Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927995

RESUMO

Neural precursor cells (NPCs) that persist in the postnatal/adult subventricular zone (SVZ) express connexins that form hemichannels and gap junctions. Gap junctional communication plays a role in NPC proliferation and differentiation during development, but its relevance on postnatal age remains to be elucidated. In this work we aimed to evaluate the effect of the blockade of gap junctional communication on proliferation and cell fate of NPCs obtained from the SVZ of postnatal rats. NPCs were isolated and expanded in culture as neurospheres. Electron microscopy revealed the existence of gap junctions among neurosphere cells. Treatment of cultures with octanol, a broad-spectrum gap junction blocker, or with Gap27, a specific blocker for gap junctions formed by connexin43, produced a significant decrease in bromodeoxyuridine incorporation. Octanol treatment also exerted a dose-dependent antiproliferative effect on glioblastoma cells. To analyze possible actions on NPC fate, cells were seeded in the absence of mitogens. Treatment with octanol led to an increase in the percentage of astrocytes and oligodendrocyte precursors, whereas the percentage of neurons remained unchanged. Gap27 treatment, in contrast, did not modify the differentiation pattern of SVZ NPCs. Our results indicate that general blockade of gap junctions with octanol induces significant effects on the behavior of postnatal SVZ NPCs, by reducing proliferation and promoting glial differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Junções Comunicantes , Células-Tronco Neurais , Neuroglia , Octanóis , Animais , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ratos , Octanóis/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/citologia , Células Cultivadas , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Ventrículos Laterais/efeitos dos fármacos , Conexina 43/metabolismo , Ratos Wistar , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/citologia , Animais Recém-Nascidos , Humanos
2.
Proc Natl Acad Sci U S A ; 117(32): 19578-19589, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32727894

RESUMO

The CreER/LoxP system is widely accepted to track neural lineages and study gene functions upon tamoxifen (TAM) administration. We have observed that prenatal TAM treatment caused high rates of delayed delivery and fetal mortality. This substance could produce undesired results, leading to data misinterpretation. Here, we report that administration of TAM during early stages of cortical neurogenesis promoted precocious neural differentiation, while it inhibited neural progenitor cell (NPC) proliferation. The TAM-induced inhibition of NPC proliferation led to deficits in cortical neurogenesis, dendritic morphogenesis, synaptic formation, and cortical patterning in neonatal and postnatal offspring. Mechanistically, by employing single-cell RNA-sequencing (scRNA-seq) analysis combined with in vivo and in vitro assays, we show TAM could exert these drastic effects mainly through dysregulating the Wnt-Dmrta2 signaling pathway. In adult mice, administration of TAM significantly attenuated NPC proliferation in both the subventricular zone and the dentate gyrus. This study revealed the cellular and molecular mechanisms for the adverse effects of TAM on corticogenesis, suggesting that care must be taken when using the TAM-induced CreER/LoxP system for neural lineage tracing and genetic manipulation studies in both embryonic and adult brains.


Assuntos
Encéfalo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia , Tamoxifeno/efeitos adversos , Animais , Encéfalo/embriologia , Encéfalo/patologia , Diferenciação Celular , Proliferação de Células , Giro Denteado/efeitos dos fármacos , Giro Denteado/patologia , Feminino , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/patologia , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , RNA-Seq , Análise de Célula Única , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
3.
Differentiation ; 119: 1-9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33848959

RESUMO

Taxol (paclitaxel), a chemotherapeutic agent for several cancers, can adversely affect the peripheral nervous system. Recently, its negative impact on cognitive function in cancer patients has become evident. In rodents, taxol impaired learning and memory, with other possible negative effects on the brain. In this study, we investigated the effects of taxol on cultured neural stem cells (NSCs) from the mouse neurogenic region, the subventricular zone (SVZ). Taxol significantly decreased both proliferation and neuronal differentiation of NSCs. Transient treatment with taxol for one day during a 4-day differentiation greatly decreased neurogenesis along with an abnormal cell cycle progression. Yet, taxol did not kill differentiated Tuj1+ neurons and those neurons had longer neurites than neurons under control conditions. For glial differentiation, taxol significantly reduced oligodendrogenesis as observed by immunostaining for Olig2 and O4. However, differentiation of astrocytes was not affected by taxol. In contrast, differentiated oligodendrocytes were extremely sensitive to taxol. Almost no Olig2-positive cells were observed after three days of treatment with taxol. Taxol has distinct effects on neurons and glial cells during their production through differentiation from NSCs as well as post-differentiation. Thus, we suggest that taxol might interfere with neurogenesis of NSCs possibly through a disturbance in the cell cycle and may eliminate differentiated oligodendrocytes.


Assuntos
Diferenciação Celular/genética , Células-Tronco Neurais/citologia , Neurônios/citologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Tubulina (Proteína)/genética , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/crescimento & desenvolvimento , Camundongos , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/efeitos dos fármacos , Neuritos/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurônios/metabolismo , Paclitaxel/farmacologia
4.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216129

RESUMO

Hepatic encephalopathy is a major cause of liver failure. However, the pathophysiological role of ventricle enlargement in brain edema remains unclear. Here, we used an acute hepatic encephalopathy mouse model to examine the sequential pathological changes in the brain associated with this condition. We collected tissue samples from experimental animals treated with ammonium acetate at 3 and 24 h post-injection. Despite the normalization of the animal's ammonia levels, samples taken at 24 h after injection exhibited distinct enlargement of lateral ventricles. The choroid plexus samples obtained at 3 h post-ammonium acetate treatment indicated enlargement; however, this swelling was reduced at the later timepoint. The aquaporin-1 proteins that regulate the choroid plexus were localized both in the apical membrane and the cytoplasm of the epithelia in the control; however, they translocated to the apical membranes of the epithelia in response to ammonia treatment. Therefore, severe acute hepatic encephalopathy induced by ammonium acetate administration caused enlargement of the ventricles, through swelling of the choroid plexus and aquaporin-1 transport and aggregation within the apical membranes.


Assuntos
Acetatos/efeitos adversos , Ventrículos Cerebrais/efeitos dos fármacos , Plexo Corióideo/efeitos dos fármacos , Encefalopatia Hepática/induzido quimicamente , Ventrículos Laterais/efeitos dos fármacos , Animais , Aquaporina 1/metabolismo , Edema Encefálico/induzido quimicamente , Edema Encefálico/metabolismo , Ventrículos Cerebrais/metabolismo , Plexo Corióideo/metabolismo , Modelos Animais de Doenças , Encefalopatia Hepática/metabolismo , Ventrículos Laterais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
J Neurochem ; 156(4): 465-480, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32052426

RESUMO

Neural stem/progenitor cells (NSPCs) persist in the mammalian subventricular zone throughout life, where they can be activated in response to physiological and pathophysiological stimuli. A recent study indicates metabotropic glutamate receptor 4 (mGluR4) is involved in regulating NSPCs behaviors. Therefore, defining mGluR4 function in NSPCs is necessary for determining novel strategies to enhance the intrinsic potential for brain regeneration after injuries. In this study, mGluR4 was functionally expressed in SVZ-derived NSPCs from male Sprague-Dawley rats, in which the cyclic adenosine monophosphate concentration was reduced after treatment with the mGluR4-specific agonist VU0155041. Additionally, lateral ventricle injection of VU0155041 significantly decreased 5-bromo-2'-deoxyuridine (BrdU)+ and Ki67+ cells, while increased Doublecortin (DCX)/BrdU double-positive cells in SVZ. In cultured NSPCs, mGluR4 activation decreased the ratio of BrdU+ cells, G2/M-phase cells, and inhibited Cyclin D1 expression, whereas it increased neuron-specific class III ß-tubulin (Tuj1) expression and the number of Tuj1, DCX, and PSA-NCAM-positive cells. However, pharmacological blocking mGluR4 with the antagonist MSOP or knockdown of mGluR4 abolished the effects of VU0155041 on NSPCs proliferation and neuronal differentiation. Further investigation demonstrated that VU0155041 treatment down-regulated AKT phosphorylation and up-regulated expression of the phosphatase and tensin homolog protein (PTEN) in NSPCs culture. Moreover VU0155041-induced proliferating inhibition and neuronal differentiating amplification in NSPCs were significantly hampered by VO-OHpic, a PTEN inhibitor. We conclude that activation of mGluR4 in SVZ-derived NSPCs suppresses proliferation and enhances their neuronal differentiation, and regulation of PTEN may be involved as a potential intracellular target of mGluR4 signal. Cover Image for this issue: https://doi.org/10.1111/jnc.15052.


Assuntos
Diferenciação Celular/fisiologia , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , PTEN Fosfo-Hidrolase/biossíntese , Receptores de Glutamato Metabotrópico/metabolismo , Anilidas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Ácidos Cicloexanocarboxílicos/farmacologia , Relação Dose-Resposta a Droga , Proteína Duplacortina , Expressão Gênica , Ventrículos Laterais/citologia , Ventrículos Laterais/efeitos dos fármacos , Masculino , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , PTEN Fosfo-Hidrolase/genética , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/agonistas
6.
Neurobiol Dis ; 148: 105219, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301880

RESUMO

Alzheimer's disease (AD) is the most common dementia worldwide and is characterized by the presence of senile plaques by amyloid-beta (Aß) and neurofibrillary tangles of hyperphosphorylated Tau protein. These changes lead to progressive neuronal degeneration and dysfunction, resulting in severe brain atrophy and cognitive deficits. With the discovery that neurogenesis persists in the adult mammalian brain, including brain regions affected by AD, studies of the use of neural stem cells (NSCs) for the treatment of neurodegenerative diseases to repair or prevent neuronal cell loss have increased. Here we demonstrate that leptin administration increases the neurogenic process in the dentate gyrus of the hippocampus as well as in the subventricular zone of lateral ventricles of adult and aged mice. Chronic treatment with leptin increased NSCs proliferation with significant effects on proliferation and differentiation of newborn cells. The expression of the long form of the leptin receptor, LepRb, was detected in the neurogenic niches by reverse qPCR and immunohistochemistry. Moreover, leptin modulated astrogliosis, microglial cell number and the formation of senile plaques. Additionally, leptin led to attenuation of Aß-induced neurodegeneration and superoxide anion production as revealed by Fluoro-Jade B and dihydroethidium staining. Our study contributes to the understanding of the effects of leptin in the brain that may lead to the development of new therapies to treat Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Proliferação de Células/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Leptina/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Proliferação de Células/genética , Modelos Animais de Doenças , Gliose/patologia , Humanos , Ventrículos Laterais/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Neurogênese/genética , Placa Amiloide/patologia , Receptores para Leptina/genética , Superóxidos/metabolismo
7.
Metab Brain Dis ; 36(5): 969-981, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33608831

RESUMO

Intrauterine growth restriction (IUGR) affects brain neural stem cell (NSC) differentiation. In the present study, we investigated whether taurine supplementation may improve NSC differentiation in IUGR fetal rats via the protein kinase A-cyclic adenosine monophosphate (cAMP) response element protein-brain derived neurotrophic factor (PKA-CREB-BDNF) signaling pathway. The IUGR fetal rat model was established with a low-protein diet. Fresh subventricular zone (SVZ) tissue from the fetuses on the 14th day of pregnancy was microdissected and dissociated into single-cell suspensions, then was cultured to form neurospheres. The neurospheres were divided into the control group, the IUGR group, the IUGR+taurine (taurine) group, the IUGR+H89 (H89) group and the IUGR+taurine+H89 (taurine+H89) group. The mRNA and protein expression levels of PKA, CREB and BDNF were measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting (WB). Tuj-1-positive neurons and GFAP-positive glial cells were detected by immunofluorescence. The total number of proliferating NSCs and the percentage of Tuj-1-positive neurons in the IUGR group were lower than those in the control group, but the percentage of GFAP-positive cells was higher in the IUGR group than in the control group. Taurine supplementation increased the total number of neural cells and the percentage of Tuj-1-positive neurons, and reduced the percentage of GFAP-positive cells among differentiated NSCs after IUGR. H89 reduced the total number and percentage of Tuj-1-positive neurons and increased the percentage of GFAP-positive cells. The mRNA and protein levels of PKA, CREB, and BDNF were lower in the IUGR group. The mRNA and protein expression levels of these factors were increased by taurine supplementation but reduced by the addition of H89. Taurine supplementation increased the ratio of neurons to glial cells and prevented gliosis in the differentiation of NSCs in IUGR fetal rats by activating the PKA-CREB-BDNF signaling pathway.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Taurina/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Neural Plast ; 2021: 5519330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34545285

RESUMO

Objective: To investigate the effects of lycopene-loaded microemulsion (LME) on the cognitive function and neurogenesis in the dentate gyrus (DG) of the hippocampus and subventricular (SVZ) region of rats with amyloid ß- (Aß-) induced Alzheimer's disease (AD) and its mechanism based on the Wnt/ß-catenin pathway. Methods: Healthy Wistar rats were divided into four groups: the blank control (CON), AD control, traditional lycopene (LOO), and LME groups. The CON and AD groups were fed with normal saline, while the LOO group was fed with traditional lycopene, and the LME group was fed with lycopene-loaded microemulsion. Behavioral tests were performed after three weeks of gastric administration. Immunofluorescence-labeled cells were used to observe the differentiation and maturation of new nerve cells in the DG of the hippocampus and SVZ region. qRT-PCR and Western blotting detected the expression of neurogenesis genes and Wnt/ß-catenin pathway-related proteins, respectively. Results: On the Morris water maze test, LME rats had significantly shortened movement trajectory on the searching platform, reduced escape latency time, and increased residence time on the original platform quadrant. In addition, more LME rats crossed the platform when it was removed. Thus, LME can improve the spatial learning and memory of Aß-induced AD rats. On qRT-PCR, LME significantly increased Reelin, Nestin, and Pax6 gene expressions, which regulate neurogenesis. Immunofluorescence showed that LME could significantly increase BrdU+, Dcx+, BrdU+/Neun+, BrdU+/Dcx+ cells in the DG and SVZ regions, thus promoting neurogenesis. LME also reduced the number of Iba1+ and Iba1+/BrdU+ cells, thus reducing the neuroinflammatory response. On Western blot, LME upregulated the Wnt/ß-catenin pathway by upregulating Wnt3a, ß-catenin, Disheveled (Dvl), and p-GSK3ß and downregulating p-ß-catenin and GSK3ß. Conclusion: LME attenuates cognitive impairment in Aß-induced AD rats by promoting neurogenesis in the hippocampus and SVZ region through upregulating the Wnt/ß-catenin pathway.


Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Licopeno/administração & dosagem , Neurogênese/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Via de Sinalização Wnt/efeitos dos fármacos , Doença de Alzheimer/fisiopatologia , Animais , Antioxidantes/administração & dosagem , Emulsões , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Ventrículos Laterais/efeitos dos fármacos , Masculino , Neurogênese/fisiologia , Ratos , Ratos Wistar , Via de Sinalização Wnt/fisiologia
9.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445804

RESUMO

Neural progenitor cells (NPCs) are self-renewing and multipotent cells that persist in the postnatal and adult brain in the subventricular zone and the hippocampus. NPCs can be expanded in vitro to be used in cell therapy. However, expansion is limited, since the survival and proliferation of adult NPCs decrease with serial passages. Many signaling pathways control NPC survival and renewal. Among these, purinergic receptor activation exerts differential effects on the biology of adult NPCs depending on the cellular context. In this study, we sought to analyze the effect of a general blockade of purinergic receptors with suramin on the proliferation and survival of NPCs isolated from the subventricular zone of postnatal rats, which are cultured as neurospheres. Treatment of neurospheres with suramin induced a significant increase in neurosphere diameter and in NPC number attributed to a decrease in apoptosis. Proliferation and multipotency were not affected. Suramin also induced an increase in the gap junction protein connexin43 and in vascular endothelial growth factor, which might be involved in the anti-apoptotic effect. Our results offer a valuable tool for increasing NPC survival before implantation in the lesioned brain and open the possibility of using this drug as adjunctive therapy to NPC transplantation.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Antagonistas Purinérgicos/farmacologia , Receptores Purinérgicos/metabolismo , Células-Tronco/efeitos dos fármacos , Suramina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , Masculino , Células-Tronco Neurais/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Bull Exp Biol Med ; 171(3): 333-337, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34297290

RESUMO

We studied the participation of JNK and p53 in the realization of the growth potential of different types of progenitors of the subventricular zone of mouse brain and secretion of neurotrophins by glial cells. The stimulating role of these signaling molecules in mitotic activity and specialization of multipotent neural stem cells was shown. It was found that JNK and p53 do not participate in the regulation of committed neuronal progenitor cells (clonogenic PSA-NCAM+ cells). A dependence of neurotrophic growth factors in individual populations of neuroglia on activity of these protein kinase and transcription factor was revealed. The role of JNK and p53 in astrocytes consists in stimulation of their secretion, and in microglial cells, on the contrary, in its inhibition. The secretory neurotrophic function of oligodendrogliocytes is not associated with JNK and p53 activity.


Assuntos
Astrócitos/metabolismo , MAP Quinase Quinase 4/genética , Células-Tronco Multipotentes/metabolismo , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Benzotiazóis/farmacologia , Antígeno CD56/genética , Antígeno CD56/metabolismo , Meios de Cultivo Condicionados/farmacologia , Regulação da Expressão Gênica , Ventrículos Laterais/citologia , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Fatores de Crescimento Neural/biossíntese , Fatores de Crescimento Neural/genética , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Transdução de Sinais , Tolueno/análogos & derivados , Tolueno/farmacologia , Proteína Supressora de Tumor p53/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 319(6): R673-R683, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026822

RESUMO

Oxytocin (OT) is a neuropeptide whose central receptor-mediated actions include reducing food intake. One mechanism of its behavioral action is the amplification of the feeding inhibitory effects of gastrointestinal (GI) satiation signals processed by hindbrain neurons. OT treatment also reduces carbohydrate intake in humans and rodents, and correspondingly, deficits in central OT receptor (OT-R) signaling increase sucrose self-administration. This suggests that additional processes contribute to central OT effects on feeding. This study investigated the hypothesis that central OT reduces food intake by decreasing food seeking and food motivation. As central OT-Rs are expressed widely, a related focus was to assess the role of one or more OT-R-expressing nuclei in food motivation and food-seeking behavior. OT was delivered to the lateral ventricle (LV), nucleus tractus solitarius (NTS), or ventral tegmental area (VTA), and a progressive ratio (PR) schedule of operant reinforcement and an operant reinstatement paradigm were used to measure motivated feeding behavior and food-seeking behavior, respectively. OT delivered to the LV, NTS, or VTA reduced 1) motivation to work for food and 2) reinstatement of food-seeking behavior. Results provide a novel and additional interpretation for central OT-driven food intake inhibition to include the reduction of food motivation and food seeking.


Assuntos
Depressores do Apetite/administração & dosagem , Regulação do Apetite/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Ventrículos Laterais/efeitos dos fármacos , Motivação/efeitos dos fármacos , Ocitocina/administração & dosagem , Núcleo Solitário/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Infusões Intraventriculares , Ventrículos Laterais/fisiologia , Masculino , Ratos Sprague-Dawley , Núcleo Solitário/fisiologia , Área Tegmentar Ventral/fisiologia
12.
Bull Exp Biol Med ; 169(6): 759-764, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33098513

RESUMO

The role of NF-κВ in the realization of the growth potential of neural progenitor cells from the subventricular area of cerebral hemispheres and secretion of neurotrophins by glial elements was studied under conditions of in vitro and in vivo modeled ethanol-induced neurodegeneration. It was found that this transcription factor does not participate in the regulation of mitotic activity of neural stem cells and neuronal-committed progenitors under optimal conditions and under the influence of ethanol in vitro. At the same time, NF-κВ suppresses differentiation/maturation of neural progenitor cells. Long-term peroral administration of ethanol to mice was accompanied by the inhibitory influence of NF-κВ on proliferation of progenitor cells. Blockade of NF-κВ in neural stem cells and committed neuronal precursors in animals with neurodegeneration induced cell cycle progression in these elements. The involvement of NF-κВ in the secretory function of astrocytes and oligodendrogliocytes was established. Inactivation of the nuclear transcription factor reduced the production of neurotrophins, in particular, in the case of ethanol exposure. At the same time, no changes in the function of microglia were noted.


Assuntos
Ventrículos Laterais/efeitos dos fármacos , NF-kappa B/genética , Células-Tronco Neurais/efeitos dos fármacos , Doenças Neurodegenerativas/genética , Regeneração/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Etanol/farmacologia , Regulação da Expressão Gênica , Tiomalato Sódico de Ouro/farmacologia , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Cultura Primária de Células , Regeneração/genética , Transdução de Sinais
13.
J Neurosci Res ; 97(5): 554-567, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30614539

RESUMO

Traumatic brain injury (TBI) is a major cause of disability worldwide. Additionally, many TBI patients are intoxicated with alcohol at the time of injury, but the impact of acute intoxication on recovery from brain injury is not well understood. We have previously found that binge alcohol prior to TBI impairs spontaneous functional sensorimotor recovery. However, whether alcohol administration in this setting affects reactive neurogenesis after TBI is not known. This study, therefore, sought to determine the short- and long-term effects of pre-TBI binge alcohol on neural precursor cell responses in the subventricular zone (SVZ) following brain injury in male rats. We found that TBI alone significantly increased proliferation in the SVZ as early as 24 hr after injury. Surprisingly, binge alcohol alone also significantly increased proliferation in the SVZ after 24 hr. However, a combined binge alcohol and TBI regimen resulted in decreased TBI-induced proliferation in the SVZ at 24 hr and 1 week post-TBI. Furthermore, at 6 weeks after TBI, binge alcohol administered at the time of TBI significantly decreased the TBI-induced neuroblast response in the SVZ and the rostral migratory stream (RMS). The results from this study suggest that pre-TBI binge alcohol negatively impacts reparative processes in the brain by decreasing short-term neural precursor cell proliferative responses as well as long-term neuroblasts in the SVZ and RMS.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/patologia , Lesões Encefálicas Traumáticas/patologia , Ventrículos Cerebrais/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Ventrículos Cerebrais/patologia , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/patologia , Masculino , Células-Tronco Neurais/patologia , Neurogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
14.
J Med Virol ; 91(6): 1158-1167, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30701563

RESUMO

BACKGROUND: Opioid-primed relapse is a global burden. Although current strategies have improved, optimal therapy is urgently needed. METHODS: A recombinant adenovirus (Ad-NEP) expressing ß-endorphin (ß-EP) was designed and injected intracerebroventricularly (icv) into the right lateral ventricle in rats. Spatial and temporal ß-EP expression in the lateral ventricle wall, subventricular zone and adjacent choroid plexus and the ß-EP concentration in the cerebrospinal fluid (CSF) were observed during a 21-day period. A morphine priming-induced conditioned place preference (CPP) rat model was established. The ß-EP-ir neuron counts, CSF ß-EP concentration, and CPP score, which were used to evaluate morphine-primed reinstatement following extinction, were recorded 7 days after the icv injection. Additionally, the rats were pretreated with the irreversible µ opioid receptor antagonist ß-funaltrexamine (ß-FNA) and the selective κ opioid receptor antagonist nor-binaltorphimine (nor-BNI) to identify the receptor-dependent mechanism. RESULTS: Both peak ß-EP expression in target neurons and the peak CSF ß-EP concentration occurred 7 to 8 days after Ad-NEP icv injection. The sustainable increase in the CSF ß-EP concentration was correlated with a decrease in the CPP score 7 days after the Ad-NEP icv injection. Furthermore, reinstatement was almost reversed by ß-FNA pretreatment 24 hours before the behavioral test, but nor-BNI had little effect. CONCLUSION: The increasing cerebrospinal fluid ß-endorphin concentrations showed that the therapeutic effect on opioid relapse occurred predominantly through a µ opioid receptor-dependent mechanism. The Ad-NEP adenovirus can be considered an alternative therapy for opioid relapse.


Assuntos
Comportamento Animal/efeitos dos fármacos , Morfina/administração & dosagem , Entorpecentes/farmacologia , Receptores Opioides mu/efeitos dos fármacos , beta-Endorfina/líquido cefalorraquidiano , beta-Endorfina/genética , Adenoviridae/genética , Animais , Animais Geneticamente Modificados , Ventrículos Laterais/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Recidiva , Prevenção Secundária
15.
J Appl Toxicol ; 39(11): 1557-1567, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31368586

RESUMO

The developing brain is uniquely vulnerable to toxic chemical exposures. Studies indicate that neural stem cell (NSC) self-renewal is susceptible to oxidative stress caused by xenobiotics. However, the impact of antioxidants on NSC self-renewal and the potential mechanisms remain elusive. In this study, primary murine neural progenitor cells (mNPCs) from the subventricular zone were used as a research model. In addition, paraquat (PQ) was used to elicit oxidative stress and N-acetylcysteine (NAC) was used as a powerful antioxidant. mNPCs were treated with 80 µm PQ for 24 hours with or without 4 hours of NAC pretreatment. Our results showed that PQ treatment increased intracellular reactive oxygen species production, decreased cell viability and DNA synthesis, and promoted cell apoptosis. Meanwhile, pretreatment with NAC alleviated PQ-induced cytotoxicity in mNPCs. To elucidate the mechanisms further, we found that NAC pretreatment prevented PQ-induced reactive oxygen species production, mitochondrial fragmentation and autophagy in mNPCs. NAC-pretreated cells showed increased anti-apoptotic protein Bcl-2 and decreased pro-apoptotic protein Bax expression. Similarly, NAC pretreatment increased p-mTOR and decreased LC3B-II protein expression. Moreover, NAC decreased mitophagy related mRNA Pink1 and Parkin expression. Taken together, our results suggested that the antioxidant NAC treatment significantly attenuated PQ-induced mNPC self-renewal disruption through decreasing autophagy and salvaging mitochondrial morphology. These findings revealed a potential mechanism for neurological treatment relating to antioxidant and suggested potentially relevant implications for PQ-related neurodegenerative disorders. Thus, our study also provided insight into therapeutic strategies for the neurotoxic effects of oxidative stress-associated toxicants.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Paraquat/toxicidade , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/ultraestrutura , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo
16.
Childs Nerv Syst ; 35(3): 469-476, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30661113

RESUMO

PURPOSE: To elucidate the potential role of erythropoietin (EPO) as a neuroprotective agent against reactive astrogliosis and reducing the thinning rate of subventricular zone (SVZ) in kaolin-induced hydrocephalic rats. METHOD: Thirty-six ten-week-old Sprague-Dawley rats were used in this study. Hydrocephalus was induced with 20% kaolin suspension injected into the cistern of thirty rats and leaving the six rats as normal group. The hydrocephalic rats were randomly divided into hydrocephalic and treatment group. The treatment group received daily dose of recombinant human erythropoietin (rhEPO) from day 7 to day 21 after induction. The animals were sacrificed at 7 (only for hydrocephalic group) and 14 or 21 (for both groups) days after induction. Brain was removed and was prepared for histological analysis by hematoxylin and eosin staining as well as immunohistochemistry for 4-HNE, GFAP, Iba-1, and Ki-67. RESULTS: Histopathological analysis showed that animals treated with rhEPO had a reduced astrocyte reactivity displayed by lower GFAP expression. Hydrocephalic rats received rhEPO also displayed reduced microglial activation shown by lower Iba-1 protein expression. Exogenous rhEPO exerted its protective action in reducing astrogliosis by inhibiting lipid peroxidation that was documented in this study as lower expression of 4-HNE than non-treated group. The SVZ thickness was progressively declining in hydrocephalus group, while the progression rate could be reduced by rhEPO. CONCLUSION: Erythropoietin has a potential use for inhibiting lipid peroxidation, and reactive astrogliosis in hydrocephalic animal model. The reduced thinning rate of SVZ demonstrated that EPO also had effect in reducing the hydrocephalus progressivity. Further research is warranted to explore its efficacy and safety to use in clinical setting.


Assuntos
Eritropoetina/farmacologia , Gliose/patologia , Hidrocefalia/patologia , Ventrículos Laterais/patologia , Animais , Hidrocefalia/induzido quimicamente , Caulim/toxicidade , Ventrículos Laterais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
17.
Bull Exp Biol Med ; 166(3): 317-320, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30627909

RESUMO

The in vitro and in vivo models of ethanol-induced neurodegeneration were used to evaluate the content and functional activity of various types of regeneration-competent cells in subventricular zone of the cerebral hemispheres in C57Bl/6JY mice. In nervous tissue culture, ethanol (65 mM) produced no effect on formation of neurospheres. When administered per os in a daily dose of 3 g/kg for 8 weeks, ethanol produced no effect on the number of neural CFU in situ. In both cases, ethanol reduced proliferative activity of neural CFU. Long-term administration of ethanol in vivo suppressed differentiation of neural stem cells and decreased the number of committed precursors (neural cluster-forming units) in the subventricular zone of cerebral hemispheres. In vitro application of ethanol stimulated secretion of humoral growth factors by the cluster-forming neural glial cells. In contrast, in vivo administration of ethanol suppressed this secretion.


Assuntos
Alcoolismo/patologia , Cérebro/efeitos dos fármacos , Etanol/farmacologia , Ventrículos Laterais/efeitos dos fármacos , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Alcoolismo/metabolismo , Animais , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cérebro/metabolismo , Cérebro/patologia , Cérebro/fisiopatologia , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/agonistas , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Ventrículos Laterais/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Doenças Neurodegenerativas/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/patologia , Cultura Primária de Células , Esferoides Celulares/efeitos dos fármacos
18.
Glia ; 66(2): 396-412, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29076551

RESUMO

Adult neural progenitor cells (NPCs) are capable of differentiating into neurons, astrocytes, and oligodendrocytes throughout life. Notch and transforming growth factor ß1 (TGF-ß) signaling pathways play critical roles in controlling these cell fate decisions. TGF-ß has been previously shown to exert pro-neurogenic effects on hippocampal and subventricular zone (SVZ) NPCs in vitro and to interact with Notch in different cellular types. Therefore, the aim of our work was to study the effect of TGF-ß on adult rat brain SVZ NPC glial commitment and its interaction with Notch signaling. Initial cell characterization revealed a large proportion of Olig2+, Nestin+, and glial fibrillary acidic protein (GFAP+) cells, a low percentage of platelet-derived growth factor receptor α (PDGFRα+) or NG2+ cells, and <1% Tuj1+ cells. Immunocytochemical analyses showed a significant increase in the percentage of PDGFRα+, NG2+, and GFAP+ cells upon four-day TGF-ß treatment, which demonstrates the pro-gliogenic effect of this growth factor on adult brain SVZ NPCs. Real-time polymerase chain reaction analyses showed that TGF-ß induced the expression of Notch ligand Jagged1 and downstream gene Hes1. Notch signaling inhibition in cultures treated with TGF-ß produced a decrease in the proportion of PDGFRα+ cells, while TGF-ß receptor II (TßRII) inhibition also rendered a decrease in the proportion of PDGFRα+ cells, concomitantly with a decrease in Jagged1 levels. These findings demonstrate the participation of Notch signaling in TGF-ß effects and illustrate the impact of TGF-ß on glial cell fate decisions of adult brain SVZ NPCs, as well as on oligodendroglial progenitor cell proliferation and maturation.


Assuntos
Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Receptores Notch/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fatores Etários , Animais , Células Cultivadas , Humanos , Ventrículos Laterais/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
19.
Glia ; 66(11): 2456-2469, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500112

RESUMO

Astrocyte-derived ciliary neurotrophic factor (CNTF) promotes adult subventricular zone (SVZ) neurogenesis. We found that focal adhesion kinase (FAK) and JNK, but not ERK or P38, repress CNTF in vitro. Here, we defined the FAK-JNK pathway and its regulation of CNTF in mice, and the related leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), which promote stem cell renewal at the expense of neurogenesis. Intrastriatal injection of FAK inhibitor, FAK14, in adult male C57BL/6 mice reduced pJNK and increased CNTF expression in the SVZ-containing periventricular region. Injection of a JNK inhibitor increased CNTF without affecting LIF and IL-6, and increased SVZ proliferation and neuroblast formation. The JNK inhibitor had no effect in CNTF-/- mice, suggesting that JNK inhibits SVZ neurogenesis by repressing CNTF. Inducible deletion of FAK in astrocytes increased SVZ CNTF and neurogenesis, but not LIF and IL-6. Intrastriatal injection of inhibitors suggested that P38 reduces LIF and IL-6 expression, whereas ERK induces CNTF and LIF. Intrastriatal FAK inhibition increased LIF, possibly through ERK, and IL-6 through another pathway that does not involve P38. Systemic injection of FAK14 also inhibited JNK while increasing CNTF, but did not affect P38 and ERK activation, or LIF and IL-6 expression. Importantly, systemic FAK14 increased SVZ neurogenesis in wild-type C57BL/6 and CNTF+/+ mice, but not in CNTF-/- littermates, indicating that it acts by upregulating CNTF. These data show a surprising differential regulation of related cytokines and identify the FAK-JNK-CNTF pathway as a specific target in astrocytes to promote neurogenesis and possibly neuroprotection in neurological disorders.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Ventrículos Laterais/citologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neurogênese/fisiologia , Animais , Antracenos/farmacologia , Astrócitos/efeitos dos fármacos , Linhagem Celular Tumoral , Fator Neurotrófico Ciliar/genética , Citocinas/genética , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Quinase 1 de Adesão Focal/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Antígeno Ki-67/metabolismo , Ventrículos Laterais/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fatores de Tempo
20.
Neurobiol Dis ; 110: 122-132, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29203281

RESUMO

Germinal matrix hemorrhage is induced by stereotaxic injection of collagenase into the germinal matrix of P7 Sprague-Dawley rats. Hemoglobin assay, western blot, immunofluorescence and neurobehavioral tests were used to test the effects of BLVRA on hematoma resolution and anti-inflammatory response. We showed that BLVRA triggered a signaling cascade that ameliorated post-hemorrhagic neurological deficits in both short-term and long-term neurobehavioral tests in a GMH rat model. Specifically, BLVRA inhibited toll-like receptor 4 (TLR4) expression by translocating to the nucleus in an endothelial nitric oxide (eNOS)/nitric oxide (NO)-dependent manner. BLVRA also induced the upregulation of CD36 scavenger receptor level in microglia/microphages, of which the prominent role is to enhance hematoma resolution. However, the beneficial effects of BLVRA were abolished with the knockdown of eNOS, indicating that the eNOS/NO system is an important downstream factor of BLVRA. Our results demonstrate a mechanism of BLVRA modulating hematoma resolution and suppressing inflammation through eNOS/NO/TLR4 pathway in the GMH rat model.


Assuntos
Hemorragia Cerebral/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/farmacologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/patologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA