Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 901
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107383, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762182

RESUMO

Disulfide bond formation has a central role in protein folding of both eukaryotes and prokaryotes. In bacteria, disulfide bonds are catalyzed by DsbA and DsbB/VKOR enzymes. First, DsbA, a periplasmic disulfide oxidoreductase, introduces disulfide bonds into substrate proteins. Then, the membrane enzyme, either DsbB or VKOR, regenerate DsbA's activity by the formation of de novo disulfide bonds which reduce quinone. We have previously performed a high-throughput chemical screen and identified a family of warfarin analogs that target either bacterial DsbB or VKOR. In this work, we expressed functional human VKORc1 in Escherichia coli and performed a structure-activity-relationship analysis to study drug selectivity between bacterial and mammalian enzymes. We found that human VKORc1 can function in E. coli by removing two positive residues, allowing the search for novel anticoagulants using bacteria. We also found one warfarin analog capable of inhibiting both bacterial DsbB and VKOR and a second one antagonized only the mammalian enzymes when expressed in E. coli. The difference in the warfarin structure suggests that substituents at positions three and six in the coumarin ring can provide selectivity between the bacterial and mammalian enzymes. Finally, we identified the two amino acid residues responsible for drug binding. One of these is also essential for de novo disulfide bond formation in both DsbB and VKOR enzymes. Our studies highlight a conserved role of this residue in de novo disulfide-generating enzymes and enable the design of novel anticoagulants or antibacterials using coumarin as a scaffold.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Escherichia coli , Vitamina K Epóxido Redutases , Varfarina , Varfarina/metabolismo , Varfarina/química , Vitamina K Epóxido Redutases/metabolismo , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/genética , Humanos , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dissulfetos/química , Dissulfetos/metabolismo , Cumarínicos/metabolismo , Cumarínicos/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Anticoagulantes/química , Anticoagulantes/metabolismo , Benzoquinonas/metabolismo , Benzoquinonas/química , Relação Estrutura-Atividade , Ligação Proteica , Proteínas de Membrana
2.
Am J Hum Genet ; 108(9): 1735-1751, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34314704

RESUMO

CYP2C9 encodes a cytochrome P450 enzyme responsible for metabolizing up to 15% of small molecule drugs, and CYP2C9 variants can alter the safety and efficacy of these therapeutics. In particular, the anti-coagulant warfarin is prescribed to over 15 million people annually and polymorphisms in CYP2C9 can affect individual drug response and lead to an increased risk of hemorrhage. We developed click-seq, a pooled yeast-based activity assay, to test thousands of variants. Using click-seq, we measured the activity of 6,142 missense variants in yeast. We also measured the steady-state cellular abundance of 6,370 missense variants in a human cell line by using variant abundance by massively parallel sequencing (VAMP-seq). These data revealed that almost two-thirds of CYP2C9 variants showed decreased activity and that protein abundance accounted for half of the variation in CYP2C9 function. We also measured activity scores for 319 previously unannotated human variants, many of which may have clinical relevance.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Mutação de Sentido Incorreto , Medicamentos sob Prescrição/metabolismo , Saccharomyces cerevisiae/enzimologia , Xenobióticos/metabolismo , Sítios de Ligação , Citocromo P-450 CYP2C9/química , Citocromo P-450 CYP2C9/genética , Ensaios Enzimáticos , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fenitoína/química , Polimorfismo Genético , Medicamentos sob Prescrição/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Transgenes , Varfarina/química , Varfarina/metabolismo , Xenobióticos/química
3.
Biochem Biophys Res Commun ; 722: 150168, 2024 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-38797156

RESUMO

Human serum albumin (HSA) is the most abundant plasma protein of the circulatory system. It is a multidomain, multifunctional protein that, combining diverse affinities and wide specificity, binds, stores, and transports a variety of biological compounds, pharmacores, and fatty acids. HSA is finding increasing uses in drug-delivery due to its ability to carry functionalized ligands and prodrugs. All this raises the question of competition for binding sites occupancy in case of multiple ligands, which in turn influences the protein structure/dynamic/function relationship and also has an impact on the biomedical applications. In this work, the effects of interactive binding of palmitic acid (PA), warfarin (War) and ibuprofen (Ibu) on the thermal stability of HSA were studied using DSC, ATR-FTIR, and EPR. PA is a high-affinity physiological ligand, while the two drugs are widely used for their anticoagulant (War) and anti-inflammatory (Ibu) efficacy, and are exogenous compounds that accommodate in the deputed drug site DS1 and DS2, respectively overlapping with some of the fatty acid binding sites. The results indicate that HSA acquires the highest thermal stability when it is fully saturated with PA. The binding of this physiological ligand does not hamper the binding of War or Ibu to the native state of the protein. In addition, the three ligands bind simultaneously, suggesting a synergic cooperative influence due to allosteric effects. The increased thermal stability subsequent to binary and multiple ligands binding moderates protein aggregation propensity and restricts protein dynamics. The biophysics findings provide interesting features about protein stability, aggregation, and dynamics in interaction with multiple ligands and are relevant in drug-delivery.


Assuntos
Ibuprofeno , Albumina Sérica Humana , Varfarina , Humanos , Sítios de Ligação , Ligação Competitiva , Ibuprofeno/química , Ibuprofeno/metabolismo , Ligantes , Ácido Palmítico/química , Ácido Palmítico/metabolismo , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Temperatura , Varfarina/química , Varfarina/metabolismo , Varfarina/farmacologia
4.
Drug Metab Dispos ; 51(5): 637-644, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36754837

RESUMO

Cytochromes P450 (P450s or CYPs) are important drug-metabolizing enzymes. Because dogs are frequently used in drug metabolism studies, knowledge of dog CYP2C enzymes is essential because in humans these enzymes are abundant and play major roles in liver and intestine. The present study identified and characterized novel dog CYP2C94 along with previously identified dog CYP2C21 and CYP2C41. Dog CYP2C21, CYP2C41, and CYP2C94 cDNAs, respectively, contained open reading frames of 490, 489, and 496 amino acids and shared high-sequence identities (70%, 75%, and 58%) with human CYP2Cs. Dog CYP2C94 mRNA was preferentially expressed in liver, just as dog CYP2C21 and CYP2C41 mRNAs were. In dog liver, CYP2C21 mRNA was the most abundant, followed by CYP2C94 and CYP2C41 mRNAs. Moreover, the hepatic expressions of all three dog CYP2C mRNAs varied in four individual dogs, two of which did not express CYP2C41 mRNA. The three dog CYP2C genes had similar gene structures, and CYP2C94, although located on the same chromosome, was in a genomic region far from the gene cluster containing CYP2C21 and CYP2C41 Metabolic assays with recombinant proteins showed that dog CYP2C94, along with CYP2C21 and CYP2C41, efficiently catalyzed oxidations of diclofenac, warfarin, and/or omeprazole, indicating that dog CYP2C94 is a functional enzyme. Novel dog CYP2C94 is expressed abundantly in liver and encodes a functional enzyme that metabolizes human CYP2C substrates; it is, therefore, likely responsible for drug clearances in dogs. SIGNIFICANCE STATEMENT: Novel dog cytochrome P450 2C94 (CYP2C94) was identified and characterized along with dog CYP2C21 and CYP2C41. Dog CYP2C94, isolated from liver, had 58% sequence identity and a close phylogenetic relationship with its human homologs and was expressed in liver at the mRNA level. Dog CYP2C94 (and CYP2C21 and CYP2C41) catalyzed oxidations of diclofenac and omeprazole, human CYP2C9 and CYP2C19 substrates, respectively, but CYP2C41 also hydroxylated warfarin. CYP2C94 is therefore a functional drug-metabolizing enzyme likely responsible for drug clearances in dogs.


Assuntos
Diclofenaco , Omeprazol , Cães , Humanos , Animais , Varfarina/metabolismo , Filogenia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , RNA Mensageiro/genética
5.
Arch Biochem Biophys ; 736: 109536, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724833

RESUMO

Nabumetone, a nonsteroidal anti-inflammatory prodrug, is converted to a pharmacologically active metabolite, 6-methoxy-2-naphthylacetic acid (6-MNA); however, it is 11-fold more efficiently converted to 4-(6-methoxy-2-naphthyl)butan-2-ol (MNBO) via a reduction reaction in human hepatocytes. The goal of this study was to identify the enzyme(s) responsible for MNBO formation from nabumetone in the human liver. MNBO formation by human liver microsomes (HLM) was 5.7-fold higher than in the liver cytosol. In a panel of 24 individual HLM samples with quantitative proteomics data, the 17ß-hydroxysteroid dehydrogenase 12 (HSD17B12) protein level had the high correlation coefficient (r = 0.80, P < 0.001) among 4457 proteins quantified in microsomal fractions during MNBO formation. Recombinant HSD17B12 expressed in HEK293T cells exhibited prominent nabumetone reductase activity, and the contribution of HSD17B12 to the activity in the HLM was calculated as almost 100%. MNBO formation in HepG2 and Huh7 cells was significantly decreased by the knockdown of HSD17B12. We also examined the role of HSD17B12 in drug metabolism and found that recombinant HSD17B12 catalyzed the reduction reactions of pentoxifylline and S-warfarin, suggesting that HSD17B12 prefers compounds containing a methyl ketone group on the alkyl chain. In conclusion, our study demonstrated that HSD17B12 is responsible for the formation of MNBO from nabumetone. Together with the evidence for pentoxifylline and S-warfarin reduction, this is the first study to report that HSD17B12, which is known to metabolize endogenous compounds, such as estrone and 3-ketoacyl-CoA, plays a role as a drug-metabolizing enzyme.


Assuntos
Pentoxifilina , Humanos , Anti-Inflamatórios não Esteroides , Células HEK293 , Microssomos Hepáticos/metabolismo , Nabumetona/metabolismo , Pentoxifilina/metabolismo , Varfarina/metabolismo , Biocatálise
6.
J Mol Cell Cardiol ; 162: 81-96, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520801

RESUMO

Calcific aortic valve disease (CAVD) is an important health burden due to its increasing prevalence and lack of available approaches. Osteogenic transdifferentiation of aortic valve interstitial cells (AVICs) contributes to valve calcification. SRY-related HMG-box transcription factor 5 (SOX5) is essential for cartilage development. Whether SOX5 is involved in AVIC calcification has not been determined. This study aimed to explore the role of SOX5 in warfarin-induced AVIC calcification. Immunostaining showed decreased SOX5 in human calcific AV and warfarin induced mouse calcific AV tissues compared with human noncalcific AV and control mouse AV tissues. In calcific human AVICs (hAVICs) and porcine AVICS (pAVICs), both knockdown and overexpression of SOX5 inhibited calcium deposition and osteogenic marker gene expression. Protein expression assays and ChIP assays showed that overexpression of SOX5 led to increased recruitment of SOX5 to the SOX9 promoter and resulted in increased mRNA and protein expression of SOX9. Coimmunoprecipitation and immunofluorescence showed that SOX5 binds to SOX9 with its HMG domain in nucleus. Blue Native PAGE showed overexpression of SOX5 led to multimeric complex formation of SOX5 and resulted in decreased binding of SOX5 to SOX9 similar to the results of knockdown of SOX5. Further ChIP and western blotting assays showed that both knockdown and overexpression of SOX5 resulted in SOX9 initiating transcription of anti-calcific gene LRP6 in warfarin-treated pAVICs. Knockdown of LRP6 rescues the anti-calcification effect of SOX5 overexpression. We found that both loss and gain of function of SOX5 lead to the same phenotype: decreased warfarin induced calcification. The stoichiometry of SOX5 is crucial for cooperation with SOX9, SOX9 nuclear localization and subsequent binding of SOX9 to LRP6 promoter. These results suggest that SOX5 is a potential target for the development of anti-calcification therapy.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Animais , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/metabolismo , Células Cultivadas , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Suínos , Ativação Transcricional , Varfarina/metabolismo , Varfarina/farmacologia
7.
Pediatr Cardiol ; 42(5): 1082-1087, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33837838

RESUMO

Warfarin is prescribed in patients with ventricular assist devices (VADs). Dosage depends on several factors including the underlying genotype. These include polymorphisms of genes encoding cytochrome P450 enzymes, the main ones being CYP2C9, VKORC1, and CYP4F2. The objectives of this study were to evaluate the prevalence of CY2CP9 1*2*3*, VKORC1, and CYP4F2 in children with VADs and the time to reach the target international normalized ratio. We performed a retrospective/prospective study in children with VADs. We recorded polymorphisms, disease, type of VAD, ethnicity, age, gender, height, weight, INR values, bleeding, and thromboembolic episodes. Informed consent was obtained. We enrolled 34 children (19 male, 15 female), with a median age of 2 years (range 0.3-17 years) and median weight of 6.9Kg. The Berlin Heart was the most commonly implanted VAD (22/34; 64%), and the most common diagnosis was dilated cardiomyopathy. Statistical analysis confirmed a significant partial correlation with VKORC1 CC (p = 0.019). The CYP2C9*2 CT genotype showed a late rise in target INR values (p = 0.06), while the CYP2C9*2 CC showed a tendency toward an early INR rise (p = 0.024). We provide new information on the contribution of the warfarin polymorphisms in children with VAD implantation. Pharmacogenomic dosing for children using warfarin has the potential to improve clinical care in VAD patients. Patients with the CYP2C9*2 CT genotype may need more time or higher doses to reach target INR, while clinicians may need to be aware of the potential for a rapid rise in INR in patients with the CYP2C9*2 CC genotype.


Assuntos
Anticoagulantes/administração & dosagem , Coração Auxiliar , Varfarina/administração & dosagem , Adolescente , Anticoagulantes/metabolismo , Criança , Pré-Escolar , Sistema Enzimático do Citocromo P-450/genética , Relação Dose-Resposta a Droga , Feminino , Humanos , Lactente , Coeficiente Internacional Normatizado , Masculino , Farmacogenética , Polimorfismo Genético , Estudos Prospectivos , Estudos Retrospectivos , Vitamina K Epóxido Redutases/genética , Varfarina/metabolismo
8.
Blood ; 132(21): 2230-2239, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30463993

RESUMO

Oral anticoagulants are commonly prescribed but high risk to cause adverse events. Skilled drug interaction management is essential to ensure safe and effective use of these therapies. Clinically relevant interactions with warfarin include drugs that modify cytochrome 2C9, 3A4, or both. Drugs that modify p-glycoprotein may interact with all direct oral anticoagulants, and modifiers of cytochrome 3A4 may interact with rivaroxaban and apixaban. Antiplatelet agents, nonsteroidal anti-inflammatory drugs, and serotonergic agents, such as selective serotonin reuptake inhibitors, can increase risk of bleeding when combined with any oral anticoagulant, and concomitant use should be routinely assessed. New data on anticoagulant drug interactions are available almost daily, and therefore, it is vital that clinicians regularly search interaction databases and the literature for updated management strategies. Skilled drug interaction management will improve outcomes and prevent adverse events in patients taking oral anticoagulants.


Assuntos
Anticoagulantes/farmacologia , Interações Medicamentosas , Varfarina/farmacologia , Administração Oral , Anticoagulantes/administração & dosagem , Anticoagulantes/metabolismo , Indutores do Citocromo P-450 CYP2C9/farmacologia , Indutores do Citocromo P-450 CYP3A/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Varfarina/administração & dosagem , Varfarina/metabolismo
9.
Blood ; 131(25): 2826-2835, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29592891

RESUMO

The anticoagulant warfarin inhibits the vitamin K oxidoreductase (VKORC1), which generates vitamin K hydroquinone (KH2) required for the carboxylation and consequent activation of vitamin K-dependent (VKD) proteins. VKORC1 produces KH2 in 2 reactions: reduction of vitamin K epoxide (KO) to quinone (K), and then KH2 Our dissection of full reduction vs the individual reactions revealed a surprising mechanism of warfarin inhibition. Warfarin inhibition of KO to K reduction and carboxylation that requires full reduction were compared in wild-type VKORC1 or mutants (Y139H, Y139F) that cause warfarin resistance. Carboxylation was much more strongly inhibited (∼400-fold) than KO reduction (two- to threefold). The K to KH2 reaction was analyzed using low K concentrations that result from inhibition of KO to K. Carboxylation that required only K to KH2 reduction was inhibited much less than observed with the KO substrate that requires full VKORC1 reduction (eg, 2.5-fold vs 70-fold, respectively, in cells expressing wild-type VKORC1 and factor IX). The results indicate that warfarin uncouples the 2 reactions that fully reduce KO. Uncoupling was revealed because a second activity, a warfarin-resistant quinone reductase, was not present. In contrast, 293 cells expressing factor IX and this reductase activity showed much less inhibition of carboxylation. This activity therefore appears to cooperate with VKORC1 to accomplish full KO reduction. Cooperation during warfarin therapy would have significant consequences, as VKD proteins function in numerous physiologies in many tissues, but may be poorly carboxylated and dysfunctional if the second activity is not ubiquitously expressed similar to VKORC1.


Assuntos
Anticoagulantes/metabolismo , Vitamina K Epóxido Redutases/metabolismo , Vitamina K/metabolismo , Varfarina/metabolismo , Animais , Anticoagulantes/farmacologia , Linhagem Celular , Cricetinae , Resistência a Medicamentos , Humanos , Oxirredução/efeitos dos fármacos , Mutação Puntual , Vitamina K 1/análogos & derivados , Vitamina K 1/metabolismo , Vitamina K Epóxido Redutases/antagonistas & inibidores , Vitamina K Epóxido Redutases/genética , Varfarina/farmacologia
10.
Arch Biochem Biophys ; 694: 108599, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979389

RESUMO

Warfarin is a coumarin derivative drug widely used for its anticoagulant properties. The interaction of warfarin with fully hydrated lipid bilayers has been studied by combining differential scanning calorimetry, spectrophotometry, electron spin resonance of chain-labelled lipids and molecular docking. Bilayers formed by lipids with different chemico-physical properties were considered, namely dimyristoyl-phosphatidylcholine (DMPC), dimyristoyl-phosphatidylglycerol (DMPG), and dioleoyltrimethyl-ammoniumpropane (DOTAP). We observed in all cases the binding of warfarin in proximity of the surface of the bilayers, leading to a variety of distinct effects on key molecular properties of the membranes. The drug associates with the lipid bilayers in the deprotonated open chain form, with an association constant similar for DMPC and DMPG (1.27·104 and 2.82·104 M-1, respectively) and lower for DOTAP (0.46·104 M-1). In DMPC bilayers, which are zwitterionic and with saturated symmetrical chains, warfarin at 10 mol% suppresses the pre-transition, slightly stabilizes the fluid state and reduces the cooperativity of the main transition. Moreover, it alters the lateral packing density of the chain segments close to the polar/apolar interface at any temperature through the gel phase. In anionic DMPG bilayers, the drug slightly perturbs the thermotropic phase behavior, and at 10 mol% markedly loosens the compact gel phase packing of the first chain segments. In cationic DOTAP bilayers, possessing unsaturated acyl chains, the drug induces a slightly higher degree of order and motional restriction in the outer hydrocarbon region in the frozen state. In all cases, as a surface adsorbed molecule, warfarin does not affect the segmental chain order and dynamics for temperatures in the fluid phase. The overall results provide an outline of the action of warfarin on membranes formed by lipids of different types.


Assuntos
Bicamadas Lipídicas/metabolismo , Varfarina/metabolismo , Dimiristoilfosfatidilcolina/química , Ácidos Graxos Monoinsaturados/química , Bicamadas Lipídicas/química , Conformação Molecular , Simulação de Acoplamento Molecular , Transição de Fase , Fosfatidilgliceróis/química , Compostos de Amônio Quaternário/química , Temperatura , Varfarina/química
11.
Bioorg Med Chem Lett ; 30(13): 127213, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381396

RESUMO

A small library of new organophosphorylated warfarins and 3-benzylcoumarins were synthesized and evaluated for in vitro cholinesterase inhibition by Ellman's method. Most of the compounds were found to be selective for butyrylcholinesterase (BChE) over acetylcholinesterase (AChE), with IC50 values ranging from 0.363 µM to 53.0 µM determined after 15 s of enzyme exposure. Comparison of the most potent compound, 3b with its constitutional isomer 2b revealed the high importance of phosphate positioning. Reversed selectivity and a 100-fold reduction in anti-BChE activity was observed when the organophosphate was attached to the benzyl instead of the coumarin. Docking calculations suggest that 3b binds initially as a transition state mimic with near-optimal phosphate orientation relative to S198 and occupation of the oxyanion hole prior to phosphorylation. These results might inspire the design of a new type of non-neuropathic and irreversible coumarin-based inhibitor against BChE.


Assuntos
Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Organofosfatos/farmacologia , Varfarina/análogos & derivados , Varfarina/farmacologia , Animais , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Electrophorus , Cavalos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Organofosfatos/síntese química , Organofosfatos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Varfarina/metabolismo
12.
Pharmacogenomics J ; 19(2): 147-156, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29298995

RESUMO

Warfarin is primarily metabolized by cytochrome 2C9, encoded by gene CYP2C9. Here, we investigated whether variants in nuclear receptor genes which regulate the expression of CYP2C9 are associated with warfarin response. We used data from 906 warfarin users from the Quebec Warfarin Cohort (QWC) and tested the association of warfarin dose requirement at 3 months following the initiation of therapy in nine nuclear receptor genes: NR1I3, NR1I2, NR3C1, ESR1, GATA4, RXRA, VDR, CEBPA, and HNF4A. Three correlated SNPs in the VDR gene (rs4760658, rs11168292, and rs11168293) were associated with dose requirements of warfarin (P = 2.68 × 10-5, P = 5.81 × 10-4, and P = 5.94 × 10-4, respectively). Required doses of warfarin were the highest for homozygotes of the minor allele at the VDR variants (P < 0.0026). Variants in the VDR gene were associated with the variability in response to warfarin, emphasizing the possible clinical relevance of nuclear receptor gene variants on the inter-individual variability in drug metabolism.


Assuntos
Coagulação Sanguínea/genética , Estudo de Associação Genômica Ampla , Receptores de Calcitriol/genética , Varfarina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Anticoagulantes/administração & dosagem , Anticoagulantes/efeitos adversos , Anticoagulantes/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Receptor Constitutivo de Androstano , Citocromo P-450 CYP2C9/genética , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/genética , Feminino , Fator de Transcrição GATA4/genética , Genótipo , Fator 4 Nuclear de Hepatócito/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Receptor de Pregnano X/genética , Quebeque/epidemiologia , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Glucocorticoides/genética , Receptor X Retinoide alfa/genética , Vitamina K/genética , Vitamina K/metabolismo , Varfarina/administração & dosagem , Varfarina/efeitos adversos
13.
Arch Biochem Biophys ; 676: 108123, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31580875

RESUMO

Protein-drug interaction is of prominent interest in determining the pharmacokinetic and pharmacodynamic consequences on drug delivery. Warfarin is a widely used anticoagulant drug in the treatment of venous thrombosis and pulmonary embolism and is carried in the blood almost exclusively by human serum albumin. The effects of the binding of warfarin to the native state of albumin were characterized by UV-vis absorption, conventional and synchronous fluorescence, isothermal titration calorimetry, differential scanning calorimetry and molecular dynamics simulation. The overall results indicate that, under physiological condition, the binding of warfarin in site DS1 of albumin promotes local stabilization with resulting effects on the global protein dynamics. The increase of the protein stability has both an enthalpic and entropic character. Under denaturing condition, the stabilizing effect of warfarin is evidenced by an increase of both the melting temperature and unfolding enthalpy of albumin with the drug/protein molar ratio. More importantly, thermal resistance is increased due to selective effect on the specific protein lobe that includes the main drug binding site. The comparison of the thermal behavior of the protein-warfarin complex with that in the presence of a typical ligand of the other main protein binding site, i.e. drug site DS2, provides key insight on domain-specific stabilization effects on albumin.


Assuntos
Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Temperatura , Varfarina/metabolismo , Varfarina/farmacologia , Sítios de Ligação/efeitos dos fármacos , Entropia , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica/efeitos dos fármacos
14.
J Thromb Thrombolysis ; 47(3): 467-472, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30465164

RESUMO

The present study was undertaken to examine whether in vivo vitamin K epoxide reductase complex 1 (VKOR) "actual" antagonism activity, calculated by the concentrations and the reported anticoagulant activities of the R- and S-warfarin enantiomers and their metabolites, correlates with the weekly dose of warfarin. Five patients under palliative care were enrolled in our study and 20 serum samples were analyzed by an enantioselective high-performance liquid chromatography-ultraviolet detection method. In vivo VKOR inhibition activities of S-warfarin, R-warfarin, 7- and 10-hydroxywarfarin were calculated as the ratio of drug or metabolite concentration to the IC50. The mean drug concentrations (± SD) of S- and R-warfarin, 7-hydroxywarfarin and 10-hydroxywarfarin were 334 ± 154 ng/ml, 370 ± 115 ng/ml, 42 ± 15 ng/ml and 80 ± 44 ng/ml, respectively. Then, in vivo VKOR actual antagonism activities of S- and R-warfarin, 7-hydroxywarfarin and 10-hydroxywarfarin were calculated. Good correlation (R2 = 0.69-0.72) was obtained between the weekly warfarin dose and the ratios of INR/actual antagonism activity, while poor correlation was observed between the weekly warfarin dose and INR (R2 = 0.32) or the activities (R2 = 0.17-0.21). Actual antagonism activities along with the INR correlated well with the warfarin dose. This parameter may be useful for predicting or altering warfarin doses, although further verification in a larger study is required.


Assuntos
Vitamina K Epóxido Redutases/antagonistas & inibidores , Varfarina/farmacologia , Coleta de Amostras Sanguíneas , Cromatografia Líquida de Alta Pressão/métodos , Monitoramento de Medicamentos/métodos , Feminino , Humanos , Coeficiente Internacional Normatizado , Masculino , Pessoa de Meia-Idade , Estereoisomerismo , Varfarina/análogos & derivados , Varfarina/sangue , Varfarina/química , Varfarina/metabolismo
15.
Xenobiotica ; 49(4): 397-403, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29543105

RESUMO

Coumadin (R/S-warfarin) metabolism plays a critical role in patient response to anticoagulant therapy. Several cytochrome P450s oxidize warfarin into R/S-6-, 7-, 8-, 10, and 4'-hydroxywarfarin that can undergo subsequent glucuronidation by UDP-glucuronosyltransferases (UGTs); however, current studies on recombinant UGTs cannot be adequately extrapolated to microsomal glucuronidation capacities for the liver. Herein, we estimated the capacity of the average human liver to glucuronidate hydroxywarfarin and identified UGTs responsible for those metabolic reactions through inhibitor phenotyping. There was no observable activity toward R/S-warfarin, R/S-10-hydroxywarfarin or R/S-4'-hydroxywarfarin. The observed metabolic efficiencies (Vmax/Km) toward R/S-6-, 7-, and especially 8-hydroxywarfarin indicated a high glucuronidation capacity to metabolize these compounds. UGTs demonstrated strong regioselectivity toward the hydroxywarfarins. UGT1A6 and UGT1A1 played a major role in R/S-6- and 7-hydroxywarfarin glucuronidation, respectively, whereas UGT1A9 accounted for almost all of the generation of the R/S-8-hydroxywarfarin glucuronide. In summary, these studies expanded insights to glucuronidation of hydroxywarfarins by pooled human liver microsomes, novel roles for UGT1A6 and 1A9, and the overall degree of regioselectivity for the UGT reactions.


Assuntos
Glucuronídeos/metabolismo , Microssomos Hepáticos/metabolismo , Varfarina/análogos & derivados , Bilirrubina/química , Bilirrubina/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Humanos , Concentração Inibidora 50 , Cinética , Ácido Mefenâmico/química , Ácido Mefenâmico/metabolismo , Fenótipo , Serotonina/química , Serotonina/metabolismo , Estereoisomerismo , Varfarina/química , Varfarina/metabolismo
16.
Xenobiotica ; 49(2): 161-168, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29375004

RESUMO

Contributions of cytochrome P450 (CYP450) isoforms to drug metabolism are often predicted using relative activity factor (RAF) method, assuming RAF values were independent of probe. We aimed to report probe-dependent characteristic of RAF values using CYP3A4 or CYP2C9 probes. Metabolism of four CYP3A4 probes (testosterone, midazolam, verapamil and atorvastatin) and three CYP2C9 probes (tolbutamide, diclofenac and S-warfarin) in human liver microsomes (HLM) and cDNA-expressed recombinant CYP450 (Rec-CYP450) systems were characterized and RAFCL value was estimated as ratio of probe intrinsic clearance in HLM to that in Rec-CYP450. CYP450i contributions to metabolic reaction of a probe were predicted using other probes and compared with data from specific inhibitions. Contributions of CYP3A4 and CYP2C9 to metabolism of deoxypodophyllotoxin and nateglinide were also predicted. RAF values were dependent on probes, leading to probe-dependently predicted contributions. Predicted contributions of CYP3A4 to formations of 6ß-hydroxytestosterone, 1'-hydroxymidazolam, norverapamil, ortho-hydroxyatorvastatin and para-hydroxyatorvastatin using other probes were 47.46-219.46%, 21.62-98.87%, 186.49-462.44%, 21.87-101.15% and 53.62-247.97%, respectively. Predicted contributions of CYP3A4 and CYP2C9 to nateglinide metabolism were 8.18-37.84% and 36.08-94.04%, separately. In conclusion, CYP450i contribution to drug metabolism in HLM estimated using RAF approach were probe-dependent. Therefore, contribution of each isoform must be confirmed by multiple probes.


Assuntos
Sistema Enzimático do Citocromo P-450/fisiologia , Microssomos Hepáticos/metabolismo , Atorvastatina/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Diclofenaco/metabolismo , Humanos , Cinética , Midazolam/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Testosterona/metabolismo , Tolbutamida/metabolismo , Verapamil/metabolismo , Varfarina/metabolismo
17.
Ecotoxicol Environ Saf ; 181: 559-571, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31238190

RESUMO

Warfarin is the most worldwide used anticoagulant drug and rodenticide. Since it crosses placental barrier it can induce warfarin embryopathy (WE), a fetal mortality in neonates characterized by skeletal deformities in addition to brain hemorrhages. Although the effects of warfarin exposure in aquatic off target species were already described, the particular molecular toxicological mechanisms during early development are still unclear. Here, we used zebrafish (Danio rerio) to describe and compare the developmental effects of warfarin exposure (0, 15.13, 75.68 and 378.43 mM) on two distinct early developmental phases (embryos and eleuthero-embryos). Although exposure to both developmental phases induced fish mortality, only embryos exposed to the highest warfarin level exhibited features mimicking mammalian WE, e.g. high mortality, higher incidence of hemorrhages and altered skeletal development, among other effects. To gain insights into the toxic mechanisms underlying warfarin exposure, the transcriptome of embryos exposed to warfarin was explored through RNA-Seq and compared to that of control embryos. 766 differentially expressed (564 up- and 202 down-regulated) genes were identified. Gene Ontology analysis revealed particular cellular components (cytoplasm, extracellular matrix, lysosome and vacuole), biological processes (mainly amino acid and lipid metabolism and response to stimulus) and pathways (oxidative stress response and apoptosis signaling pathways) being significantly overrepresented in zebrafish embryos upon warfarin exposure. Protein-protein interaction further evidenced an altered redox system, blood coagulation and vasculogenesis, visual phototransduction and collagen formation upon warfarin exposure. The present study not only describes for the first time the WE in zebrafish, it provides new insights for a better risk assessment, and highlights the need for programming the rat eradication actions outside the fish spawning season to avoid an impact on off target fish community. The urge for the development of more species-specific anticoagulants for rodent pest control is also highlighted.


Assuntos
Anormalidades Induzidas por Medicamentos/metabolismo , Anticoagulantes/toxicidade , Osso Nasal/anormalidades , Rodenticidas/toxicidade , Varfarina/efeitos adversos , Varfarina/toxicidade , Poluentes Químicos da Água/toxicidade , Anormalidades Induzidas por Medicamentos/genética , Animais , Modelos Animais de Doenças , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Humanos , Osso Nasal/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transcriptoma , Varfarina/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
18.
Croat Med J ; 60(3): 212-220, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31187948

RESUMO

AIM: To investigate the prevalence of common genetic variants that can serve as markers of thrombophilia and warfarin pharmacogenetics in Bosnia and Herzegovina. METHODS: The study was performed between August and October 2017 on 130 healthy unrelated adult volunteers from Bosnian-Herzegovinian population sample. The prevalence of the following genetic variants was determined: F5 c.1601G>A (factor V Leiden), F2 c.*97G>A (factor II or prothrombin mutation), F13A1 (factor XIII) c.103G>T, MTHFR (methylenetetrahydrofolate reductase) c.665C>T and c.1286A>C, as well as PAI-1 (plasminogen activator inhibitor 1) c.-816A>G and c.-844G>A as markers of thrombophilia risk, and *2 and *3 alleles of CYP2C9 (cytochrome P450 2C9) and five variants of VKORC1 (vitamin K epoxide reductase complex subunit 1) as markers of warfarin pharmacogenetics. DNA was isolated from buccal swabs using salting out method, while genotyping was performed using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. RESULTS: Minor allele frequencies for two main thrombophilia risk factors, F5 c.1601G>A and F2 c.*97G>A were 0.023 and 0.008, respectively. Combined data for the markers of warfarin pharmacogenetics imply that 57.4% study participants can be expected to metabolize warfarin at an extensive, 40.3% at intermediate, and 2.3% at a poor rate. CONCLUSION: This study reports the first extensive population genetic data for thrombophilia and warfarin pharmacogenetic markers in Bosnia and Herzegovina. Allele frequencies of genetic variants are within the general average for European populations, and their presence implies the necessity of introduction of personalized medicine in warfarin-mediated antithrombotic therapy.


Assuntos
Anticoagulantes/metabolismo , Fatores de Coagulação Sanguínea/genética , Trombofilia/genética , Varfarina/metabolismo , Adolescente , Adulto , Alelos , Biomarcadores , Bósnia e Herzegóvina , Citocromo P-450 CYP2C9/genética , Fator V/genética , Fator XIII/genética , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Pessoa de Meia-Idade , Inibidor 1 de Ativador de Plasminogênio/genética , Gravidez , Protrombina/genética , Vitamina K Epóxido Redutases/genética , Adulto Jovem
19.
Anal Bioanal Chem ; 410(23): 5807-5815, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29968106

RESUMO

Frontal affinity chromatography is an efficient technique that combines affinity interaction and high-performance liquid chromatography, and frontal analysis has been used in studying the interaction between drugs and proteins. Based on frontal analysis, stepwise frontal analysis has been established. The present study aimed to use the Lineweaver-Burk plot in stepwise frontal analysis by taking the weighted average of time data. Commercial human serum albumin (HSA) and alpha-1-acid glycoprotein (AGP) columns were used as an affinity column. Warfarin and digitoxin were chosen as model drugs for the HSA column, whereas verapamil and tamsulosin were selected as model drugs for the AGP column. The time data obtained by frontal analysis and stepwise frontal analysis were compared, and the results revealed good correlation (r2 = 0.9946-0.9998). Frontal analysis and stepwise frontal analysis were also used to analyze the equilibrium dissociation constants (Kd) of model drugs on the HSA and AGP columns. The Kd values were compared with literature values, which revealed the same order of magnitude. These results illustrate that conversion of the time data is reasonable and feasible. The Lineweaver-Burk plot can be used in the stepwise frontal analysis model to study the characteristics of the interaction between drugs and proteins. Graphical abstract ᅟ.


Assuntos
Antiarrítmicos/metabolismo , Anticoagulantes/metabolismo , Cromatografia de Afinidade/métodos , Digitoxina/metabolismo , Orosomucoide/metabolismo , Albumina Sérica Humana/metabolismo , Varfarina/metabolismo , Humanos , Ligação Proteica
20.
Biol Pharm Bull ; 41(2): 277-280, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29176265

RESUMO

Human serum albumin (HSA) has two major ligand-binding sites, sites I and II, and hydrolyzes compounds at both sites. Although the hydrolytic interaction of ester-type drugs with other drugs by HSA has been reported, there are only a few studies concerning the effect of pharmaceutical excipients on the hydrolysis of ester-type drugs by HSA. In the present study, we investigated the effect of ethanol (2 vol%; 345 mM) on the hydrolysis of aspirin, p-nitrophenyl acetate, and olmesartan medoxomil, which are ester-type drugs, with 4 different lots of HSA preparations. The hydrolysis activities of HSA toward aspirin, p-nitrophenyl acetate, and olmesartan medoxomil were measured from the pseudo-first-order degradation rate constant (kobs) of salicylic acid, p-nitrophenol, and olmesartan, respectively, which are the HSA-hydrolyzed products. Ethanol inhibited hydrolysis of aspirin by HSA containing low levels of fatty acids, but not by fatty acid-free HSA. Ethanol inhibited hydrolysis of p-nitrophenyl acetate by both fatty acid-free HSA and HSA containing low levels of fatty acids. In contrast, the hydrolysis of olmesartan medoxomil by HSA was insignificantly inhibited by ethanol, but inhibited not only by warfarin and indomethacin but also by naproxen, which are site I binding drugs and a site II binding drug, respectively. These results suggest that the inhibitory action of ethanol on the hydrolysis of ester-type drugs by HSA differs between site I binding drugs and site II binding drugs.


Assuntos
Aspirina/metabolismo , Etanol/farmacologia , Excipientes/farmacologia , Nitrofenóis/metabolismo , Olmesartana Medoxomila/metabolismo , Conservantes Farmacêuticos/farmacologia , Albumina Sérica Humana/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anticoagulantes/química , Anticoagulantes/metabolismo , Anticoagulantes/farmacologia , Anti-Hipertensivos/química , Anti-Hipertensivos/metabolismo , Aspirina/química , Sítios de Ligação/efeitos dos fármacos , Estabilidade de Medicamentos , Ácidos Graxos não Esterificados/química , Ácidos Graxos não Esterificados/metabolismo , Humanos , Hidrólise/efeitos dos fármacos , Indometacina/química , Indometacina/metabolismo , Indometacina/farmacologia , Cinética , Ligantes , Naproxeno/química , Naproxeno/metabolismo , Naproxeno/farmacologia , Nitrofenóis/química , Olmesartana Medoxomila/química , Albumina Sérica Humana/antagonistas & inibidores , Albumina Sérica Humana/química , Varfarina/química , Varfarina/metabolismo , Varfarina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA