Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 34: 111-136, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30296391

RESUMO

The plasma membrane of eukaryotic cells is not a simple sheet of lipids and proteins but is differentiated into subdomains with crucial functions. Caveolae, small pits in the plasma membrane, are the most abundant surface subdomains of many mammalian cells. The cellular functions of caveolae have long remained obscure, but a new molecular understanding of caveola formation has led to insights into their workings. Caveolae are formed by the coordinated action of a number of lipid-interacting proteins to produce a microdomain with a specific structure and lipid composition. Caveolae can bud from the plasma membrane to form an endocytic vesicle or can flatten into the membrane to help cells withstand mechanical stress. The role of caveolae as mechanoprotective and signal transduction elements is reviewed in the context of disease conditions associated with caveola dysfunction.


Assuntos
Cavéolas/metabolismo , Membrana Celular/genética , Vesículas Transportadoras/genética , Cavéolas/química , Cavéolas/patologia , Membrana Celular/química , Endocitose/genética , Humanos , Transdução de Sinais/genética , Estresse Mecânico , Relação Estrutura-Atividade , Vesículas Transportadoras/química
2.
Cell ; 167(5): 1241-1251.e11, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27839865

RESUMO

The epidermal growth factor receptor (EGFR) represents one of the most common target proteins in anti-cancer therapy. To directly examine the structural and dynamical properties of EGFR activation by the epidermal growth factor (EGF) in native membranes, we have developed a solid-state nuclear magnetic resonance (ssNMR)-based approach supported by dynamic nuclear polarization (DNP). In contrast to previous crystallographic results, our experiments show that the ligand-free state of the extracellular domain (ECD) is highly dynamic, while the intracellular kinase domain (KD) is rigid. Ligand binding restricts the overall and local motion of EGFR domains, including the ECD and the C-terminal region. We propose that the reduction in conformational entropy of the ECD by ligand binding favors the cooperative binding required for receptor dimerization, causing allosteric activation of the intracellular tyrosine kinase.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/isolamento & purificação , Humanos , Membranas Intracelulares/química , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Termodinâmica , Vesículas Transportadoras/química
3.
Annu Rev Biochem ; 81: 407-27, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22463692

RESUMO

Membrane-bound transport carriers are used to transfer cargo between membranes of the secretory and the endocytic pathways. The generation of these carriers can be classified into three steps: segregation of cargo away from the residents of a donor compartment (cargo sorting), generation of membrane curvature commensurate with the size of the cargo (membrane budding or tubulation), and finally separation of the nascent carrier from the donor membrane by a scission or membrane fission event. This review summarizes advances in our understanding of some of the best-characterized proteins required for the membrane fission that separates a transport carrier from its progenitor compartment: the large GTPase dynamin, the small guanine nucleotide-binding (G) proteins of the Arf family, BAR (Bin-amphiphysin-Rvs) domain proteins, and protein kinase D. These proteins share their ability to insert into membranes and oligomerize to create the large curvatures; however, the overall process of fission that involves these proteins appears to be quite different.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte/química , Endocitose , Humanos , Proteínas de Membrana/química , Proteínas SNARE/metabolismo , Vesículas Transportadoras/química
4.
Nucleic Acids Res ; 50(D1): D497-D508, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718738

RESUMO

Almost twenty years after its initial release, the Eukaryotic Linear Motif (ELM) resource remains an invaluable source of information for the study of motif-mediated protein-protein interactions. ELM provides a comprehensive, regularly updated and well-organised repository of manually curated, experimentally validated short linear motifs (SLiMs). An increasing number of SLiM-mediated interactions are discovered each year and keeping the resource up-to-date continues to be a great challenge. In the current update, 30 novel motif classes have been added and five existing classes have undergone major revisions. The update includes 411 new motif instances mostly focused on cell-cycle regulation, control of the actin cytoskeleton, membrane remodelling and vesicle trafficking pathways, liquid-liquid phase separation and integrin signalling. Many of the newly annotated motif-mediated interactions are targets of pathogenic motif mimicry by viral, bacterial or eukaryotic pathogens, providing invaluable insights into the molecular mechanisms underlying infectious diseases. The current ELM release includes 317 motif classes incorporating 3934 individual motif instances manually curated from 3867 scientific publications. ELM is available at: http://elm.eu.org.


Assuntos
Doenças Transmissíveis/genética , Bases de Dados de Proteínas , Interações Hospedeiro-Patógeno/genética , Domínios e Motivos de Interação entre Proteínas , Software , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Animais , Sítios de Ligação , Ciclo Celular/genética , Membrana Celular/química , Membrana Celular/metabolismo , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/virologia , Ciclinas/química , Ciclinas/genética , Ciclinas/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Células Eucarióticas/virologia , Regulação da Expressão Gênica , Humanos , Integrinas/química , Integrinas/genética , Integrinas/metabolismo , Camundongos , Anotação de Sequência Molecular , Ligação Proteica , Ratos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo , Vírus/genética , Vírus/metabolismo
5.
J Biol Chem ; 298(10): 102483, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108741

RESUMO

Sepsis is an often life-threatening response to infection, occurring when host proinflammatory immune responses become abnormally elevated and dysregulated. To diagnose sepsis, the patient must have a confirmed or predicted infection, as well as other symptoms associated with the pathophysiology of sepsis. However, a recent study found that a specific causal organism could not be determined in the majority (70.1%) of sepsis cases, likely due to aggressive antibiotics or localized infections. The timing of a patient's sepsis diagnosis is often predictive of their clinical outcome, underlining the need for a more definitive molecular diagnostic test. Here, we outline the advantages and challenges to using bacterial outer membrane vesicles (OMVs), nanoscale spherical buds derived from the outer membrane of Gram-negative bacteria, as a diagnostic biomarker for Gram-negative sepsis. Advantages include OMV abundance, their robustness in the presence of antibiotics, and their unique features derived from their parent cell that could allow for differentiation between bacterial species. Challenges include the rigorous purification methods required to isolate OMVs from complex biofluids and the additional need to separate OMVs from similarly sized extracellular vesicles, which can share physical properties with OMVs.


Assuntos
Biomarcadores , Bactérias Gram-Negativas , Sepse , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas da Membrana Bacteriana Externa , Vesículas Extracelulares , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/metabolismo , Sepse/diagnóstico , Sepse/microbiologia , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo
6.
Traffic ; 20(7): 479-490, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31062920

RESUMO

Vesicular transport between different membrane compartments is a key process in cell biology required for the exchange of material and information. The complex machinery that executes the formation and delivery of transport vesicles has been intensively studied and yielded a comprehensive view of the molecular principles that underlie the budding and fusion process. Tethering also represents an essential step in each trafficking pathway. It is mediated by Rab GTPases in concert with so-called tethering factors, which constitute a structurally diverse family of proteins that share a similar role in promoting vesicular transport. By simultaneously binding to proteins and/or lipids on incoming vesicles and the target compartment, tethers are thought to bridge donor and acceptor membrane. They thus provide specificity while also promoting fusion. However, how tethering works at a mechanistic level is still elusive. We here discuss the recent advances in the structural and biochemical characterization of tethering complexes that provide novel insight on how these factors might contribute the efficiency of fusion.


Assuntos
Membrana Celular/metabolismo , Fusão de Membrana , Proteínas de Transporte Vesicular/metabolismo , Animais , Membrana Celular/química , Humanos , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/química
7.
Small ; 16(27): e1906493, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32468702

RESUMO

Polymer-lipid hybrid vesicles are an emerging type of nano-assemblies that show potential as artificial organelles among others. Phospholipids and poly(cholesteryl methacrylate)-block-poly(methionine methacryloyloxyethyl ester (METMA)-random-2-carboxyethyl acrylate (CEA)) labeled with a Förster resonance energy transfer (FRET) reporter pair are used for the assembly of small and giant hybrid vesicles with homogenous distribution of both building blocks in the membrane as confirmed by the FRET effect. These hybrid vesicles have no inherent cytotoxicity when incubated with HepG2 cells up to 1.1 × 1011 hybrid vesicles per mL, and they are internalized by the cells. In contrast to the fluorescent signal originating from the block copolymer, the fluorescent signal coming from the lipids is barely detectable in cells incubated with hybrid vesicles for 6 h followed by 24 h in cell media, suggesting that the two building blocks have a different intracellular fate. These findings provide important insight into the design criteria of artificial organelles with potential structural integrity.


Assuntos
Fosfolipídeos , Polímeros , Sobrevivência Celular , Transferência Ressonante de Energia de Fluorescência , Células Hep G2 , Humanos , Fosfolipídeos/química , Fosfolipídeos/toxicidade , Polímeros/química , Polímeros/toxicidade , Vesículas Transportadoras/química
8.
J Neurochem ; 150(5): 487-506, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31287913

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative disorders, affecting 1-1.5% of the total population. While progress has been made in understanding the neurodegenerative mechanisms that lead to cell death in late stages of PD, mechanisms for early, causal pathogenic events are still elusive. Recent developments in PD genetics increasingly point at endolysosomal (E-L) system dysfunction as the early pathomechanism and key pathway affected in PD. Clathrin-mediated synaptic endocytosis, an integral part of the neuronal E-L system, is probably the main early target as evident in auxilin, RME-8, and synaptojanin-1 mutations that cause PD. Autophagy, another important pathway in the E-L system, is crucial in maintaining proteostasis and a healthy mitochondrial pool, especially in neurons considering their inability to divide and requirement to function an entire life-time. PINK1 and Parkin mutations severely perturb autophagy of dysfunctional mitochondria (mitophagy), both in the cell body and synaptic terminals of dopaminergic neurons, leading to PD. Endolysosomal sorting and trafficking is also crucial, which is complex in multi-compartmentalized neurons. VPS35 and VPS13C mutations noted in PD target these mechanisms. Mutations in GBA comprise the most common risk factor for PD and initiate pathology by compromising lysosomal function. This is also the case for ATP13A2 mutations. Interestingly, α-synuclein and LRRK2, key proteins involved in PD, function in different steps of the E-L pathway and target their components to induce disease pathogenesis. In this review, we discuss these E-L system genes that are linked to PD and how their dysfunction results in PD pathogenesis. This article is part of the Special Issue "Synuclein".


Assuntos
Endocitose/fisiologia , Endossomos/fisiologia , Lisossomos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Doença de Parkinson/fisiopatologia , Autofagia , Axônios/metabolismo , Corpo Estriado/fisiopatologia , Previsões , Estudos de Associação Genética , Humanos , Fusão de Membrana/fisiologia , Mitofagia , Mutação , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fatores de Risco , Substância Negra/fisiopatologia , Vesículas Transportadoras/química , Vesículas Transportadoras/fisiologia
9.
Phys Rev Lett ; 123(3): 038102, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386448

RESUMO

The growth, form, and division of prebiotic vesicles, membraneous bags of fluid of varying components and shapes is hypothesized to have served as the substrate for the origin of life. The dynamics of these out-of-equilibrium structures is controlled by physicochemical processes that include the intercalation of amphiphiles into the membrane, fluid flow across the membrane, and elastic deformations of the membrane. To understand prebiotic vesicular forms and their dynamics, we construct a minimal model that couples membrane growth, deformation, and fluid permeation, ultimately couched in terms of two dimensionless parameters that characterize the relative rate of membrane growth and the membrane permeability. Numerical simulations show that our model captures the morphological diversity seen in extant precursor mimics of cellular life, and might provide simple guidelines for the synthesis of these complex shapes from simple ingredients.


Assuntos
Modelos Químicos , Prebióticos , Físico-Química , Vesículas Transportadoras/química
10.
Phys Chem Chem Phys ; 21(35): 19327-19341, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31453592

RESUMO

The mechanisms of plasma in medicine are broadly attributed to plasma-derived reactive oxygen and nitrogen species (RONS). In order to exert any intracellular effects, these plasma-derived RONS must first traverse a major barrier in the cell membrane. The cell membrane lipid composition, and thereby the magnitude of this barrier, is highly variable between cells depending on type and state (e.g. it is widely accepted that healthy and cancerous cells have different membrane lipid compositions). In this study, we investigate how plasma-derived RONS interactions with lipid membrane components can potentially be exploited in the future for treatment of diseases. We couple phospholipid vesicle experiments, used as simple cell models, with molecular dynamics (MD) simulations of the lipid membrane to provide new insights into how the interplay between phospholipids and cholesterol may influence the response of healthy and diseased cell membranes to plasma-derived RONS. We focus on the (i) lipid tail saturation degree, (ii) lipid head group type, and (iii) membrane cholesterol fraction. Using encapsulated molecular probes, we study the influence of the above membrane components on the ingress of RONS into the vesicles, and subsequent DNA damage. Our results indicate that all of the above membrane components can enhance or suppress RONS uptake, depending on their relative concentration within the membrane. Further, we show that higher RONS uptake into the vesicles does not always correlate with increased DNA damage, which is attributed to ROS reactivity and lifetime. The MD simulations indicate the multifactorial chemical and physical processes at play, including (i) lipid oxidation, (ii) lipid packing, and (iii) lipid rafts formation. The methods and findings presented here provide a platform of knowledge that could be leveraged in the development of therapies relying on the action of plasma, in which the cell membrane and oxidative stress response in cells is targeted.


Assuntos
Dano ao DNA , Lipídeos de Membrana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Colesterol/química , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Fosfolipídeos/química , Espécies Reativas de Nitrogênio/sangue , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/sangue , Vesículas Transportadoras/química
11.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30097441

RESUMO

Lysobacter enzymogenes C3 is a predatory strain of Gram-negative gliding bacteria that produces antifungal antibiotics by the polyketide synthetic pathway. Outer membrane vesicles (OMV) are formed as a stress response and can deliver virulence factors to host cells. The production of OMV by C3 and their role in antifungal activity are reported here. Vesicles in the range of 130 to 150 nm in diameter were discovered in the cell-free supernatants of C3 cultures. These OMV contain molecules characteristic of bacterial outer membranes, such as lipopolysaccharide and phospholipids. In addition, they contain chitinase activity and essentially all of the heat-stable antifungal activity in cell supernatants. We show here that C3 OMV can directly inhibit growth of the yeast Saccharomyces cerevisiae as well as that of the filamentous fungus Fusarium subglutinans The activity is dependent on physical contact between OMV and the cells. Furthermore, fluorescent lipid labeling of C3 OMV demonstrated transfer of the membrane-associated probe to yeast cells, suggesting the existence of a mechanism of delivery for membrane-associated molecules. Mass spectrometric analysis of C3 OMV extracts indicates the presence of molecules with molecular weights identical to some of the previously identified antifungal products of C3. These data together suggest that OMV act as an important remote mobile component of predation by LysobacterIMPORTANCE The data presented here suggest a newly discovered function of outer membrane vesicles (OMV) that are produced from the outer membrane of the bacterial species Lysobacter enzymogenes strain C3. We show that these OMV can be released from the surface of the cells to deliver antibiotics to target fungal organisms as a mechanism of killing or growth inhibition. Understanding the role of OMV in antibiotic delivery can generally lead to improved strategies for dealing with antibiotic-resistant organisms. These results also add to the evidence that some bacterially produced antibiotics can be discovered and purified using methods designed for isolation of nanoscale vesicles. Information on these systems can lead to better identification of active molecules or design of delivery vehicles for these molecules.


Assuntos
Antifúngicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Lysobacter/química , Vesículas Transportadoras/química , Proteínas da Membrana Bacteriana Externa/química , Fusarium/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos
12.
Can J Microbiol ; 64(9): 589-599, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30169125

RESUMO

All Gram-negative bacteria release membrane vesicles. These vesicles contain a cargo of proteins and enzymes that include one or more autolysins. Autolysins are a group of enzymes with specificity for the different linkages within peptidoglycan sacculi that if uncontrolled cause bacteriolysis. This minireview, written in honor and memory of Terry Beveridge, presents an overview of autolytic activity and focuses on Beveridge's important original observations regarding predatory membrane vesicles and their associated autolysin cargo.


Assuntos
Bacteriólise/fisiologia , Membrana Celular/metabolismo , Bactérias Gram-Negativas/citologia , Vesículas Transportadoras/metabolismo , Bactérias Gram-Negativas/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Vesículas Transportadoras/química
13.
Proc Natl Acad Sci U S A ; 112(45): E6129-38, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26504197

RESUMO

It is a critically important challenge to rapidly design effective vaccines to reduce the morbidity and mortality of unexpected pandemics. Inspired from the way that most enveloped viruses hijack a host cell membrane and subsequently release by a budding process that requires cell membrane scission, we genetically engineered viral antigen to harbor into cell membrane, then form uniform spherical virus-mimetic nanovesicles (VMVs) that resemble natural virus in size, shape, and specific immunogenicity with the help of surfactants. Incubation of major cell membrane vesicles with surfactants generates a large amount of nano-sized uniform VMVs displaying the native conformational epitopes. With the diverse display of epitopes and viral envelope glycoproteins that can be functionally anchored onto VMVs, we demonstrate VMVs to be straightforward, robust and tunable nanobiotechnology platforms for fabricating antigen delivery systems against a wide range of enveloped viruses.


Assuntos
Antígenos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Vesículas Transportadoras/química , Vacinas Virais/metabolismo , Nanotecnologia/métodos , Nanotecnologia/tendências , Fosfolipídeos/análise , Proteínas Recombinantes/metabolismo , Tensoativos/análise
14.
Proc Natl Acad Sci U S A ; 112(15): E1851-60, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825753

RESUMO

Atlastin (ATL), a membrane-anchored GTPase that mediates homotypic fusion of endoplasmic reticulum (ER) membranes, is required for formation of the tubular network of the peripheral ER. How exactly ATL mediates membrane fusion is only poorly understood. Here we show that fusion is preceded by the transient tethering of ATL-containing vesicles caused by the dimerization of ATL molecules in opposing membranes. Tethering requires GTP hydrolysis, not just GTP binding, because the two ATL molecules are pulled together most strongly in the transition state of GTP hydrolysis. Most tethering events are futile, so that multiple rounds of GTP hydrolysis are required for successful fusion. Supported lipid bilayer experiments show that ATL molecules sitting on the same (cis) membrane can also undergo nucleotide-dependent dimerization. These results suggest that GTP hydrolysis is required to dissociate cis dimers, generating a pool of ATL monomers that can dimerize with molecules on a different (trans) membrane. In addition, tethering and fusion require the cooperation of multiple ATL molecules in each membrane. We propose a comprehensive model for ATL-mediated fusion that takes into account futile tethering and competition between cis and trans interactions.


Assuntos
Proteínas de Drosophila/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fusão de Membrana , Proteínas de Membrana/metabolismo , Vesículas Transportadoras/metabolismo , Algoritmos , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Transferência Ressonante de Energia de Fluorescência , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato/metabolismo , Hidrólise , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Confocal , Microscopia de Fluorescência , Modelos Biológicos , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Imagem com Lapso de Tempo , Vesículas Transportadoras/química
15.
J Biol Phys ; 44(1): 1-16, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29019015

RESUMO

Endocytotic and exocytotic processes are usually studied using particle-vesicle systems in theory, but most of them are electroneutral. Nevertheless, charged particle-vesicle systems are much closer to real biological systems. Therefore, wrapping behaviors of a negatively charged vesicle wrapping a positively charged particle are systematically investigated by a series of 2D dynamical simulations in this article. The competition between the elastic bending energy and the electrostatic energy dictates the vesicle configuration and charge distribution. It is found that only for intermediate charge concentrations and small particle sizes a vesicle can completely engulf the particle. When the charge density is high, the interaction between vesicle and particle is unexpectedly weakened by both the hardening effect of the charged membrane and the effective-transportation-frozen effect of the charged components. When the particle is strongly charged, multi-layer folding conformations are observed. These studies may provide important insights into mechanism of endocytotic and exocytotic processes in biological systems.


Assuntos
Endocitose , Modelos Moleculares , Conformação Molecular , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo , Tamanho da Partícula , Termodinâmica
16.
Biophys J ; 113(5): 1037-1046, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877487

RESUMO

Understanding interactions between microparticles and lipid membranes is of increasing importance, especially for unraveling the influence of microplastics on our health and environment. Here, we study how a short-ranged adhesive force between microparticles and model lipid membranes causes membrane-mediated particle assembly. Using confocal microscopy, we observe the initial particle attachment to the membrane, then particle wrapping, and in rare cases spontaneous membrane tubulation. In the attached state, we measure that the particle mobility decreases by 26%. If multiple particles adhere to the same vesicle, their initial single-particle state determines their interactions and subsequent assembly pathways: 1) attached particles only aggregate when small adhesive vesicles are present in solution, 2) wrapped particles reversibly attract one another by membrane deformation, and 3) a combination of wrapped and attached particles form membrane-mediated dimers, which further assemble into a variety of complex structures. The experimental observation of distinct assembly pathways, induced only by a short-ranged membrane-particle adhesion, shows that a cytoskeleton or other active components are not required for microparticle aggregation. We suggest that this membrane-mediated microparticle aggregation is a reason behind reported long retention times of polymer microparticles in organisms.


Assuntos
Poliestirenos/química , Lipossomas Unilamelares/química , Coloides , Difusão , Dimerização , Microscopia Confocal , Imagem Óptica , Vesículas Transportadoras/química
17.
Biophys J ; 113(6): 1260-1268, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28647061

RESUMO

Fusion between two lipid bilayers is one of the central processes in cell biology, playing a key role in endocytosis, exocytosis, and vesicle transport. We have previously developed a model system that uses the hybridization of complementary DNA strands to model the formation of the SNARE four-helix bundle that mediates synaptic vesicle fusion and used it to study vesicle fusion to a tethered lipid bilayer. Using single vesicle assays, 70% of observed fusion events in the DNA-lipid system are arrested at the hemifusion stage, whereas only 5% eventually go to full fusion. This may be because the diglycerol ether that anchors the DNA in the membrane spans only half the bilayer: upon hemifusion and mixing of the outer leaflets, the DNA-lipid is free to diffuse into the target membrane and away from the vesicle. Here, we test the hypothesis that the length of the membrane anchor may impact the outcome by comparing single leaflet-spanning DNA-lipid mediated vesicle fusion with fusion mediated by DNA anchored by solanesol, a C45 isoprenoid of sufficient length to span the bilayer. When the solanesol anchor was present on the incoming vesicles, target membrane, or both, ∼2-3 times as much full fusion was observed as in the DNA-lipid mediated system, as measured by lipid mixing or content transfer. These results indicate that a transmembrane anchor increases the efficiency of full fusion.


Assuntos
DNA/química , Bicamadas Lipídicas/química , Fusão de Membrana , Proteínas SNARE/química , Terpenos/química , Vesículas Transportadoras/química , Animais , Galinhas , Cromatografia Líquida de Alta Pressão , DNA/síntese química , Fusão de Membrana/fisiologia , Microscopia de Fluorescência , Proteínas SNARE/metabolismo , Terpenos/síntese química , Vesículas Transportadoras/metabolismo
18.
Biochim Biophys Acta ; 1858(8): 1860-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27117133

RESUMO

Cell-penetrating peptides (CPPs) are considered as one of the most promising tools to mediate the cellular delivery of various biologically active compounds that are otherwise cell impermeable. CPPs can internalize into cells via two different pathways - endocytosis and direct translocation across the plasma membrane. In both cases, the initial step of internalization requires interactions between CPPs and different plasma membrane components. Despite the extensive research, it is not yet fully understood, which of these cell surface molecules mediate the direct translocation of CPPs across the plasma- and endosomal membrane. In the present study we used giant plasma membrane vesicles (GPMVs) as a model membrane system to elucidate the specific molecular mechanisms behind the internalization and the role of cell surface glycosaminoglycans (GAGs) in the translocation of four well-known CPPs, classified as cationic (nona-arginine, Tat peptide) and amphipathic (transportan and TP10). We demonstrate here that GAGs facilitate the translocation of amphipathic CPPs, but not the internalization of cationic CPPs; and that the uptake is not mediated by a specific GAG class, but rather the overall amount of these polysaccharides is crucial for the internalization of amphipathic peptides.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Glicosaminoglicanos/fisiologia , Vesículas Transportadoras/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Galanina/metabolismo , Heparina Liase/farmacologia , Humanos , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Transporte Proteico , Receptores Adrenérgicos beta 1/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Vesículas Transportadoras/química , Venenos de Vespas/metabolismo , Aglutininas do Germe de Trigo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
19.
Biochim Biophys Acta ; 1861(2): 98-107, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26577406

RESUMO

High density lipoprotein (HDL) and its main protein component apolipoprotein A-I (ApoA-I) have multiple anti-atherogenic functions. Some of them are exerted within the vessel wall, so that HDL needs to pass the endothelial barrier. To elucidate their itinerary through endothelial cells (ECs), we labelled ApoA-I and HDL either fluorescently or with 1.4 nm nanogold and investigated their cellular localization by using immunofluorescent microscopy (IFM) and electron microscopy (EM). HDL as well as ApoA-I is taken up by ECs into the same route of intracellular trafficking. Time kinetics and pulse chase experiments revealed that HDL is trafficked through different vesicles. HDL partially co-localized with LDL, albumin, and transferrin. HDL did not co-localize with clathrin and caveolin-1. Fluorescent HDL was recovered at small proportions in early endosomes and endosome to trans-golgi network vesicles but not at all in recycling endosomes, in late endosomes or lysosomes. EM identified HDL mainly in large filled vesicles which however upon IFM did not colocalize with markers of multivesicular bodies or autophagosomes. The uptake or cellular distribution of HDL was altered upon pharmacological interference with cytochalasine D, colchicine and dynasore. Blockage of fluid phase uptake with Amiloride or EIPA did not reduce the uptake of HDL. Neither did we observe any co-localization of HDL with dextran as the marker of fluid phase uptake. In conclusion, HDL and ApoA-I are internalized and trafficked by endothelial cells through a non-classical endocytic route.


Assuntos
Apolipoproteína A-I/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas HDL/metabolismo , Vesículas Transportadoras/metabolismo , Rede trans-Golgi/metabolismo , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Transporte Biológico , Bovinos , Caveolina 1/metabolismo , Clatrina/metabolismo , Colchicina/farmacologia , Citocalasina D/farmacologia , Endocitose , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Corantes Fluorescentes , Ouro , Hidrazonas/farmacologia , Cinética , Lipoproteínas LDL/metabolismo , Nanoestruturas/química , Cultura Primária de Células , Albumina Sérica/metabolismo , Transferrina/metabolismo , Vesículas Transportadoras/química , Vesículas Transportadoras/efeitos dos fármacos , Rede trans-Golgi/química , Rede trans-Golgi/efeitos dos fármacos
20.
Nat Chem Biol ; 11(9): 671-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26284674

RESUMO

Filamentous fungi are renowned for the production of a diverse array of secondary metabolites (SMs) where the genetic material required for synthesis of a SM is typically arrayed in a biosynthetic gene cluster (BGC). These natural products are valued for their bioactive properties stemming from their functions in fungal biology, key among those protection from abiotic and biotic stress and establishment of a secure niche. The producing fungus must not only avoid self-harm from endogenous SMs but also deliver specific SMs at the right time to the right tissue requiring biochemical aid. This review highlights functions of BGCs beyond the enzymatic assembly of SMs, considering the timing and location of SM production and other proteins in the clusters that control SM activity. Specifically, self-protection is provided by both BGC-encoded mechanisms and non-BGC subcellular containment of toxic SM precursors; delivery and timing is orchestrated through cellular trafficking patterns and stress- and developmental-responsive transcriptional programs.


Assuntos
Aspergillus/metabolismo , Produtos Biológicos/metabolismo , Proteínas Fúngicas/genética , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Família Multigênica , Aflatoxinas/metabolismo , Aspergillus/genética , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/genética , Penicilinas/metabolismo , Peroxissomos/química , Peroxissomos/metabolismo , Transcrição Gênica , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo , Tricotecenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA