corantes Fluorescentes/química , RNA/química , RNA/metabolismo , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Uridina Trifosfato/química , Uridina Trifosfato/metabolismo , Uridina Trifosfato/análogos & derivados , Alcinos/química , RNA Nucleotidiltransferases/metabolismo , RNA Nucleotidiltransferases/química , Azidas/química , Nucleotídeos/química , Nucleotídeos/metabolismo
14.
Biochemistry ; 52(42): 7500-11, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24053466

RESUMO

The side chain cation of Arg235 provides a 5.6 and 2.6 kcal/mol stabilization of the transition states for orotidine 5'-monophosphate (OMP) decarboxylase (OMPDC) from Saccharomyces cerevisiae catalyzed reactions of OMP and 5-fluoroorotidine 5'-monophosphate (FOMP), respectively, a 7.2 kcal/mol stabilization of the vinyl carbanion-like transition state for enzyme-catalyzed exchange of the C-6 proton of 5-fluorouridine 5'-monophosphate (FUMP), but no stabilization of the transition states for enzyme-catalyzed decarboxylation of truncated substrates 1-(ß-d-erythrofuranosyl)orotic acid and 1-(ß-d-erythrofuranosyl) 5-fluorouracil. These observations show that the transition state stabilization results from formation of a protein cation-phosphodianion pair, and that there is no detectable stabilization from an interaction between the side chain and the pyrimidine ring of substrate. The 5.6 kcal/mol side chain interaction with the transition state for the decarboxylation reaction is 50% of the total 11.2 kcal/mol transition state stabilization by interactions with the phosphodianion of OMP, whereas the 7.2 kcal/mol side chain interaction with the transition state for the deuterium exchange reaction is a larger 78% of the total 9.2 kcal/mol transition state stabilization by interactions with the phosphodianion of FUMP. The effect of the R235A mutation on the enzyme-catalyzed deuterium exchange is expressed predominantly as a change in the turnover number kex, whereas the effect on the enzyme-catalyzed decarboxylation of OMP is expressed predominantly as a change in the Michaelis constant Km. These results are rationalized by a mechanism in which the binding of OMP, compared with that for FUMP, provides a larger driving force for conversion of OMPDC from an inactive open conformation to a productive, active, closed conformation.


Assuntos
Deutério , Guanidina/química , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Ribonucleotídeos/química , Uridina Monofosfato/análogos & derivados , Uridina Trifosfato/análogos & derivados , Cristalografia por Raios X , Descarboxilação , Cinética , Espectroscopia de Ressonância Magnética , Modelos Químicos , Mutação/genética , Orotidina-5'-Fosfato Descarboxilase/química , Orotidina-5'-Fosfato Descarboxilase/genética , Conformação Proteica , Ribonucleotídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo , Uridina Trifosfato/química , Uridina Trifosfato/metabolismo
15.
Cell Biol Int ; 37(10): 1061-79, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23686847

RESUMO

The first ultrastructural and immunomorphological characteristics of the karyosphere (karyosome) and extrachromosomal nuclear bodies in the red flour beetle, Tribolium castaneum, are presented. The karyosphere forms early in the diplotene stage of meiotic prophase by the gathering of all oocyte chromosomes in a limited nuclear volume. Using the BrUTP assay, T. castaneum oocyte chromosomes united in the karyosphere maintain their transcriptional activity until the end of oocyte growth. Hyperphosphorylated RNA polymerase II and basal transcription factors (TFIID and TFIIH) were detected in the perichromatin region of the karyosphere. The T. castaneum karyosphere has an extrachromosomal capsule that separates chromosomes from the rest of the nucleoplasm. Certain structural proteins (F-actin, lamin B) were found in the capsule. Unexpectedly, the karyosphere capsule in T. castaneum oocytes was found to be enriched in TMG-capped snRNAs, which suggests that the capsule is not only a structural support for the karyosphere, but may be involved in biogenesis of snRNPs. We also identified the counterparts of 'universal' extrachromosomal nuclear domains, Cajal bodies (CBs) and interchromatin granule clusters (IGCs). Nuclear bodies containing IGC marker protein SC35 display some features unusual for typical IGCs. SC35 domains in T. castaneum oocytes are predominantly fibrillar complex bodies that do not contain trimethyl guanosine (TMG)-capped small nuclear (sn) RNAs. Microinjections of 2'-O-methyl (U)22 probes into the oocytes allowed revealing poly(A)+ RNAs in these nuclear domains. Several proteins related to mRNA export (heterogeneous ribonucleoprotein core protein A1, export adapters Y14 and Aly and export receptor NXF1) were also detected there. We believe that unusual SC35 nuclear domains of T. castaneum oocytes are possibly involved in mRNP but not snRNP biogenesis.


Assuntos
Núcleo Celular/ultraestrutura , Oócitos/citologia , Tribolium/citologia , Actinas/metabolismo , Animais , Biomarcadores/metabolismo , Núcleo Celular/metabolismo , Feminino , Imuno-Histoquímica , Proteínas de Insetos/metabolismo , Microinjeções , Oócitos/ultraestrutura , Oogênese , Poli A/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIIH/metabolismo , Transcrição Gênica , Tribolium/ultraestrutura , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/metabolismo , Vitelogeninas/metabolismo
16.
RNA ; 16(6): 1130-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20423978

RESUMO

Codon-anticodon interactions are central to both the initiation and elongation phases of eukaryotic mRNA translation. The obvious difference is that the interaction takes place in the ribosomal A-site during elongation, whereas the 40S ribosomal subunit and associated initiation factors scan the mRNA sequence in search of an initiation codon with Met-tRNA(i) bound in the P-site, ceasing once codon-anticodon interaction is established at the AUG. As an indirect test of whether the two mechanisms of mRNA sequence inspection are basically similar or not, the effects of six different uridine analog substitutions in the mRNA were examined in reticulocyte lysate translation assays and 80S initiation complex formation assays. Four constructs, each with the same reporter coding sequence, were used, differing in whether the initiation codon was AUG or ACG, and in whether the 5'-UTR had U residues or not. Three analogs (5-bromoU, 5-aminoallylU, and pseudoU) inhibited both elongation and initiation, but the other three had striking differential effects. Ribothymidine had a negligible effect on elongation but caused a approximately 50% inhibition of initiation, with little effect on actual AUG recognition, which implies that inhibition must have occurred at some earlier step in initiation. In complete contrast, 2' deoxyU was prohibitive to elongation but had no effect on initiation, and 4-thioU actually stimulated initiation but quite strongly inhibited elongation processivity. These results show that the detailed mechanisms of inspection of the mRNA sequence during scanning-dependent initiation and elongation must be considerably different.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/genética , Animais , Bromouracila/análogos & derivados , Códon/genética , Cinética , Mamíferos/genética , Pseudouridina/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Repetições de Trinucleotídeos/genética , Uridina/análogos & derivados , Uridina/metabolismo , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/metabolismo
17.
Chembiochem ; 12(15): 2341-6, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21887841

RESUMO

We herein describe the synthesis of fluorescent 5-(5,6-dimethoxybenzothiazol-2-yl)-2'-deoxyuridine 5'-triphosphate (d(bt)UTP) and primer extension reactions using d(bt)UTP. We also carried out primer extension reactions using the (bt)U template. B family DNA polymerases, such as KOD, Deep Vent (exo-), and 9°N(m) DNA polymerases, were effective for elongation with d(bt)UTP. Deep Vent (exo-) and KOD DNA polymerases have excellent fidelity for incorporating d(bt)UTP only at the site opposite the adenine template and only dATP when using the (bt)U template. Therefore, d(bt)UTP is an excellent fluorescent nucleotide that can be incorporated into DNA by DNA polymerases.


Assuntos
Primers do DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos de Desoxiuracil/química , Corantes Fluorescentes/química , Oligodesoxirribonucleotídeos/química , Uridina Trifosfato/análogos & derivados , Sequência de Bases , Primers do DNA/síntese química , Primers do DNA/metabolismo , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Nucleotídeos de Desoxiuracil/síntese química , Nucleotídeos de Desoxiuracil/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Modelos Moleculares , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/metabolismo , Uridina Trifosfato/síntese química , Uridina Trifosfato/metabolismo
18.
Am J Physiol Regul Integr Comp Physiol ; 301(2): R510-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21613580

RESUMO

ATP and UTP are endogenous agonists of P2Y(2/4) receptors. To define the in vivo effects of P2Y(2) receptor activation on blood pressure and urinary excretion, we compared the response to INS45973, a P2Y(2/4) receptor agonist and UTP analog, in wild-type (WT) and P2Y(2) receptor knockout (P2Y(2)-/-) mice. INS45973 was administered intravenously as a bolus injection or continuous infusion to determine effects on blood pressure and renal function, respectively. Within seconds, bolus application of INS45973 (0.1 to 3 mg/kg body wt) dose-dependently decreased blood pressure in WT (maximum response -35 ± 2 mmHg) and to a similar extent in endothelial nitric oxide synthase knockout mice. By contrast, blood pressure increased in P2Y(2)-/- (maximum response +18 ± 1 mmHg) but returned to basal levels within 60 s. Continuous infusion of INS45973 (25 to 750 µg·min(-1)·kg(-1) body wt) dose-dependently increased urinary excretion of Na(+) in WT (maximum response +46 ± 15%) but reduced Na(+) excretion in P2Y(2)-/- (maximum responses of -45 ± 15%) mice. In renal clearance experiments, INS45973 did not affect glomerular filtration rate but lowered blood pressure and increased fractional excretion of fluid, Na(+), and K(+) in WT relative to P2Y(2)-/- mice. The blood pressure responses to INS45973 are consistent with P2Y(2) receptor-mediated NO-independent vasodilation and implicate responses to endothelium-derived hyperpolarizing factor, and P2Y(2) receptor-independent vasoconstriction, probably via activation of P2Y(4) receptors on smooth muscle. Systemic activation of P2Y(2) receptors thus lowers blood pressure and inhibits renal Na(+) reabsorption, effects suggesting the potential utility of P2Y(2) agonism in the treatment of hypertension.


Assuntos
Agonistas Purinérgicos/farmacologia , Receptores Purinérgicos P2Y2/metabolismo , Animais , Pressão Sanguínea , Regulação da Expressão Gênica/fisiologia , Taxa de Filtração Glomerular/efeitos dos fármacos , Inosina/análogos & derivados , Inosina/farmacologia , Rim/efeitos dos fármacos , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores Purinérgicos P2Y2/genética , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/farmacologia
19.
AAPS J ; 23(1): 23, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33417061

RESUMO

Capecitabine is an oral pro-drug of 5-fluorouracil. Patients with solid tumours who are treated with capecitabine may develop hand-and-foot syndrome (HFS) as side effect. This might be a result of accumulation of intracellular metabolites. We characterised the pharmacokinetics (PK) of 5-fluorouridine 5'-triphosphate (FUTP) in peripheral blood mononuclear cells (PBMCs) and assessed the relationship between exposure to capecitabine or its metabolites and the development of HFS. Plasma and intracellular capecitabine PK data and ordered categorical HFS data was available. A previously developed model describing the PK of capecitabine and metabolites was extended to describe the intracellular FUTP concentrations. Subsequently, a continuous-time Markov model was developed to describe the development of HFS during treatment with capecitabine. The influences of capecitabine and metabolite concentrations on the development of HFS were evaluated. The PK of intracellular FUTP was described by an one-compartment model with first-order elimination (ke,FUTP was 0.028 h-1 (95% confidence interval 0.022-0.039)) where the FUTP influx rate was proportional to the 5-FU plasma concentrations. The predicted individual intracellular FUTP concentration was identified as a significant predictor for the development and severity of HFS. Simulations demonstrated a clear exposure-response relationship. The intracellular FUTP concentrations were successfully described and a significant relationship between these intracellular concentrations and the development and severity of HFS was identified. This model can be used to simulate future dosing regimens and thereby optimise treatment with capecitabine.


Assuntos
Antimetabólitos Antineoplásicos/farmacocinética , Capecitabina/farmacocinética , Síndrome Mão-Pé/etiologia , Modelos Biológicos , Uridina Trifosfato/análogos & derivados , Administração Oral , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/efeitos adversos , Variação Biológica da População , Capecitabina/administração & dosagem , Capecitabina/efeitos adversos , Simulação por Computador , Conjuntos de Dados como Assunto , Relação Dose-Resposta a Droga , Cálculos da Dosagem de Medicamento , Síndrome Mão-Pé/sangue , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Cadeias de Markov , Neoplasias/tratamento farmacológico , Cultura Primária de Células , Pró-Fármacos/administração & dosagem , Pró-Fármacos/efeitos adversos , Pró-Fármacos/farmacocinética , Uridina Trifosfato/farmacocinética
20.
BMC Genomics ; 11: 542, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20929564

RESUMO

BACKGROUND: Validation of microarrays data by quantitative real-time PCR (qPCR) is often limited by the low amount of available RNA. This raised the possibility to perform validation experiments on the amplified amino allyl labeled RNA (AA-aRNA) leftover from microarrays. To test this possibility, we used an ongoing study of our laboratory aiming at identifying new biomarkers of graft rejection by the transcriptomic analysis of blood cells from brain-dead organ donors. RESULTS: qPCR for ACTB performed on AA-aRNA from 15 donors provided Cq values 8 cycles higher than when original RNA was used (P < 0.001), suggesting a strong inhibition of qPCR performed on AA-aRNA. When expression levels of 5 other genes were measured in AA-aRNA generated from a universal reference RNA, qPCR sensitivity and efficiency were decreased. This prevented the quantification of one low-abundant gene, which was readily quantified in un-amplified and un-labeled RNA. To overcome this limitation, we modified the reverse transcription (RT) protocol that generates cDNA from AA-aRNA as follows: addition of a denaturation step and 2-min incubation at room temperature to improve random primers annealing, a transcription initiation step to improve RT, and a final treatment with RNase H to degrade remaining RNA. Tested on universal reference AA-aRNA, these modifications provided a gain of 3.4 Cq (average from 5 genes, P < 0.001) and an increase of qPCR efficiency (from -1.96 to -2.88; P = 0.02). They also allowed for the detection of a low-abundant gene that was previously undetectable. Tested on AA-aRNA from 15 brain-dead organ donors, RT optimization provided a gain of 2.7 cycles (average from 7 genes, P = 0.004). Finally, qPCR results significantly correlated with microarrays. CONCLUSION: We present here an optimized RT protocol for validation of microarrays by qPCR from AA-aRNA. This is particularly valuable in experiments where limited amount of RNA is available.


Assuntos
Compostos Alílicos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Coloração e Rotulagem/métodos , Uridina Trifosfato/análogos & derivados , Primers do DNA/metabolismo , Humanos , Masculino , Reprodutibilidade dos Testes , Transcrição Reversa/genética , Ribonucleases/metabolismo , Uridina Trifosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA