Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Comp Neurol ; 398(1): 25-48, 1998 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-9703026

RESUMO

By using three-dimensional computer reconstruction techniques and the production of two-dimensional unfolded maps, we analyzed the topographic organization of projections from the entorhinal cortex of the rat to the dentate gyrus. The retrograde tracers, Fast blue and Diamidino yellow, were injected at all septotemporal levels of the dentate gyrus, and the distribution of retrogradely labeled layer II cells in the entorhinal cortex was plotted by using computer-aided microscopy systems. Discrete injections of fluorescent dyes into the dentate gyrus labeled bands of layer II neurons in the entorhinal cortex that covered approximately 45% of its surface area. Injections confined to the septal half of the dentate gyrus resulted in a band that occupied the most lateral and caudomedial portions of the entorhinal cortex. Although there were subtle changes in the density of labeled cells in this region, essentially the same region of cells was labeled after any injection into the septal half of the dentate gyrus. Injections into mid-septotemporal levels of the dentate gyrus (50-75% of the distance from the septal pole) led to a distinctly different pattern of retrograde labeling. A more medial portion of the lateral entorhinal cortex and a more rostral portion of the medial entorhinal area were labeled in these cases. Another change in entorhinal labeling occurred when the injection involved the most temporal quarter of the dentate gyrus. Injections into this area led to a constrained region of entorhinal labeling that included the most medial portion of the lateral entorhinal area and the most rostral portion of the medial entorhinal area. Although the domains of cells projecting to septal, mid-septotemporal, and temporal levels of the dentate gyrus were not entirely segregated, there was relatively little overlap of the three populations of neurons. These data raise the possibility that different portions of the entorhinal-hippocampal circuit are capable of semiautonomous information processing, at least at the stage of input to the dentate gyrus.


Assuntos
Mapeamento Encefálico , Giro Denteado/citologia , Via Perfurante/citologia , Ratos Sprague-Dawley/anatomia & histologia , Amidinas , Animais , Giro Denteado/química , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador , Masculino , Parvalbuminas/análise , Via Perfurante/química , Ratos , Núcleos Septais/química , Núcleos Septais/citologia , Lobo Temporal/química , Lobo Temporal/citologia , Terminologia como Assunto
2.
Int J Dev Neurosci ; 18(2-3): 221-35, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10715577

RESUMO

The regulation of oligodendrocyte gene expression and myelination in vivo in the normal and injured adult CNS is still poorly understood. We have analyzed the effects of axotomy-induced axonal sprouting and microglial activation, on oligodendrocyte myelin basic protein (MBP) gene expression from 2 to 35 days after transection of the entorhino-hippocampal perforant path axonal projection. In situ hybridization analysis showed that anterograde axonal and terminal degeneration lead to upregulated oligodendrocyte MBP mRNA expression starting between day 2 and day 4, in (1) the deep part of stratum radiatum of CA3 and the dentate hilus, which display axonal sprouting but no degenerative changes or microglial activation, and (2) the outer part of the molecular layer of the fascia dentata, and in stratum moleculare of CA3 and stratum lacunosum-moleculare of CA1, areas that display dense anterograde axonal and terminal degeneration, myelin degenerative changes, microglial activation and axotomi-induced axonal sprouting. Oligodendrocyte MBP mRNA expression reached maximum in both these areas at day 7. MBP gene transcription remained constant in stratum radiatum, stratum pyramidale and stratum oriens of CA1, areas that were unaffected by perforant path transection. These results provide strong evidence that oligodendrocyte MBP gene expression can be regulated by axonal sprouting independently of microglial activation in the injured adult CNS.


Assuntos
Axônios/enzimologia , Hipocampo/fisiologia , Proteína Básica da Mielina/genética , Regeneração Nervosa/fisiologia , Degeneração Walleriana/fisiopatologia , Acetilcolinesterase/análise , Animais , Axônios/química , Corantes , Denervação , Córtex Entorrinal/química , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Expressão Gênica/fisiologia , Hipocampo/química , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Plasticidade Neuronal/fisiologia , Oligodendroglia/fisiologia , Via Perfurante/química , Via Perfurante/citologia , Via Perfurante/fisiologia , RNA Mensageiro/análise , Coloração pela Prata , Cloreto de Tolônio
3.
Neurosci Lett ; 274(2): 71-4, 1999 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-10553940

RESUMO

The involvement of protein kinases A and C in the induction of low frequency stimulation-induced long-term depression (LTD) in the medial perforant path of the dentate gyrus in vitro has been studied using the selective PKA inhibitors H-89 and KT 5720 and PKC inhibitors Bisindolylmaleimide and Ro-31-8220. The PKC inhibitors Bisindolylmaleimide I and Ro-31-8220 and the PKA inhibitors H-89 and KT5720 all partially inhibited LTD induction. However, the presence of both a PKC and a PKA inhibitor was necessary to completely block LTD induction. The induction of long-term potentiation was not blocked by the inhibitors. It is suggested that the induction of LTD by LFS involves activation of PKC and PKA following activation of group I and group II metabotropic glutamate receptors (mGluR).


Assuntos
Carbazóis , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Potenciação de Longa Duração/fisiologia , Via Perfurante/enzimologia , Proteína Quinase C/metabolismo , Receptores de Glutamato Metabotrópico/fisiologia , Sulfonamidas , Animais , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Giro Denteado/química , Giro Denteado/enzimologia , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Indóis/farmacologia , Isoquinolinas/farmacologia , Maleimidas/farmacologia , Inibição Neural/fisiologia , Via Perfurante/química , Proteína Quinase C/antagonistas & inibidores , Pirróis/farmacologia , Ratos
4.
J Neurosci ; 17(21): 8246-58, 1997 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-9334400

RESUMO

The differential expression and association of cytoplasmic beta-subunits with pore-forming alpha-subunits may contribute significantly to the complexity and heterogeneity of voltage-gated K+ channels in excitable cells. Here we examined the association and colocalization of two mammalian beta-subunits, Kvbeta1 and Kvbeta2, with the K+ channel alpha-subunits Kv1.1, Kv1.2, Kv1.4, Kv1.6, and Kv2.1 in adult rat brain. Reciprocal coimmunoprecipitation experiments using subunit-specific antibodies indicated that Kvbeta1 and Kvbeta2 associate with all the Kv1 alpha-subunits examined, and with each other, but not with Kv2.1. A much larger portion of the total brain pool of Kv1-containing channel complexes was found associated with Kvbeta2 than with Kvbeta1. Single- and multiple-label immunohistochemical staining indicated that Kvbeta1 codistributes extensively with Kv1.1 and Kv1.4 in cortical interneurons, in the hippocampal perforant path and mossy fiber pathways, and in the globus pallidus and substantia nigra. Kvbeta2 codistributes extensively with Kv1.1 and Kv1.2 in all brain regions examined and was strikingly colocalized with these alpha-subunits in the juxtaparanodal region of nodes of Ranvier as well as in the axons and terminals of cerebellar basket cells. Taken together, these data provide a direct demonstration that Kvbeta1 and Kvbeta2 associate and colocalize with Kv1 alpha-subunits in native tissues and provide a biochemical and neuroanatomical basis for the differential contribution of Kv1 alpha- and beta-subunits to electrophysiologically diverse neuronal K+ currents.


Assuntos
Química Encefálica , Proteínas do Tecido Nervoso/análise , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/análise , Animais , Western Blotting , Cerebelo/química , Canais de Potássio de Retificação Tardia , Técnica Indireta de Fluorescência para Anticorpo , Globo Pálido/química , Técnicas Imunoenzimáticas , Interneurônios/química , Canal de Potássio Kv1.1 , Canal de Potássio Kv1.2 , Canal de Potássio Kv1.4 , Fibras Musgosas Hipocampais/química , Proteínas do Tecido Nervoso/química , Especificidade de Órgãos , Via Perfurante/química , Canais de Potássio/química , Nós Neurofibrosos/química , Ratos , Canais de Potássio Shab , Substância Negra/química
5.
J Neurosci ; 18(23): 9629-37, 1998 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-9822724

RESUMO

Amyloid deposition is a neuropathological hallmark of Alzheimer's disease. The principal component of amyloid deposits is beta amyloid peptide (Abeta), a peptide derived by proteolytic processing of the amyloid precursor protein (APP). APP is axonally transported by the fast anterograde component. Several studies have indicated that Abeta deposits occur in proximity to neuritic and synaptic profiles. Taken together, these latter observations have suggested that APP, axonally transported to nerve terminals, may be processed to Abeta at those sites. To examine the fate of APP in the CNS, we injected [35S]methionine into the rat entorhinal cortex and examined the trafficking and processing of de novo synthesized APP in the perforant pathway and at presynaptic sites in the hippocampal formation. We report that both full-length and processed APP accumulate at presynaptic terminals of entorhinal neurons. Finally, we demonstrate that at these synaptic sites, C-terminal fragments of APP containing the entire Abeta domain accumulate, suggesting that these species may represent the penultimate precursors of synaptic Abeta.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Transporte Axonal/fisiologia , Giro Denteado/metabolismo , Neurônios/metabolismo , Via Perfurante/metabolismo , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/genética , Animais , Western Blotting , Células COS , Giro Denteado/química , Metionina/farmacologia , Neurônios/química , Via Perfurante/química , Terminações Pré-Sinápticas/química , Terminações Pré-Sinápticas/metabolismo , RNA Mensageiro/análise , Ratos , Radioisótopos de Enxofre
6.
Eur J Neurosci ; 11(3): 1109-13, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10103105

RESUMO

Human temporal lobe epilepsy is characterized by strong synaptic reorganization that leads to abnormal recurrent excitatory synaptic connections among hippocampal neurons. In addition, electrophysiological studies show that synaptic activity of the main afferent input to the hippocampus, the perforant path, is prolonged and amplified by changes in postsynaptic glutamate receptors. The current view is that these morphological and physiological abnormalities contribute significantly to the hyperexcitability seen in the hippocampus of temporal lobe epilepsy. Recently, it was found that presynaptic inhibitory metabotropic glutamate receptors are an important negative feedback mechanism that controls synaptic release of glutamate in the hippocampus. In this study, we assessed the functionality of this feedback system by investigating the metabotropic glutamate receptor mediated depression of excitatory synaptic transmission in surgically removed hippocampi from patients with marked synaptic reorganization (Ammon's horn sclerosis group) and from patients without detectable reorganization (lesion group). We report here that this control of synaptic transmission is lost in hippocampi from the Ammon's horn sclerosis group whereas this control is preserved in hippocampi from the lesion group. The data presented here suggest that the loss of feedback inhibition mediated by metabotropic glutamate receptors could be a further, previously not recognized, mechanism in the pathophysiology of temporal lobe epilepsy.


Assuntos
Giro Denteado/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Via Perfurante/metabolismo , Propionatos/farmacologia , Receptores de Glutamato Metabotrópico/fisiologia , Potenciais de Ação/fisiologia , Adulto , Aminobutiratos/farmacologia , Cicloleucina/análogos & derivados , Cicloleucina/farmacologia , Giro Denteado/química , Giro Denteado/patologia , Eletrofisiologia , Epilepsia do Lobo Temporal/patologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia , Via Perfurante/química , Via Perfurante/patologia , Esclerose , Transmissão Sináptica/fisiologia
7.
J Neurophysiol ; 83(2): 1073-8, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10669518

RESUMO

Activation of presynaptic GABA(B) receptors inhibits neurotransmitter release at most cortical synapses, at least in part because of inhibition of voltage-gated calcium channels. One synapse where this is not the case is the lateral perforant pathway synapse onto dentate granule cells in the hippocampus. The current study was conducted to determine whether the neurons that make these synapses express GABA(B) receptors that can couple to ion channels. Perforant pathway projection neurons were labeled by injecting retrograde tracer into the dorsal hippocampus. The GABA(B) receptor agonist baclofen (10 microM) activated inwardly rectifying potassium channels and inhibited currents mediated by voltage-gated calcium channels in retrogradely labeled neurons in layer II of the lateral entorhinal cortex. These effects were reversed by coapplication of the selective GABA(B) receptor antagonist CGP 55845A (1 microM). Equivalent effects were produced by 100 microM adenosine, which inhibits neurotransmitter release at lateral perforant pathway synapses. The effects of baclofen and adenosine on inward currents were largely occlusive. These results suggest that the absence of GABA(B) receptor-mediated presynaptic inhibition at lateral perforant pathway synapses is not simply due to a failure to express these receptors and imply that GABA(B) receptors can either be selectively localized or regulated at terminal versus somatodendritic domains.


Assuntos
Canais de Cálcio/fisiologia , Via Perfurante/química , Via Perfurante/citologia , Canais de Potássio/fisiologia , Receptores de GABA-B/fisiologia , Adenosina/farmacologia , Analgésicos/farmacologia , Animais , Baclofeno/farmacologia , Eletrofisiologia , Córtex Entorrinal/química , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Inibição Neural/fisiologia , Neurônios/química , Neurônios/fisiologia , Via Perfurante/fisiologia , Ácidos Fosfínicos/farmacologia , Propanolaminas/farmacologia , Ratos , Ratos Sprague-Dawley , Sinapses/química , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
8.
J Neurobiol ; 49(2): 142-58, 2001 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-11598921

RESUMO

We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the "trisynaptic circuit" in the adult rodent hippocampus, which display different types of long-term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin-R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin-R were localized by pre-embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre- or postsynaptically. Also, the extracellular matrix molecule tenascin-R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon-astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane-bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity.


Assuntos
Hipocampo/química , Microscopia Imunoeletrônica , Proteínas do Tecido Nervoso/análise , Isoformas de Proteínas/análise , Sinapses/química , Animais , Anticorpos Monoclonais/imunologia , Astrócitos/ultraestrutura , Axônios/ultraestrutura , Giro Denteado/química , Giro Denteado/ultraestrutura , Proteínas da Matriz Extracelular/análise , Técnica Indireta de Fluorescência para Anticorpo , Junções Comunicantes/química , Junções Comunicantes/ultraestrutura , Hipocampo/citologia , Integrina beta1/análise , Complexo Antígeno L1 Leucocitário , Masculino , Glicoproteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/química , Fibras Musgosas Hipocampais/ultraestrutura , Família Multigênica , Terminações Nervosas/química , Terminações Nervosas/ultraestrutura , Moléculas de Adesão de Célula Nervosa/análise , Moléculas de Adesão de Célula Nervosa/química , Plasticidade Neuronal , Via Perfurante/química , Via Perfurante/ultraestrutura , Células Piramidais/química , Células Piramidais/ultraestrutura , Ratos , Ratos Wistar , Ácidos Siálicos/análise , Manejo de Espécimes , Sinapses/ultraestrutura , Tenascina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA