Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(18): 10479-10499, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32960212

RESUMO

The full-length mRNAs of the human immunodeficiency virus type-1 (HIV-1), the human T-cell lymphotropic virus type-1 (HTLV-1), and the mouse mammary tumor virus (MMTV) harbor IRESs. The activity of the retroviral-IRESs requires IRES-transacting factors (ITAFs), being hnRNP A1, a known ITAF for the HIV-1 IRES. In this study, we show that hnRNP A1 is also an ITAF for the HTLV-1 and MMTV IRESs. The MMTV IRES proved to be more responsive to hnRNP A1 than either the HTLV-1 or the HIV-1 IRESs. The impact of post-translational modifications of hnRNP A1 on HIV-1, HTLV-1 and MMTV IRES activity was also assessed. Results show that the HIV-1 and HTLV-1 IRESs were equally responsive to hnRNP A1 and its phosphorylation mutants S4A/S6A, S4D/S6D and S199A/D. However, the S4D/S6D mutant stimulated the activity from the MMTV-IRES to levels significantly higher than the wild type hnRNP A1. PRMT5-induced symmetrical di-methylation of arginine residues of hnRNP A1 enabled the ITAF to stimulate the HIV-1 and HTLV-1 IRESs while reducing the stimulatory ability of the ITAF over the MMTV IRES. We conclude that retroviral IRES activity is not only dependent on the recruited ITAFs but also relies on how these proteins are modified at the post-translational level.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1/genética , Sítios Internos de Entrada Ribossomal/genética , Iniciação Traducional da Cadeia Peptídica , Processamento de Proteína Pós-Traducional/genética , Animais , Regulação Viral da Expressão Gênica/genética , HIV-1/genética , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Fosforilação/genética , Proteína-Arginina N-Metiltransferases/genética , RNA Mensageiro/genética
2.
PLoS Pathog ; 15(2): e1007533, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30768644

RESUMO

Retroviruses have evolved multiple means to counteract host restriction factors such as single-stranded DNA-specific deoxycytidine deaminases (APOBEC3s, A3s). These include exclusion of A3s from virions by an A3-unreactive nucleocapsid or expression of an A3-neutralizing protein (Vif, Bet). However, a number of retroviruses package A3s and do not encode apparent vif- or bet-like genes, yet they replicate in the presence of A3s. The mode by which they overcome deleterious restriction remains largely unknown. Here we show that the prototypic betaretrovirus, mouse mammary tumor virus (MMTV), packages similar amounts of A3s as HIV-1ΔVif, yet its proviruses carry a significantly lower level of A3-mediated deamination events than the lentivirus. The G-to-A mutation rate increases when the kinetics of reverse transcription is reduced by introducing a mutation (F120L) to the DNA polymerase domain of the MMTV reverse transcriptase (RT). A similar A3-sensitizing effect was observed when the exposure time of single-stranded DNA intermediates to A3s during reverse transcription was lengthened by reducing the dNTP concentration or by adding suboptimal concentrations of an RT inhibitor to infected cells. Thus, the MMTV RT has evolved to impede access of A3s to transiently exposed minus DNA strands during reverse transcription, thereby alleviating inhibition by A3 family members. A similar mechanism may be used by other retroviruses and retrotransposons to reduce deleterious effects of A3 proteins.


Assuntos
Citidina Desaminase/genética , Citosina Desaminase/genética , Vírus do Tumor Mamário do Camundongo/genética , Desaminases APOBEC , Desaminase APOBEC-3G/genética , Desaminase APOBEC-3G/metabolismo , Animais , Linhagem Celular , Citidina Desaminase/metabolismo , Citosina Desaminase/metabolismo , DNA , DNA de Cadeia Simples , Células HEK293 , Células HeLa , Humanos , Vírus do Tumor Mamário do Camundongo/crescimento & desenvolvimento , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Mutação/genética , Nucleocapsídeo , Polimerização , Ligação Proteica , Retroviridae , Transcrição Reversa/genética , Vírion
3.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430186

RESUMO

The ability to establish, maintain, and reactivate from latency in sensory neurons within trigeminal ganglia (TG) is crucial for bovine herpesvirus 1 (BoHV-1) transmission. In contrast to lytic infection, the only viral gene abundantly expressed during latency is the latency-related (LR) gene. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency, in part because the glucocorticoid receptor (GR) transactivates viral promoters that drive expression of key viral transcriptional regulator proteins (bICP0 and bICP4). Within hours after dexamethasone treatment of latently infected calves, LR gene products and ß-catenin are not readily detected in TG neurons. Hence, we hypothesized that LR gene products and/or ß-catenin restrict GR-mediated transcriptional activation. A plasmid expressing LR RNA sequences that span open reading frame 2 (ORF2-Stop) inhibited GR-mediated transactivation of the BoHV-1 immediate early transcription unit 1 (IEtu1) and mouse mammary tumor virus (MMTV) promoter activity in mouse neuroblastoma cells (Neuro-2A). ORF2-Stop also reduced productive infection and GR steady-state protein levels in transfected Neuro-2A cells. Additional studies revealed that the constitutively active ß-catenin mutant reduced the transactivation of the IEtu1 promoter by GR and dexamethasone. Collectively, these studies suggest ORF2 RNA sequences and Wnt/ß-catenin signaling pathway actively promote maintenance of latency, in part, by impairing GR-mediated gene expression.


Assuntos
Infecções por Herpesviridae/genética , RNA não Traduzido/genética , Proteínas Virais/genética , beta Catenina/genética , Animais , Bovinos , Dexametasona/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/patogenicidade , Humanos , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Neuroblastoma/genética , Neuroblastoma/virologia , Regiões Promotoras Genéticas/genética , RNA não Traduzido/farmacologia , Receptores de Glucocorticoides/genética , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/virologia , Fatores de Transcrição/genética , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/virologia , Latência Viral/genética , Via de Sinalização Wnt/efeitos dos fármacos
4.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32353937

RESUMO

Bisphenol A (BPA) is the most common environmental endocrine disrupting chemical. Studies suggest a link between perinatal BPA exposure and increased breast cancer risk, but the underlying mechanisms remain unclear. This study aims to investigate the effects of in utero BPA exposure on mammary tumorigenesis in MMTV-erbB2 transgenic mice. Pregnant mice were subcutaneously injected with BPA (0, 50, 500 ng/kg and 250 µg/kg BW) daily between gestational days 11-19. Female offspring were examined for mammary tumorigenesis, puberty onset, mammary morphogenesis, and signaling in ER and erbB2 pathways. In utero exposure to low dose BPA (500 ng/kg) induced mammary tumorigenesis, earlier puberty onset, increased terminal end buds, and prolonged estrus phase, which was accompanied by proliferative mammary morphogenesis. CD24/49f-based FACS analysis showed that in utero exposure to 500 ng/kg BPA induced expansion of luminal and basal/myoepithelial cell subpopulations at PND 35. Molecular analysis of mammary tissues at PND 70 showed that in utero exposure to low doses of BPA induced upregulation of ERα, p-ERα, cyclin D1, and c-myc, concurrent activation of erbB2, EGFR, erbB-3, Erk1/2, and Akt, and upregulation of growth factors/ligands. Our results demonstrate that in utero exposure to low dose BPA promotes mammary tumorigenesis in MMTV-erbB2 mice through induction of ER-erbB2 crosstalk and mammary epithelial reprogramming, which advance our understanding of the mechanism associated with in utero exposure to BPA-induced breast cancer risk. The studies also support using MMTV-erbB2 mouse model for relevant studies.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Disruptores Endócrinos/efeitos adversos , Neoplasias Mamárias Experimentais/patologia , Fenóis/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Compostos Benzidrílicos/administração & dosagem , Reprogramação Celular , Disruptores Endócrinos/administração & dosagem , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Idade Gestacional , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Exposição Materna , Camundongos , Camundongos Transgênicos , Fenóis/administração & dosagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Maturidade Sexual/efeitos dos fármacos
5.
Microb Pathog ; 130: 283-294, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30905715

RESUMO

Breast cancer (BC) is a complex and heterogeneous disease whose evolution depends on the tumor-host interaction. This type of cancer occurs when the mammary cells begin to grow wildly and become able to invade nearby tissues and/or promote metastases. Mouse mammary tumor virus (MMTV) is the accepted etiological agent of mammary tumors in mice. The identification of MMTV-like sequences and antigens in human mammary carcinoma has supported the theory that a virus homologous to MMTV (namely, HMTV) may be involved in human BC, but the role of retroviral elements in this disease remains elusive, as results from different research groups were contradictory. In the present review we present works for and against the involvement of HMTV in BC and discuss possible causes of divergences among studies. In the final section we fit current data regarding this issue to stablished causality criteria. We conclude that there is convincing data supporting the association of HMTV with BC, however there is still a need for epidemiological and basic research studies focusing on carcinogenic mechanisms for this virus in humans to fully understand its role in BC. This knowledge may open the way for the development of new preventive and therapeutic approaches in human BC.


Assuntos
Neoplasias da Mama/virologia , Carcinoma/virologia , Vírus do Tumor Mamário do Camundongo/isolamento & purificação , Vírus do Tumor Mamário do Camundongo/patogenicidade , Infecções por Retroviridae/virologia , Animais , Neoplasias da Mama/fisiopatologia , Carcinoma/fisiopatologia , Humanos , Camundongos , Infecções por Retroviridae/complicações
6.
Breast Cancer Res ; 20(1): 138, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458886

RESUMO

BACKGROUND: Early analyses of human breast cancer identified high expression of the insulin-like growth factor type 1 receptor (IGF-1R) correlated with hormone receptor positive breast cancer and associated with a favorable prognosis, whereas low expression of IGF-1R correlated with triple negative breast cancer (TNBC). We previously demonstrated that the IGF-1R acts as a tumor and metastasis suppressor in the Wnt1 mouse model of TNBC. The mechanisms for how reduced IGF-1R contributes to TNBC phenotypes is unknown. METHODS: We analyzed the METABRIC dataset to further stratify IGF-1R expression with patient survival and specific parameters of TNBC. To investigate molecular events associated with the loss of IGF-1R function in breast tumor cells, we inhibited IGF-1R in human cell lines using an IGF-1R blocking antibody and analyzed MMTV-Wnt1-mediated mouse tumors with reduced IGF-1R function through expression of a dominant-negative transgene. RESULTS: Our analysis of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset revealed association between low IGF-1R and reduced overall patient survival. IGF-1R expression was inversely correlated with patient survival even within hormone receptor-positive breast cancers, indicating reduced overall patient survival with low IGF-1R was not due simply to low IGF-1R expression within TNBCs. Inhibiting IGF-1R in either mouse or human tumor epithelial cells increased reactive oxygen species (ROS) production and activation of the endoplasmic reticulum stress response. IGF-1R inhibition in tumor epithelial cells elevated interleukin (IL)-6 and C-C motif chemokine ligand 2 (CCL2) expression, which was reversed by ROS scavenging. Moreover, the Wnt1/dnIGF-1R primary tumors displayed a tumor-promoting immune phenotype. The increased CCL2 promoted an influx of CD11b+ monocytes into the primary tumor that also had increased matrix metalloproteinase (MMP)-2, MMP-3, and MMP-9 expression. Increased MMP activity in the tumor stroma was associated with enhanced matrix remodeling and collagen deposition. Further analysis of the METABRIC dataset revealed an increase in IL-6, CCL2, and MMP-9 expression in patients with low IGF-1R, consistent with our mouse tumor model and data in human breast cancer cell lines. CONCLUSIONS: Our data support the hypothesis that reduction of IGF-1R function increases cellular stress and cytokine production to promote an aggressive tumor microenvironment through infiltration of immune cells and matrix remodeling.


Assuntos
Citocinas/metabolismo , Estresse do Retículo Endoplasmático , Neoplasias Mamárias Experimentais/patologia , Receptores de Somatomedina/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Feminino , Humanos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/virologia , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Camundongos Transgênicos , Receptor IGF Tipo 1 , Transdução de Sinais , Microambiente Tumoral , Proteína Wnt1/genética
7.
Breast Cancer Res ; 20(1): 131, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367629

RESUMO

BACKGROUND: Amphiregulin (AREG), a ligand of the epidermal growth factor receptor, is not only essential for proper mammary ductal development, but also associated with breast cancer proliferation and growth. In the absence of AREG, mammary ductal growth is stunted and fails to expand. Furthermore, suppression of AREG expression in estrogen receptor-positive breast tumor cells inhibits in-vitro and in-vivo growth. METHODS: We crossed AREG-null (AREG-/-) mice with the murine luminal B breast cancer model, MMTV-PyMT (PyMT), to generate spontaneous breast tumors that lack AREG (AREG-/- PyMT). We evaluated tumor growth, cytokeratin-8 (K8)-positive luminal cells, cytokeratin-14 (K14)-positive myoepithelial cells, and expression of AREG, Ki67, and PyMT. Primary myoepithelial cells from nontumor-bearing AREG+/+ mice underwent fluorescence-activated cell sorting and were adapted to culture for in-vitro coculture studies with AT-3 cells, a cell line derived from C57Bl/6 PyMT mammary tumors. RESULTS: Intriguingly, PyMT-induced lesions progress more rapidly in AREG-/- mice than in AREG+/+ mice. Quantification of K8+ luminal and K14+ myoepithelial cells in non-PyMT AREG-/- mammary glands showed fewer K14+ cells and a thinner myoepithelial layer. Study of AT-3 cells indicated that coculture with myoepithelial cells or exposure to AREG, epidermal growth factor, or basic fibroblast growth factor can suppress PyMT expression. Late-stage AREG-/- PyMT tumors are significantly less solid in structure, with more areas of papillary and cystic growth. Papillary areas appear to be both less proliferative and less necrotic. In The Cancer Genome Atlas database, luminal-B invasive papillary carcinomas have lower AREG expression than luminal B invasive ductal carcinomas. CONCLUSIONS: Our study has revealed a previously unknown role of AREG in myoepithelial cell development and PyMT expression. AREG expression is essential for proper myoepithelial coverage of mammary ducts. Both AREG and myoepithelial cells can suppress PyMT expression. We find that lower AREG expression is associated with invasive papillary breast cancer in both the MMTV-PyMT model and human breast cancer.


Assuntos
Anfirregulina/metabolismo , Células Epiteliais/patologia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/patologia , Anfirregulina/genética , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais/virologia , Feminino , Humanos , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/virologia , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Invasividade Neoplásica/patologia , Polyomavirus/genética , Polyomavirus/imunologia
8.
Liver Int ; 35(4): 1442-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25302564

RESUMO

BACKGROUND & AIMS: The NOD.c3c4 mouse model develops autoimmune biliary disease characterized by spontaneous granulomatous cholangitis, antimitochondrial antibodies and liver failure. This model for primary biliary cirrhosis (PBC) has evidence of biliary infection with mouse mammary tumour virus (MMTV), suggesting that the virus may have a role in cholangitis development and progression of liver disease in this mouse model. We tested the hypothesis that MMTV infection is associated with cholangitis in the NOD.c3c4 mouse model by investigating whether antiretroviral therapy impacts on viral levels and liver disease. METHODS: NOD.c3c4 mice were treated with combination antiretroviral therapy. Response to treatment was studied by measuring MMTV RNA in the liver, liver enzyme levels in serum and liver histology using a modified Ishak score. RESULTS: Combination therapy with the reverse transcriptase inhibitors, tenofovir and emtricitabine, resulted in a significant reduction in serum liver enzyme levels, attenuation of cholangitis and decreased MMTV levels in the livers of NOD.c3c4 mice. Furthermore, treatment with the retroviral protease inhibitors, lopinavir and ritonavir, in addition to the reverse transcriptase inhibitors, resulted in further decrease in MMTV levels and attenuation of liver disease in this model. CONCLUSIONS: The attenuation of cholangitis with regimens containing the reverse transcriptase inhibitors, tenofovir and emtricitabine, and the protease inhibitors, lopinavir and ritonavir, suggests that retroviral infection may play a role in the development of cholangitis in this model.


Assuntos
Antirretrovirais/farmacologia , Colangite/tratamento farmacológico , Cirrose Hepática Biliar/tratamento farmacológico , Vírus do Tumor Mamário do Camundongo/efeitos dos fármacos , Infecções por Retroviridae/tratamento farmacológico , Infecções Tumorais por Vírus/tratamento farmacológico , Sequência de Aminoácidos , Animais , Biomarcadores/sangue , Colangite/sangue , Colangite/imunologia , Colangite/virologia , Modelos Animais de Doenças , Combinação de Medicamentos , Quimioterapia Combinada , Combinação Emtricitabina e Fumarato de Tenofovir Desoproxila/farmacologia , Feminino , Lamivudina/farmacologia , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/imunologia , Cirrose Hepática Biliar/virologia , Lopinavir/farmacologia , Vírus do Tumor Mamário do Camundongo/enzimologia , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos Endogâmicos NOD , Dados de Sequência Molecular , Inibidores de Proteases/farmacologia , RNA Viral/sangue , Infecções por Retroviridae/sangue , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia , Inibidores da Transcriptase Reversa/farmacologia , Ritonavir/farmacologia , Fatores de Tempo , Infecções Tumorais por Vírus/sangue , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia , Carga Viral , Zidovudina/farmacologia
9.
Int J Mol Sci ; 16(4): 7655-71, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25853264

RESUMO

There is increasing evidence that prenatal exposure to environmental factors may modify breast cancer risk later in life. This study aimed to investigate the effects of in utero exposure to low-dose alcohol on mammary development and tumor risk. Pregnant MMTV-erbB-2 mice were exposed to alcohol (6 g/kg/day) between day 13 and day 19 of gestation, and the female offspring were examined for tumor risk. Whole mount analysis indicated that in utero exposure to low-dose alcohol induced significant increases in ductal extension at 10 weeks of age. Molecular analysis showed that in utero alcohol exposure induced upregulation of ERα signaling and activation of Akt and Erk1/2 in pubertal mammary glands. However, enhanced signaling in the EGFR/erbB-2 pathway appeared to be more prominent in 10-week-old glands than did signaling in the other pathways. Interestingly, tumor development in mice with in utero exposure to low-dose alcohol was slightly delayed compared to control mice, but tumor multiplicity was increased. The results indicate that in utero exposure to low-dose alcohol induces the reprogramming of mammary development by mechanisms that include altered signaling in the estrogen receptor (ER) and erbB-2 pathways. The intriguing tumor development pattern might be related to alcohol dose and exposure conditions, and warrants further investigation.


Assuntos
Etanol/toxicidade , Glândulas Mamárias Animais/efeitos dos fármacos , Neoplasias Mamárias Experimentais/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Transformação Celular Viral/genética , Receptor alfa de Estrogênio/metabolismo , Etanol/farmacologia , Feminino , Feto/efeitos dos fármacos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/virologia , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Camundongos Transgênicos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Receptor ErbB-2/genética , Regulação para Cima
10.
BMC Cancer ; 14: 509, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25012362

RESUMO

BACKGROUND: Tetraspanins are transmembrane proteins that serve as scaffolds for multiprotein complexes containing, for example, integrins, growth factor receptors and matrix metalloproteases, and modify their functions in cell adhesion, migration and transmembrane signaling. CD151 is part of the tetraspanin family and it forms tight complexes with ß1 and ß4 integrins, both of which have been shown to be required for tumorigenesis and/or metastasis in transgenic mouse models of breast cancer. High levels of the tetraspanin CD151 have been linked to poor patient outcome in several human cancers including breast cancer. In addition, CD151 has been implicated as a promoter of tumor angiogenesis and metastasis in various model systems. METHODS: Here we investigated the effect of Cd151 deletion on mammary tumorigenesis by crossing Cd151-deficient mice with a spontaneously metastasising transgenic model of breast cancer induced by the polyoma middle T antigen (PyMT) driven by the murine mammary tumor virus promoter (MMTV). RESULTS: Cd151 deletion did not affect the normal development and differentiation of the mammary gland. While there was a trend towards delayed tumor onset in Cd151-/- PyMT mice compared to Cd151+/+ PyMT littermate controls, this result was only approaching significance (Log-rank test P-value =0.0536). Interestingly, Cd151 deletion resulted in significantly reduced numbers and size of primary tumors but did not appear to affect the number or size of metastases in the MMTV/PyMT mice. Intriguingly, no differences in the expression of markers of cell proliferation, apoptosis and blood vessel density was observed in the primary tumors. CONCLUSION: The findings from this study provide additional evidence that CD151 acts to enhance tumor formation initiated by a range of oncogenes and strongly support its relevance as a potential therapeutic target to delay breast cancer progression.


Assuntos
Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Tetraspanina 24/genética , Animais , Antígenos Transformantes de Poliomavirus/genética , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/genética , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Tetraspanina 24/metabolismo
11.
Adv Exp Med Biol ; 812: 121-126, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24729223

RESUMO

Distributions of oxygen concentration (pO2) are a critical determinant of normal tissue health as well as tumor aggressiveness and response to therapy. A number of studies show the value of normal tissue and tumor tissue oxygenation images and some of these will be discussed here. A strong correlation between tumor hypoxic fraction as measured with electron paramagnetic resonance oxygen imaging and radiation treatment success or failure has been found in two separate cancer types. Oxygen images of the torso of wild type mice show initial reduction of lung, liver, visceral, and muscle pO2 with cyclic halving of fraction of inspired oxygen (FiO2), but variation is blunted over an hour. Spontaneous breast cancers in Mouse Mammary Tumor Viral (MMTV) promoted-polyoma middle T antigen (PyMT) mice with BNIP3, a major factor in promotion of mitochondrial autophagy, knocked out will be compared with wild type animals. Preliminary studies for the BNIP3 knock out animals show extremely low pO2. The wide variety of studies, in which oxygen images can play an integral role, serve to demonstrate the importance of oxygen images.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Neoplasias Mamárias Experimentais/metabolismo , Oxigênio/metabolismo , Animais , Antígenos Transformantes de Poliomavirus/imunologia , Vírus do Tumor Mamário do Camundongo/patogenicidade , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética
12.
Int J Cancer ; 133(7): 1530-5, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23580334

RESUMO

There remains great controversy as to whether mouse mammary tumor virus (MMTV), the etiological agent of mammary cancer in mice, or a closely related human retrovirus, plays a role in the development of breast cancer in humans. On one hand, retroviruses such as human T-cell lymphotropic virus and human immunodeficiency virus (HIV) are known causative agents of cancer (in the case of HIV, albeit, indirectly), but attempts to associate other retroviruses with human cancers have been difficult. A recent, high profile, example has been the postulated involvement of another mouse virus, xenotropic murine leukemia virus-related virus, in human prostate cancer, which is now thought to be due to contamination. Here, we review some of the more recent evidence for and against the involvement of MMTV in human breast cancer and suggest future studies that may allow a definitive answer to this conundrum.


Assuntos
Neoplasias da Mama/virologia , Vírus do Tumor Mamário do Camundongo/patogenicidade , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/virologia , Animais , Feminino , Humanos , Camundongos , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/transmissão , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/transmissão
13.
Breast Cancer Res ; 14(2): R67, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22531600

RESUMO

INTRODUCTION: The neuron-glial antigen 2 (NG2) proteoglycan promotes pericyte recruitment and mediates pericyte interaction with endothelial cells. In the absence of NG2, blood vessel development is negatively impacted in several pathological models. Our goal in this study was to determine the effect of NG2 ablation on the early development and function of blood vessels in mammary tumors in the mammary tumor virus-driven polyoma middle T (MMTV-PyMT) transgenic mouse, and to correlate these vascular changes with alterations in mammary tumor growth. METHODS: Three different tumor paradigms (spontaneous tumors, transplanted tumors, and orthotopic allografts of tumor cell lines) were used to investigate the effects of NG2 ablation on breast cancer progression in the MMTV-PyMT transgenic mouse. In addition to examining effects of NG2 ablation on mammary tumor growth, we also investigated effects on the structure and function of tumor vasculature. RESULTS: Ablation of NG2 led to reduced early progression of spontaneous, transplanted, and orthotopic allograft mammary tumors. NG2 was not expressed by the mammary tumor cells themselves, but instead was found on three components of the tumor stroma. Microvascular pericytes, myeloid cells, and adipocytes were NG2-positive in both mouse and human mammary tumor stroma. The effect of NG2 on tumor progression therefore must be stromal in nature. Ablation of NG2 had several negative effects on early development of the mammary tumor vasculature. In the absence of NG2, pericyte ensheathment of endothelial cells was reduced, along with reduced pericyte maturation, reduced sprouting of endothelial cells, reduced assembly of the vascular basal lamina, and reduced tumor vessel diameter. These early deficits in vessel structure are accompanied by increased vessel leakiness, increased tumor hypoxia, and decreased tumor growth. NG2 ablation also diminishes the number of tumor-associated and TEK tyrosine kinase endothelial (Tie2) expressing macrophages in mammary tumors, providing another possible mechanism for reducing tumor vascularization and growth. CONCLUSIONS: These results emphasize the importance of NG2 in mediating pericyte/endothelial cell communication that is required for proper vessel maturation and function. In the absence of normal pericyte/endothelial cell interaction, poor vascular function results in diminished early progression of mammary tumors.


Assuntos
Antígenos/genética , Vasos Sanguíneos/patologia , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/patologia , Neovascularização Patológica/genética , Proteoglicanas/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Antígenos/metabolismo , Antígenos Transformantes de Poliomavirus/genética , Vasos Sanguíneos/metabolismo , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/fisiologia , Neoplasias Mamárias Experimentais/genética , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Camundongos Transgênicos , Proteoglicanas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor TIE-2 , Células Estromais/metabolismo , Células Estromais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Tumour Biol ; 33(6): 1997-2005, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22836804

RESUMO

The ability to transplant mammary cancer stem cells, identified by the phenotype CD24(+)CD29(+)CD49f(+)Sca-1(low), is dependent on the microenvironment in which the cells are placed. Using the MMTV-PyMT mouse model of mammary cancer, we now report two methods of tumor growth enhancement: contributions of tumor stroma in the form of tumor-derived mesenchymal stem cells and orthotopic vs. heterotopic transplantation sites. To support evidence of stem cell function, tumor-derived mesenchymal stem cells differentiated into adipocyte- and osteocyte-like cells after culture in specific medium. Co-injection of tumor-initiating cells with tumor-derived mesenchymal stem cells significantly increased tumor initiation compared to subcutaneous injection of TICs alone; co-injection also allowed tumor initiation with a single TIC. Interestingly, we observed the formation of sarcomas after co-injections of tumor-derived mesenchymal stem cells or mouse embryonic fibroblasts with TICs; sarcomas are not observed in spontaneous MMTV-PyMT tumors and rarely observed in injections of TICs alone. Tumor initiation was also significantly increased in the orthotopic injection site compared to heterotopic injections. We conclude that tumor stroma and orthotopic sites both enhance tumor initiation by mammary cancer stem cells.


Assuntos
Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Neoplasias Mamárias Experimentais/patologia , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/virologia , Vírus do Tumor Mamário do Camundongo/patogenicidade , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Células-Tronco Neoplásicas/metabolismo , Infecções por Retroviridae/genética , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia
15.
Tumour Biol ; 33(6): 1983-96, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22878936

RESUMO

Breast cancer stem cells, the root of tumor growth, present challenges to investigate: Primary human breast cancer cells are difficult to establish in culture and inconsistently yield tumors after transplantation into immune-deficient recipient mice. Furthermore, there is limited characterization of mammary cancer stem cells in mice, the ideal model for the study of breast cancer. We herein describe a pre-clinical breast cancer stem cell model, based on the properties of cancer stem cells, derived from transgenic MMTV-PyMT mice. Using a defined set of cell surface markers to identify cancer stem cells by flow cytometry, at least four cell populations were recovered from primary mammary cancers. Only two of the four populations, one epithelial and one mesenchymal, were able to survive and proliferate in vitro. The epithelial population exhibited tumor initiation potential with as few as 10 cells injected into syngeneic immune-competent recipients. Tumors initiated from injected cell lines recapitulated the morphological and physiological components of the primary tumor. To highlight the stemness potential of the putative cancer stem cells, B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) expression was knocked down via shRNA targeting Bmi-1. Without Bmi-1 expression, putative cancer stem cells could no longer initiate tumors, but tumor initiation was rescued with the introduction of a Bmi-1 overexpression vector in the Bmi-1 knockdown cells. In conclusion, our data show that primary mammary cancers from MMTV-PyMT mice contain putative cancer stem cells that survive in culture and can be used to create a model for study of mammary cancer stem cells.


Assuntos
Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Neoplasias Mamárias Experimentais/patologia , Células-Tronco Neoplásicas/patologia , Animais , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Masculino , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/virologia , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Camundongos Transgênicos , Células-Tronco Neoplásicas/virologia , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Retroviridae/genética , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia
16.
Viruses ; 14(4)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35458452

RESUMO

For many decades, the betaretrovirus, mouse mammary tumour virus (MMTV), has been a causal suspect for human breast cancer. In recent years, substantial new evidence has been developed. Based on this evidence, we hypothesise that MMTV has a causal role. We have used an extended version of the classic A. Bradford Hill causal criteria to assess the evidence. 1. Identification of MMTV in human breast cancers: The MMTV 9.9 kb genome in breast cancer cells has been identified. The MMTV genome in human breast cancer is up to 98% identical to MMTV in mice. 2. EPIDEMIOLOGY: The prevalence of MMTV positive human breast cancer is about 35 to 40% of breast cancers in Western countries and 15 to 20% in China and Japan. 3. Strength of the association between MMTV and human breast cancer: Consistency-MMTV env gene sequences are consistently five-fold higher in human breast cancer as compared to benign and normal breast controls. 4. Temporality (timing) of the association: MMTV has been identified in benign and normal breast tissues up to 10 years before the development of MMTV positive breast cancer in the same patient. 5. EXPOSURE: Exposure of humans to MMTV leads to development of MMTV positive human breast cancer. 6. Experimental evidence: MMTVs can infect human breast cells in culture; MMTV proteins are capable of malignantly transforming normal human breast epithelial cells; MMTV is a likely cause of biliary cirrhosis, which suggests a link between MMTV and the disease in humans. 7. Coherence-analogy: The life cycle and biology of MMTV in humans is almost the same as in experimental and feral mice. 8. MMTV Transmission: MMTV has been identified in human sputum and human milk. Cereals contaminated with mouse fecal material may transmit MMTV. These are potential means of transmission. 9. Biological plausibility: Retroviruses are the established cause of human cancers. Human T cell leukaemia virus type I (HTLV-1) causes adult T cell leukaemia, and human immunodeficiency virus infection (HIV) is associated with lymphoma and Kaposi sarcoma. 10. Oncogenic mechanisms: MMTV oncogenesis in humans probably differs from mice and may involve the enzyme APOBEC3B. CONCLUSION: In our view, the evidence is compelling that MMTV has a probable causal role in a subset of approximately 40% of human breast cancers.


Assuntos
Neoplasias da Mama , Vírus do Tumor Mamário do Camundongo , Animais , Betaretrovirus , Neoplasias da Mama/genética , Neoplasias da Mama/virologia , Citidina Desaminase/genética , Feminino , Genes env , Humanos , Linfoma , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Antígenos de Histocompatibilidade Menor
17.
Oncogene ; 40(1): 12-27, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33046799

RESUMO

Despite major progress in breast cancer research, the functional contribution of distinct cancer cell clones to malignant tumor progression and metastasis remains largely elusive. We have assessed clonal heterogeneity within individual primary tumors and metastases and also during the distinct stages of malignant tumor progression using clonal tracking of cancer cells in the MMTV-PyMT mouse model of metastatic breast cancer. Comparative gene expression analysis of clonal subpopulations reveals a substantial level of heterogeneity across and also within the various stages of breast carcinogenesis. The intra-stage heterogeneity is primarily manifested by differences in cell proliferation, also found within invasive carcinomas of luminal A-, luminal B-, and HER2-enriched human breast cancer. Surprisingly, in the mouse model of clonal tracing of cancer cells, chemotherapy mainly targets the slow-proliferative clonal populations and fails to efficiently repress the fast-proliferative populations. These insights may have considerable impact on therapy selection and response in breast cancer patients.


Assuntos
Neoplasias da Mama/patologia , Rastreamento de Células/métodos , Perfilação da Expressão Gênica/métodos , Neoplasias Mamárias Experimentais/patologia , Vírus do Tumor Mamário do Camundongo/patogenicidade , Receptor ErbB-2/genética , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Evolução Clonal , Progressão da Doença , Feminino , Redes Reguladoras de Genes , Humanos , Microdissecção e Captura a Laser , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/virologia , Camundongos , Metástase Neoplásica , Estadiamento de Neoplasias , Análise de Sequência de RNA
18.
Cell Rep ; 35(2): 108945, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852842

RESUMO

Basal breast cancer is associated with younger age, early relapse, and a high mortality rate. Here, we use unbiased droplet-based single-cell RNA sequencing (RNA-seq) to elucidate the cellular basis of tumor progression during the specification of the basal breast cancer subtype from the luminal progenitor population in the MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mammary tumor model. We find that basal-like cancer cells resemble the alveolar lineage that is specified upon pregnancy and encompass the acquisition of an aberrant post-lactation developmental program of involution that triggers remodeling of the tumor microenvironment and metastatic dissemination. This involution mimicry is characterized by a highly interactive multicellular network, with involution cancer-associated fibroblasts playing a pivotal role in extracellular matrix remodeling and immunosuppression. Our results may partially explain the increased risk and poor prognosis of breast cancer associated with childbirth.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma Basocelular/genética , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/genética , Transcriptoma , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Linhagem da Célula/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/virologia , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Vírus do Tumor Mamário do Camundongo/crescimento & desenvolvimento , Vírus do Tumor Mamário do Camundongo/patogenicidade , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Metástase Neoplásica , Gravidez , Análise de Célula Única , Microambiente Tumoral/genética
19.
J Exp Med ; 197(2): 233-43, 2003 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-12538662

RESUMO

Selection of immune escape variants impairs the ability of the immune system to sustain an efficient antiviral response and to control retroviral infections. Like other retroviruses, mouse mammary tumor virus (MMTV) is not efficiently eliminated by the immune system of susceptible mice. In contrast, MMTV-infected I/LnJ mice are capable of producing IgG2a virus-neutralizing antibodies, sustain this response throughout their life, and secrete antibody-coated virions into the milk, thereby preventing infection of their progeny. Antibodies were produced in response to several MMTV variants and were cross-reactive to them. Resistance to MMTV infection was recessive and was dependent on interferon (IFN)-gamma production, because I/LnJ mice with targeted deletion of the INF-gamma gene failed to produce any virus-neutralizing antibodies. These findings reveal a novel mechanism of resistance to retroviral infection that is based on a robust and sustained IFN-gamma-dependent humoral immune response.


Assuntos
Anticorpos Antivirais/biossíntese , Interferon gama/biossíntese , Vírus do Tumor Mamário do Camundongo/imunologia , Animais , Animais Recém-Nascidos , Reações Cruzadas , Feminino , Variação Genética , Imunoglobulina G/biossíntese , Interferon gama/deficiência , Interferon gama/genética , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/virologia , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Knockout , Leite/virologia , Testes de Neutralização , Infecções por Retroviridae/genética , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia , Superantígenos/genética , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia
20.
J Exp Med ; 185(10): 1871-6, 1997 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-9151713

RESUMO

Mouse mammary tumor virus (MMTV) is a B type retrovirus transmitted to the suckling offspring through milk. MMTV crosses the intestinal barrier of neonates, initially infects the lymphoid cells of the Peyer's patches, and later spreads to all lymphoid organs and to the mammary gland. Adult mice can be infected systemically, but not by oral MMTV administration. In this study, we show that nasal administration of infected milk induces the infection of adult mice. Nasal MMTV infection shared the main features of systemic and neonatal intestinal MMTV infections: deletion of the superantigen (SAg)-reactive T cell subset from the peripheral T cell population, presence of viral DNA in lymphoid cells, and transmission of MMTV from mother to offspring. Viral DNA was restricted to the lungs and nasal-associated lymphoid tissue (NALT) 6 d after nasal infection. Furthermore, SAg-induced T cell proliferation was only detected in NALT. These results demonstrate that MMTV crosses the intact epithelium of the upper respiratory tract of adult mice and infects the lymphoid follicles associated with these structures.


Assuntos
Tecido Linfoide/virologia , Vírus do Tumor Mamário do Camundongo/patogenicidade , Mucosa Nasal/virologia , Infecções por Retroviridae/imunologia , Subpopulações de Linfócitos T/imunologia , Infecções Tumorais por Vírus/transmissão , Animais , Animais Recém-Nascidos , DNA Viral/análise , Feminino , Transmissão Vertical de Doenças Infecciosas , Ativação Linfocitária , Vírus do Tumor Mamário do Camundongo/isolamento & purificação , Vírus do Tumor Mamário do Camundongo/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Leite/virologia , Mucosa Nasal/imunologia , Reação em Cadeia da Polimerase , Superantígenos/imunologia , Infecções Tumorais por Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA