Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 696
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 134(10): 1330-1347, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557119

RESUMO

BACKGROUND: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS: Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS: Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.


Assuntos
COVID-19 , Endossomos , Lisossomos , Tetraspanina 24 , Animais , Lisossomos/metabolismo , Tetraspanina 24/metabolismo , Tetraspanina 24/genética , Humanos , Camundongos , COVID-19/metabolismo , COVID-19/imunologia , COVID-19/patologia , Endossomos/metabolismo , Camundongos Knockout , Vasculite/metabolismo , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Inflamação/metabolismo , Inflamação/patologia , Sepse/metabolismo
2.
EMBO Rep ; 25(10): 4570-4593, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39271773

RESUMO

The accumulation of myofibroblasts within the intimal layer of inflamed blood vessels is a potentially catastrophic complication of vasculitis, which can lead to arterial stenosis and ischaemia. In this study, we have investigated how these luminal myofibroblasts develop during Kawasaki disease (KD), a paediatric vasculitis typically involving the coronary arteries. By performing lineage tracing studies in a murine model of KD, we reveal that luminal myofibroblasts develop independently of adventitial fibroblasts and endothelial cells, and instead derive from smooth muscle cells (SMCs). Notably, the emergence of SMC-derived luminal myofibroblasts-in both mice and patients with KD, Takayasu's arteritis and Giant Cell arteritis-coincided with activation of the mechanistic target of rapamycin (mTOR) signalling pathway. Moreover, SMC-specific deletion of mTOR signalling, or pharmacological inhibition, abrogated the emergence of luminal myofibroblasts. Thus, mTOR is an intrinsic and essential regulator of luminal myofibroblast formation that is activated in vasculitis patients and therapeutically tractable. These findings provide molecular insight into the pathogenesis of coronary artery stenosis and identify mTOR as a therapeutic target in vasculitis.


Assuntos
Miócitos de Músculo Liso , Miofibroblastos , Transdução de Sinais , Serina-Treonina Quinases TOR , Serina-Treonina Quinases TOR/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Animais , Camundongos , Humanos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Vasculite/metabolismo , Vasculite/patologia , Vasculite/genética , Síndrome de Linfonodos Mucocutâneos/metabolismo , Síndrome de Linfonodos Mucocutâneos/patologia , Síndrome de Linfonodos Mucocutâneos/genética , Modelos Animais de Doenças
3.
Nat Immunol ; 14(10): 1045-53, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23995233

RESUMO

Chronic inflammation is a fundamental aspect of metabolic disorders such as obesity, diabetes and cardiovascular disease. Cholesterol crystals are metabolic signals that trigger sterile inflammation in atherosclerosis, presumably by activating inflammasomes for IL-1ß production. We found here that atherogenesis was mediated by IL-1α and we identified fatty acids as potent inducers of IL-1α-driven vascular inflammation. Fatty acids selectively stimulated the release of IL-1α but not of IL-1ß by uncoupling mitochondrial respiration. Fatty acid-induced mitochondrial uncoupling abrogated IL-1ß secretion, which deviated the cholesterol crystal-elicited response toward selective production of IL-1α. Our findings delineate a previously unknown pathway for vascular immunopathology that links the cellular response to metabolic stress with innate inflammation, and suggest that IL-1α, not IL-1ß, should be targeted in patients with cardiovascular disease.


Assuntos
Aterosclerose/metabolismo , Ácidos Graxos/metabolismo , Inflamassomos/metabolismo , Interleucina-1alfa/metabolismo , Mitocôndrias/metabolismo , Vasculite/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Sinalização do Cálcio , Gorduras na Dieta/metabolismo , Ácidos Graxos/farmacologia , Feminino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Canais Iônicos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Ácido Oleico/farmacologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteína Desacopladora 2 , Vasculite/patologia
4.
Metabolomics ; 20(3): 61, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787468

RESUMO

INTRODUCTION: IgA vasculitis diagnosis relies primarily on clinical features and is confirmed by pathological findings. To date, there is no reliable noninvasive diagnostic biomarker. OBJECTIVE: We aimed to explore the baseline serum metabolome of adult patients with IgA vasculitis to identify potential diagnostic biomarkers. METHODS: We performed a study comparing the serum metabolome of patients with IgA vasculitis to that of patients with inflammatory condition, namely spondyloarthritis. Serum analyses were performed by high-performance liquid chromatography-mass spectrometry. RESULTS: Fifty-five patients with IgA vasculitis and 77 controls with spondyloarthritis (age- and sex-matched) were included in this study. The median age of IgA vasculitis patients was 53 years. Two-thirds of patients were female (n = 32). At the time of vasculitis diagnosis, 100% of patients had skin involvement and 69% presented with glomerulonephritis (n = 38). Joint and digestive involvement were observed in 56% (n = 31) and 42% (n = 23) of patients. Four discriminative metabolites between the two groups were identified: 1-methyladenosine, L-glutamic acid, serotonin, and thymidine. The multivariate model built from the serum metabolomes of patients with IgA vasculitis and spondyloarthritis revealed an accuracy > 90%. As this model was significant according to the permutation test (p < 0.01), independent validation showed an excellent predictive value of the test set: sensitivity 98%; specificity 98%, positive predictive value 97% and negative predictive value 98%. CONCLUSION: To our knowledge, this study is the first to use the metabolomic approach for diagnostic purposes in adult IgA vasculitis, highlighting a specific diagnostic metabolome signature.


Assuntos
Biomarcadores , Imunoglobulina A , Metaboloma , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Biomarcadores/sangue , Imunoglobulina A/sangue , Cromatografia Líquida de Alta Pressão , Vasculite/diagnóstico , Vasculite/metabolismo , Vasculite/sangue , Metabolômica/métodos , Idoso , Espectrometria de Massas/métodos , Vasculite por IgA/diagnóstico , Vasculite por IgA/sangue , Vasculite por IgA/metabolismo
5.
Nat Immunol ; 13(1): 67-76, 2011 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-22138716

RESUMO

Chemokines presented by the endothelium are critical for integrin-dependent adhesion and transendothelial migration of naive and memory lymphocytes. Here we found that effector lymphocytes of the type 1 helper T cell (T(H)1 cell) and type 1 cytotoxic T cell (T(C)1 cell) subtypes expressed adhesive integrins that bypassed chemokine signals and established firm arrests on variably inflamed endothelial barriers. Nevertheless, the transendothelial migration of these lymphocytes strictly depended on signals from guanine nucleotide-binding proteins of the G(i) type and was promoted by multiple endothelium-derived inflammatory chemokines, even without outer endothelial surface exposure. Instead, transendothelial migration-promoting endothelial chemokines were stored in vesicles docked on actin fibers beneath the plasma membranes and were locally released within tight lymphocyte-endothelial synapses. Thus, effector T lymphocytes can cross inflamed barriers through contact-guided consumption of intraendothelial chemokines without surface-deposited chemokines or extraendothelial chemokine gradients.


Assuntos
Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Linfócitos/imunologia , Migração Transendotelial e Transepitelial/imunologia , Vesículas Transportadoras/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Integrinas/metabolismo , Linfócitos/metabolismo , Linfócitos/ultraestrutura , Camundongos , Receptores CCR2/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/ultraestrutura , Fator de Necrose Tumoral alfa/farmacologia , Vasculite/imunologia , Vasculite/metabolismo
6.
Cytokine ; 169: 156304, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37487381

RESUMO

OBJECTIVES: By using GWAS(genome-wide association studies) and linkage disequilibrium analysis to investigate the susceptibility genes of KD(Kawasaki disease), previous studies have identified that the CaN(calcineurin)-NFAT(the nuclear factor of activated T cell) signal pathway were significantly associated with susceptibility to KD. However, little is known about the molecular basis of the CaN/NFAT pathway involved in KD. Therefore, in our study we investigate the role of Ca2+/CaN/NFAT signaling pathway in macrophages in vitro and in vivo on coronary artery lesions induced by LCWE (Lactobacillus casei cell wall extract). METHODS AND RESULTS: We observed that LCWE could increase the expression of NFAT1 and NFAT2 in macrophages in vitro, and also enhance the transcriptional activity of NFAT by promoting the nucleus translocation. Similarly, in LCWE-induced mice model, the expression of NFAT1 and NFAT2 and associated proinflammatory factors were increased significantly. In addition, by knocking down or overexpressing NFAT1 or NFAT2 in macrophages, the results indicated that NFAT signaling pathway mediated LCWE-induced immune responses in macrophages and regulated the synthesis of IL(interleukin)-6, IL-1ß and TNF(tumor necrosis factor)-α in LCWE-induced macrophage activation. As well, we found that this process could be suppressed by CaN inhibitor CsA(cyclosporinA). CONCLUSIONS: Therefore, the CaN/NFAT signaling pathway mediated LCWE-induced immune responses in macrophages, and also participated in the LCWE-induced CALs(coronary artery lesions). And also the inhibitory effect of CsA in LCWE-induced cell model towards a strategy to modulate the CaN/NFAT pathway during the acute course of KD might be helpful in alleviate KD-induced CALs.


Assuntos
Lacticaseibacillus casei , Síndrome de Linfonodos Mucocutâneos , Vasculite , Animais , Camundongos , Síndrome de Linfonodos Mucocutâneos/genética , Extratos Celulares/efeitos adversos , Estudo de Associação Genômica Ampla , Vasculite/complicações , Vasculite/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Parede Celular/metabolismo , Parede Celular/patologia , Fatores de Transcrição NFATC/metabolismo
7.
J Pathol ; 257(3): 300-313, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35239186

RESUMO

P2RX7, an ionotropic receptor for extracellular adenosine triphosphate (ATP), is expressed on immune cells, including macrophages, monocytes, and dendritic cells and is upregulated on nonimmune cells following injury. P2RX7 plays a role in many biological processes, including production of proinflammatory cytokines such as interleukin (IL)-1ß via the canonical inflammasome pathway. P2RX7 has been shown to be important in inflammation and fibrosis and may also play a role in autoimmunity. We have developed and phenotyped a novel P2RX7 knockout (KO) inbred rat strain and, taking advantage of the human-resembling unique histopathological features of rat models of glomerulonephritis, we induced three models of disease: nephrotoxic nephritis, experimental autoimmune glomerulonephritis, and experimental autoimmune vasculitis. We found that deletion of P2RX7 does not protect rats from models of experimental glomerulonephritis or the development of autoimmunity. Notably, treatment with A-438079, a P2RX7 antagonist, was equally protective in WKY WT and P2RX7 KO rats, revealing its 'off-target' properties. We identified a novel ATP/P2RX7/K+ efflux-independent and caspase-1/8-dependent pathway for the production of IL-1ß in rat dendritic cells, which was absent in macrophages. Taken together, these results comprehensively establish that inflammation and autoimmunity in glomerulonephritis is independent of P2RX7 and reveals the off-target properties of drugs previously known as selective P2RX7 antagonists. Rat mononuclear phagocytes may be able to utilise an 'alternative inflammasome' pathway to produce IL-1ß independently of P2RX7, which may account for the susceptibility of P2RX7 KO rats to inflammation and autoimmunity in glomerulonephritis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Glomerulonefrite , Receptores Purinérgicos P2X7 , Vasculite , Trifosfato de Adenosina/metabolismo , Animais , Caspase 1/metabolismo , Caspases , Inflamassomos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Endogâmicos WKY , Receptores Purinérgicos P2X7/metabolismo , Vasculite/metabolismo , Vasculite/patologia
8.
FASEB J ; 35(1): e21133, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184917

RESUMO

Chronic vascular inflammation plays a key role in the pathogenesis of atherosclerosis. Long non-coding RNAs (lncRNAs) have emerged as essential inflammation regulators. We identify a novel lncRNA termed lncRNA-MAP3K4 that is enriched in the vessel wall and regulates vascular inflammation. In the aortic intima, lncRNA-MAP3K4 expression was reduced by 50% during the progression of atherosclerosis (chronic inflammation) and 70% during endotoxemia (acute inflammation). lncRNA-MAP3K4 knockdown reduced the expression of key inflammatory factors (eg, ICAM-1, E-selectin, MCP-1) in endothelial cells or vascular smooth muscle cells and decreased monocytes adhesion to endothelium, as well as reducing TNF-α, IL-1ß, COX2 expression in macrophages. Mechanistically, lncRNA-MAP3K4 regulates inflammation through the p38 MAPK signaling pathway. lncRNA-MAP3K4 shares a bidirectional promoter with MAP3K4, an upstream regulator of the MAPK signaling pathway, and regulates its transcription in cis. lncRNA-MAP3K4 and MAP3K4 show coordinated expression in response to inflammation in vivo and in vitro. Similar to lncRNA-MAP3K4, MAP3K4 knockdown reduced the expression of inflammatory factors in several different vascular cells. Furthermore, lncRNA-MAP3K4 and MAP3K4 knockdown showed cooperativity in reducing inflammation in endothelial cells. Collectively, these findings unveil the role of a novel lncRNA in vascular inflammation by cis-regulating MAP3K4 via a p38 MAPK pathway.


Assuntos
Regulação da Expressão Gênica , MAP Quinase Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , RNA Longo não Codificante/metabolismo , Vasculite/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , MAP Quinase Quinase Quinase 4/genética , Camundongos , RNA Longo não Codificante/genética , Vasculite/genética , Vasculite/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
9.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299162

RESUMO

IgA, previously called Henoch-Schönlein vasculitis, is an essential immune component that drives the host immune response to the external environment. As IgA has the unique characteristic of a flexible response to broad types of microorganisms, it sometimes causes an autoreactive response in the host human body. IgA vasculitis and related organ dysfunction are representative IgA-mediated autoimmune diseases; bacterial and viral infections often trigger IgA vasculitis. Recent drug developments and the presence of COVID-19 have revealed that these agents can also trigger IgA vasculitis. These findings provide a novel understanding of the pathogenesis of IgA vasculitis. In this review, we focus on the characteristics of IgA and symptoms of IgA vasculitis and other organ dysfunction. We also mention the therapeutic approach, biomarkers, novel triggers for IgA vasculitis, and epigenetic modifications in patients with IgA vasculitis.


Assuntos
Biomarcadores/análise , Epigênese Genética , Imunoglobulina A/metabolismo , Vasculite/terapia , Animais , Humanos , Vasculite/diagnóstico , Vasculite/etiologia , Vasculite/metabolismo
10.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917744

RESUMO

Coronary artery disease (CAD) and its complications are the leading cause of death worldwide. Inflammatory activation and dysfunction of the endothelium are key events in the development and pathophysiology of atherosclerosis and are associated with an elevated risk of cardiovascular events. There is great interest to further understand the pathophysiologic mechanisms underlying endothelial dysfunction and atherosclerosis progression, and to identify novel biomarkers and therapeutic strategies to prevent endothelial dysfunction, atherosclerosis and to reduce the risk of developing CAD and its complications. The use of liquid biopsies and new molecular biology techniques have allowed the identification of a growing list of molecular and cellular markers of endothelial dysfunction, which have provided insight on the molecular basis of atherosclerosis and are potential biomarkers and therapeutic targets for the prevention and or treatment of atherosclerosis and CAD. This review describes recent information on normal vascular endothelium function, as well as traditional and novel potential biomarkers of endothelial dysfunction and inflammation, and pharmacological and non-pharmacological therapeutic strategies aimed to protect the endothelium or reverse endothelial damage, as a preventive treatment for CAD and related complications.


Assuntos
Biomarcadores , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Vasculite/etiologia , Vasculite/metabolismo , Animais , Permeabilidade Capilar , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/fisiopatologia , Gerenciamento Clínico , Suscetibilidade a Doenças , Hemostasia , Humanos , Terapia de Alvo Molecular/métodos , Vasculite/tratamento farmacológico , Vasculite/fisiopatologia
11.
J Mol Cell Cardiol ; 138: 185-196, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31836541

RESUMO

Kawasaki disease (KD) is a systemic febrile syndrome during childhood that is characterized by coronary arteritis. The etiopathogenesis of KD remains to be elucidated. NLRP3 inflammasome is a large multiprotein complex that plays a key role in IL-1ß-driven sterile inflammatory diseases. In the present study, we investigated the role of NLRP3 inflammasome in a murine model of KD induced by Candida albicans water-soluble fraction (CAWS) and found that NLRP3 inflammasome is required for the development of CAWS-induced vasculitis. CAWS administration induced IL-1ß production, caspase-1 activation, leukocyte infiltration, and fibrotic changes in the aortic root and coronary arteries, which were significantly inhibited by a deficiency of IL-1ß, NLRP3, and ASC. In vitro experiments showed that among cardiac resident cells, macrophages, but not endothelial cells or fibroblasts, expressed Dectin-2, but did not produce IL-1ß in response to CAWS. In contrast, CAWS induced caspase-1 activation and IL-1ß production in bone marrow-derived dendritic cells (BMDCs), which were inhibited by a specific caspase-1 inhibitor and a deficiency of NLRP3, ASC, and caspase-1. CAWS induced NLRP3 and pro-IL-1ß expression through a Dectin-2/Syk/JNK/NF-κB pathway, and caspase-1 activation and cleavage of pro-IL-1ß through Dectin-2/Syk/JNK-mediated mitochondrial ROS generation, indicating that CAWS induces the priming and activation of NLRP3 inflammasome in BMDCs. These findings provide new insights into the pathogenesis of KD vasculitis, and suggest that NLRP3 inflammasome may be a potential therapeutic target for KD.


Assuntos
Inflamassomos/metabolismo , Síndrome de Linfonodos Mucocutâneos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Candida albicans , Caspase 1/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Transdução de Sinais , Vasculite/metabolismo , Vasculite/microbiologia
13.
Int Immunol ; 31(1): 23-32, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30169661

RESUMO

Previously, we reported that mRNA expression of ficolin-1 (FCN1), a component of the complement lectin pathway, is elevated in peripheral blood mononuclear cells of patients with vasculitis syndrome, and that FCN1-positive cells infiltrate into inflamed regions in patient specimens. In addition, we reported that the serum FCN1 concentration is elevated in patients with Kawasaki disease (KD), a pediatric vasculitis, but dramatically decreases after intravenous immunoglobulin (IVIG) treatment. Furthermore, we showed that FCN1 binds to IgG1 in a pull-down assay. These results suggested that removal of FCN1 may be a therapeutic mechanism of IVIG. In this study, we prepared anti-FCN1 monoclonal antibody (mAb) and examined its therapeutic potential in mice treated with Candida albicans water-soluble fraction (CAWS), which induces KD-like vasculitis in the coronary artery. Indeed, treatment with anti-FCN1 mAb decreased the histological score of vasculitis (P = 0.03). To investigate the role of FCN1, we assessed blood samples of patients with various autoimmune diseases and demonstrated that serum levels of FCN1 were elevated not only in patients with vasculitis, but also in those with rheumatoid arthritis. Additionally, FCN1-targeted treatment of a mouse model of arthritis [collagen antibody-induced arthritis (CAIA)] revealed that administration of anti-FCN1 mAb ameliorated symptoms of arthritis (P < 0.01). These results suggest that FCN1 is involved in the pathogenesis of autoimmune diseases, and that targeting FCN1 represents a promising strategy for treating these diseases.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/etiologia , Lectinas/imunologia , Idoso , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Biomarcadores , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Lectinas/antagonistas & inibidores , Lectinas/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Vasculite/etiologia , Vasculite/metabolismo , Vasculite/patologia , Ficolinas
14.
Clin Sci (Lond) ; 134(5): 439-458, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32091078

RESUMO

Sphingolipids have been implicated in the etiology of atherosclerosis. The commonly used sphingolipid inhibitors, myriocin (a ceramide inhibitor) and d-PDMP (d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, a glycosphingolipid inhibitor), have shown therapeutic potential but their efficacy and their underlying mechanisms remain unclear. Here, apolipoprotein E-deficient (apoE-/-) mice were fed a high-fat diet (HFD) and treated with a control, myriocin, d-PDMP, or atorvastatin for 12 weeks. We analyzed the effects of these drugs on the size and detailed composition of atherosclerotic plaques. Molecular biological approaches were used to explore how the inhibitors affect lipid metabolism and foam-cell formation. Treatment with myriocin or d-PDMP led to smaller and less vulnerable atherosclerotic lesions and was almost as effective as atorvastatin. Sphingolipid inhibitors down-regulated the expression of monocyte chemotactic protein 1 (MCP-1) and its receptor chemoattractant cytokine receptor 2 (CCR2), which play a key role in monocyte recruitment. They also decreased pro-inflammatory Ly-6chigh monocytes and influenced the uptake of modified LDL by down-regulating the expression of cluster of differentiation 36 (CD36) and lectin-like oxidized LDL (ox-LDL) receptor-1 (LOX-1). The inhibitors exhibited the advantage of maintaining normal glucose homeostasis compared with atorvastatin. These findings reveal for the first time that the modulation of sphingolipid synthesis can effectively alleviate atherosclerosis progression by preventing lipid uptake and reducing inflammatory responses in the arterial walls.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/prevenção & controle , Ácidos Graxos Monoinsaturados/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Morfolinas/farmacologia , Vasculite/prevenção & controle , Animais , Anticolesterolemiantes/farmacologia , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Atorvastatina/farmacologia , Transporte Biológico/efeitos dos fármacos , Ceramidas/antagonistas & inibidores , Ceramidas/metabolismo , Glicoesfingolipídeos/antagonistas & inibidores , Glicoesfingolipídeos/metabolismo , Imunossupressores/farmacologia , Lipídeos/sangue , Lipídeos/farmacocinética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Placa Aterosclerótica/prevenção & controle , Vasculite/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 39(3): 319-330, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30650999

RESUMO

As a leading cause of death worldwide, cardiovascular disease is a global health concern. The development and progression of atherosclerosis, which ultimately gives rise to cardiovascular disease, has been causally linked to hypercholesterolemia. Mechanistically, the interplay between lipids and the immune system during plaque progression significantly contributes to the chronic inflammation seen in the arterial wall during atherosclerosis. Localized inflammation and increased cell-to-cell interactions may influence polarization and proliferation of immune cells via changes in amino acid metabolism. Specifically, the amino acids l-arginine (Arg), l-homoarginine (hArg) and l-tryptophan (Trp) have been widely studied in the context of cardiovascular disease, and their metabolism has been established as key regulators of vascular homeostasis, as well as immune cell function. Cyclic effects between endothelial cells, innate, and adaptive immune cells exist during Arg and hArg, as well as Trp metabolism, that may have distinct effects on the development of atherosclerosis. In this review, we describe the current knowledge surrounding the metabolism, biological function, and clinical perspective of Arg, hArg, and Trp in the context of atherosclerosis.


Assuntos
Aminoácidos/metabolismo , Aterosclerose/metabolismo , Animais , Arginase/antagonistas & inibidores , Arginase/metabolismo , Arginina/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/imunologia , Progressão da Doença , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Homoarginina/metabolismo , Humanos , Hipercolesterolemia/complicações , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Subpopulações de Linfócitos/imunologia , Terapia de Alvo Molecular , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Triptofano/metabolismo , Vasculite/metabolismo
16.
BMC Nephrol ; 21(1): 351, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811472

RESUMO

BACKGROUND: Hypocomplementemic urticarial vasculitis syndrome is an infrequent condition characterized by ocular, renal, gastrointestinal and pulmonary involvement with low serum complement levels and autoantibodies. Renal manifestations vary from microscopic hematuria to nephrotic syndrome and acute kidney injury. Accordingly differing histologic patterns have been reported. CASE PRESENTATION: We present the case of a 65 years old woman with a history of chronic uveitis who presented with arthralgias, urticarial rush, nephrotic syndrome, glomerular hematuria and low serum complement. Kidney biopsy revealed an immune-complex membranoproliferative glomerulonephritis. The patient received induction therapy with steroids, cyclophosphamide and hydroxychloroquine followed by rapid clinical improvement and remission of proteinuria. Maintenance treatment consisted of rituximab pulses. CONCLUSIONS: The majority of hypocomplementemic urticarial vasculitis syndrome cases is idiopathic, although an association to drugs, infections or other autoimmune disorders has been recorded. Given the rarity and heterogeneity of the disease, no standard treatment is established.


Assuntos
Urticária Crônica/complicações , Proteínas do Sistema Complemento/metabolismo , Glomerulonefrite Membranoproliferativa/complicações , Síndrome Nefrótica/complicações , Uveíte/complicações , Vasculite/complicações , Idoso , Antirreumáticos/uso terapêutico , Artrite/complicações , Urticária Crônica/tratamento farmacológico , Urticária Crônica/metabolismo , Ciclofosfamida/uso terapêutico , Feminino , Glomerulonefrite Membranoproliferativa/tratamento farmacológico , Glomerulonefrite Membranoproliferativa/metabolismo , Glomerulonefrite Membranoproliferativa/patologia , Glucocorticoides/uso terapêutico , Humanos , Hidroxicloroquina/uso terapêutico , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Proteinúria/metabolismo , Rituximab/uso terapêutico , Uveíte/tratamento farmacológico , Uveíte/metabolismo , Vasculite/tratamento farmacológico , Vasculite/metabolismo
17.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142805

RESUMO

Immune checkpoint molecules are the antigen-independent generator of secondary signals that aid in maintaining the homeostasis of the immune system. The programmed death ligand-1 (PD-L1)/PD-1 axis is one among the most extensively studied immune-inhibitory checkpoint molecules, which delivers a negative signal for T cell activation by binding to the PD-1 receptor. The general attributes of PD-L1's immune-suppressive qualities and novel mechanisms on the barrier functions of vascular endothelium to regulate blood vessel-related inflammatory diseases are concisely reviewed. Though targeting the PD-1/PD-L1 axis has received immense recognition-the Nobel Prize in clinical oncology was awarded in the year 2018 for this discovery-the use of therapeutic modulating strategies for the PD-L1/PD-1 pathway in chronic inflammatory blood vessel diseases is still limited to experimental models. However, studies using clinical specimens that support the role of PD-1 and PD-L1 in patients with underlying atherosclerosis are also detailed. Of note, delicate balances in the expression levels of PD-L1 that are needed to preserve T cell immunity and to curtail acute as well as chronic infections in underlying blood vessel diseases are discussed. A significant link exists between altered lipid and glucose metabolism in different cells and the expression of PD-1/PD-L1 molecules, and its possible implications on vascular inflammation are justified. This review summarizes the most recent insights concerning the role of the PD-L1/PD-1 axis in vascular inflammation and, in addition, provides an overview exploring the novel therapeutic approaches and challenges of manipulating these immune checkpoint proteins, PD-1 and PD-L1, for suppressing blood vessel inflammation.


Assuntos
Antígeno B7-H1/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Vasculite/patologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Humanos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Vasculite/tratamento farmacológico , Vasculite/imunologia , Vasculite/metabolismo
18.
Int J Mol Sci ; 21(3)2020 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991780

RESUMO

Placental inflammation and dysfunction during pregnancy are associated with short- and long-term adverse outcomes for the offspring. However, the mechanisms of vascular protection at the feto-placental interface are still poorly investigated. The high-density lipoprotein (HDL) associated sphingosine-1-phosphate (S1P) has been described as a powerful anti-inflammatory complex. This study aimed to elucidate the role of cord blood-derived HDL (nHDL) in feto-placental endothelial dysfunction. Here, we report that the exposure of primary fetal placental arterial endothelial cell (fPAEC) to healthy nHDL-S1P attenuated the ability of TNFα to activate NF-κB signaling and increase the expression of pro-inflammatory markers. Moreover, the angiotensin II (AngII)-induced reactive oxygen species (ROS) production was blunted in the presence of nHDL, whereas it was preserved when the cells were preincubated with S1P receptor antagonists, suggesting that S1P accounts for the vascular protective function of nHDL at the feto-placental unit. These results highlight the importance of HDL and S1P metabolism and signaling in pregnancy pathophysiology.


Assuntos
Lipoproteínas HDL/metabolismo , Lisofosfolipídeos/metabolismo , Placenta/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Vasculite/metabolismo , Biomarcadores , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Humanos , Recém-Nascido , Masculino , Estresse Oxidativo , Gravidez , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Esfingosina/metabolismo , Vasculite/etiologia
19.
Int J Mol Sci ; 21(23)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291346

RESUMO

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) infection is associated, alongside with lung infection and respiratory disease, to cardiovascular dysfunction that occurs at any stage of the disease. This includes ischemic heart disease, arrhythmias, and cardiomyopathies. The common pathophysiological link between SARS-CoV-2 infection and the cardiovascular events is represented by coagulation abnormalities and disruption of factors released by endothelial cells, which contribute in maintaining the blood vessels into an anti-thrombotic state. Thus, early alteration of the functionality of endothelial cells, which may be found soon after SARS-CoV-2 infection, seems to represent the major target of a SARS CoV-2 disease state and accounts for the systemic vascular dysfunction that leads to a detrimental effect in terms of hospitalization and death accompanying the disease. In particular, the molecular interaction of SARS-CoV-2 with the ACE2 receptor located in the endothelial cell surface, either at the pulmonary and systemic level, leads to early impairment of endothelial function, which, in turn, is followed by vascular inflammation and thrombosis of peripheral blood vessels. This highlights systemic hypoxia and further aggravates the vicious circle that compromises the development of the disease, leading to irreversible tissue damage and death of people with SARS CoV-2 infection. The review aims to assess some recent advances to define the crucial role of endothelial dysfunction in the pathogenesis of vascular complications accompanying SARS-CoV-2 infection. In particular, the molecular mechanisms associated with the interaction of SARS CoV-2 with the ACE2 receptor located on the endothelial cells are highlighted to support its role in compromising endothelial cell functionality. Finally, the consequences of endothelial dysfunction in enhancing pro-inflammatory and pro-thrombotic effects of SARS-CoV-2 infection are assessed in order to identify early therapeutic interventions able to reduce the impact of the disease in high-risk patients.


Assuntos
COVID-19/complicações , COVID-19/fisiopatologia , Células Endoteliais/patologia , SARS-CoV-2/fisiologia , Trombose/etiologia , Vasculite/etiologia , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Células Endoteliais/metabolismo , Humanos , SARS-CoV-2/isolamento & purificação , Trombose/metabolismo , Trombose/fisiopatologia , Vasculite/metabolismo , Vasculite/fisiopatologia
20.
Mod Rheumatol ; 30(2): 350-357, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30924376

RESUMO

Objectives: Using a murine model of systemic Kawasaki disease (KD)-like vasculitis induced by Candida albicans cell-wall-derived mannan · ß-glucan · protein complexes, the objective was to elucidate the relationships of ß-glucan receptor dectin-1 (D1) and α-mannan receptor dectin-2 (D2) to the onset of that vasculitis.Methods: The incidence and histological severity of vasculitis were compared among mice lacking the genes for D1 or D2 (i.e. D1-/- and D2-/-) and wild-type (WT) mice.Results: The incidences of vasculitis in the three animal groups were 100% (18/18) in the WT group, 100% (18/18) in the D1-/- group, and 0% (0/18) in the D2-/- group. In the WT and D1-/- mice, severe inflammatory cell infiltration, consisting mainly of neutrophils and macrophages, was seen in the aortic root and the coronary arteries. On the other hand, in the D2-/- mice, not even mild vascular lesions such as endoarteritis were seen.Conclusion: Recognition of α-mannan by D2 played an important role in the onset of vasculitis in the studied murine model.


Assuntos
Lectinas Tipo C/metabolismo , Mananas/farmacologia , Síndrome de Linfonodos Mucocutâneos/metabolismo , Vasculite/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Candida albicans/química , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Lectinas Tipo C/genética , Macrófagos/metabolismo , Mananas/toxicidade , Camundongos , Síndrome de Linfonodos Mucocutâneos/etiologia , Síndrome de Linfonodos Mucocutâneos/patologia , Vasculite/etiologia , Vasculite/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA