Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant Physiol ; 195(1): 430-445, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38198212

RESUMO

The essential role of plastid translation in embryogenesis has been established in many plants, but a retrograde signal triggered by defective plastid translation machinery that may leads to embryogenesis arrest remains unknown. In this study, we characterized an embryo defective27 (emb27) mutant in maize (Zea mays), and cloning indicates that Emb27 encodes the plastid ribosomal protein S13. The null mutant emb27-1 conditions an emb phenotype with arrested embryogenesis; however, the leaky mutant emb27-2 exhibits normal embryogenesis but an albino seedling-lethal phenotype. The emb27-1/emb27-2 trans-heterozygotes display varying phenotypes from emb to normal seeds but albino seedlings. Analysis of the Emb27 transcription levels in these mutants revealed that the Emb27 expression level in the embryo corresponds with the phenotypic expression of the emb27 mutants. In the W22 genetic background, an Emb27 transcription level higher than 6% of the wild-type level renders normal embryogenesis, whereas lower than that arrests embryogenesis. Mutation of Emb27 reduces the level of plastid 16S rRNA and the accumulation of the plastid-encoded proteins. As a secondary effect, splicing of several plastid introns was impaired in emb27-1 and 2 other plastid translation-defective mutants, emb15 and emb16, suggesting that plastome-encoded factors are required for the splicing of these introns, such as Maturase K (MatK). Our results indicate that EMB27 is essential for plastid protein translation, embryogenesis, and seedling development in maize and reveal an expression threshold of Emb27 for maize embryogenesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Mutação , Proteínas de Plantas , Plastídeos , Plântula , Sementes , Zea mays , Zea mays/genética , Zea mays/embriologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação/genética , Plastídeos/genética , Plastídeos/metabolismo , Fenótipo , Splicing de RNA/genética , Íntrons/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
2.
Plant Cell ; 32(4): 833-852, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086366

RESUMO

Seeds are complex biological systems comprising three genetically distinct tissues nested one inside another (embryo, endosperm, and maternal tissues). However, the complexity of the kernel makes it difficult to understand intercompartment interactions without access to spatially accurate information. Here, we took advantage of the large size of the maize (Zea mays) kernel to characterize genome-wide expression profiles of tissues at different embryo/endosperm interfaces. Our analysis identifies specific transcriptomic signatures in two interface tissues compared with whole seed compartments: the scutellar aleurone layer and the newly named endosperm adjacent to scutellum (EAS). The EAS, which appears around 9 d after pollination and persists for around 11 d, is confined to one to three endosperm cell layers adjacent to the embryonic scutellum. Its transcriptome is enriched in genes encoding transporters. The absence of the embryo in an embryo specific mutant can alter the expression pattern of EAS marker genes. The detection of cell death in some EAS cells together with an accumulation of crushed cell walls suggests that the EAS is a dynamic zone from which cell layers in contact with the embryo are regularly eliminated and to which additional endosperm cells are recruited as the embryo grows.


Assuntos
Endosperma/genética , Transcriptoma/genética , Zea mays/embriologia , Zea mays/genética , Morte Celular , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodutibilidade dos Testes , Transcrição Gênica , Regulação para Cima/genética
3.
Development ; 146(14)2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31235633

RESUMO

The highly efficient C4 photosynthetic pathway is facilitated by 'Kranz' leaf anatomy. In Kranz leaves, closely spaced veins are encircled by concentric layers of photosynthetic bundle sheath (inner) and mesophyll (outer) cells. Here, we demonstrate that, in the C4 monocot maize, Kranz patterning is regulated by redundant function of SCARECROW 1 (ZmSCR1) and a previously uncharacterized homeologue: ZmSCR1h. ZmSCR1 and ZmSCR1h transcripts accumulate in ground meristem cells of developing leaf primordia and in Zmscr1;Zmscr1h mutant leaves, most veins are separated by one rather than two mesophyll cells; many veins have sclerenchyma above and/or below instead of mesophyll cells; and supernumerary bundle sheath cells develop. The mutant defects are unified by compromised mesophyll cell development. In addition to Kranz defects, Zmscr1;Zmscr1h mutants fail to form an organized endodermal layer in the root. Collectively, these data indicate that ZmSCR1 and ZmSCR1h redundantly regulate cell-type patterning in both the leaves and roots of maize. Leaf and root pathways are distinguished, however, by the cell layer in which they operate - mesophyll at a two-cell distance from leaf veins versus endodermis immediately adjacent to root vasculature.


Assuntos
Proteínas de Ligação a DNA/genética , Dosagem de Genes/fisiologia , Folhas de Planta/embriologia , Raízes de Plantas/embriologia , Zea mays/embriologia , Zea mays/genética , Proteínas de Arabidopsis/genética , Duplicação Gênica/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Zíper de Leucina/genética , Família Multigênica/genética , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Homologia de Sequência , Zea mays/citologia , Zea mays/crescimento & desenvolvimento
4.
Plant Cell ; 31(11): 2613-2635, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31530735

RESUMO

During maize (Zea mays) seed development, the endosperm functions as the major organ for storage of photoassimilate, serving to nourish the embryo. α-Zeins and globulins (GLBs) predominantly accumulate in the maize endosperm and embryo, respectively. Here, we show that suppression of α-zeins by RNA interference (αRNAi) in the endosperm results in more GLB1 being synthesized in the embryo, thereby markedly increasing the size and number of protein storage vacuoles. Glb genes are strongly expressed in the middle-to-upper section of the scutellum, cells of which are significantly enlarged by αRNAi induction. Elimination of GLBs caused an apparent reduction in embryo protein level, regardless of whether α-zeins were expressed or suppressed in the endosperm, indicating that GLBs represent the dominant capacity for storage of amino acids allocated from the endosperm. It appears that protein reallocation is mostly regulated at the transcriptional level. Genes differentially expressed between wild-type and αRNAi kernels are mainly involved in sulfur assimilation and nutrient metabolism, and many are transactivated by VIVIPAROUS1 (VP1). In vp1 embryos, misshapen scutellum cells contain notably less cellular content and are unable to respond to αRNAi induction. Our results demonstrate that VP1 is essential for scutellum development and protein reallocation from the endosperm to embryo.


Assuntos
Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Nutrientes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Tamanho Celular , Endosperma/citologia , Endosperma/embriologia , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas/genética , Hemoglobinas/genética , Hemoglobinas/metabolismo , Interferência de RNA , Sementes/genética , Sementes/metabolismo , Transcriptoma , Zea mays/embriologia , Zeína/genética , Zeína/metabolismo
5.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164035

RESUMO

Water shortage caused by long-term drought is one of the most serious abiotic stress factors in maize. Different drought conditions lead to differences in growth, development, and metabolism of maize. In previous studies, proteomics and genomics methods have been widely used to explain the response mechanism of maize to long-term drought, but there are only a few articles related to metabolomics. In this study, we used transcriptome and metabolomics analysis to characterize the differential effects of drought stress imposed at seedling or flowering stages on maize. Through the association analysis of genes and metabolites, we found that maize leaves had 61 and 54 enriched pathways under seedling drought and flowering drought, respectively, of which 13 and 11 were significant key pathways, mostly related to the biosynthesis of flavonoids and phenylpropanes, glutathione metabolism and purine metabolism. Interestingly, we found that the α-linolenic acid metabolic pathway differed significantly between the two treatments, and a total of 10 differentially expressed genes and five differentially abundant metabolites have been identified in this pathway. Some differential accumulation of metabolites (DAMs) was related to synthesis of jasmonic acid, which may be one of the key pathways underpinning maize response to different types of long-term drought. In general, metabolomics provides a new method for the study of water stress in maize and lays a theoretical foundation for drought-resistant cultivation of silage maize.


Assuntos
Secas , Flores/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Ácido alfa-Linolênico/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Metabolômica , Estresse Fisiológico , Zea mays/embriologia , Zea mays/genética , Zea mays/metabolismo
6.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069987

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that regulate the accumulation and translation of their target mRNAs through sequence complementarity. miRNAs have emerged as crucial regulators during maize somatic embryogenesis (SE) and plant regeneration. A monocot-specific miRNA, mainly accumulated during maize SE, is zma-miR528. While several targets have been described for this miRNA, the regulation has not been experimentally confirmed for the SE process. Here, we explored the accumulation of zma-miR528 and several predicted targets during embryogenic callus induction, proliferation, and plantlet regeneration using the maize cultivar VS-535. We confirmed the cleavage site for all tested zma-miR528 targets; however, PLC1 showed very low levels of processing. The abundance of zma-miR528 slightly decreased in one month-induced callus compared to the immature embryo (IE) explant tissue. However, it displayed a significant increase in four-month sub-cultured callus, coincident with proliferation establishment. In callus-regenerated plantlets, zma-miR528 greatly decreased to levels below those observed in the initial explant. Three of the target transcripts (MATE, bHLH, and SOD1a) showed an inverse correlation with the miRNA abundance in total RNA samples at all stages. Using polysome fractionation, zma-miR528 was detected in the polysome fraction and exhibited an inverse distribution with the PLC1 target, which was not observed at total RNA. Accordingly, we conclude that zma-miR528 regulates multiple target mRNAs during the SE process by promoting their degradation, translation inhibition or both.


Assuntos
Zea mays/embriologia , Zea mays/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Desenvolvimento Vegetal/genética , Polirribossomos/genética , Polirribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regeneração/genética , Zea mays/metabolismo
7.
Plant Mol Biol ; 104(6): 647-663, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32910317

RESUMO

KEY MESSAGE: Transcriptome analysis of maize embryogenic callus and somatic embryos reveals associated genes reprogramming, hormone signaling pathways and transcriptional regulation involved in somatic embryogenesis in maize. Somatic embryos are widely utilized in propagation and genetic engineering of crop plants. In our laboratory, an elite maize inbred line Y423 that could generate intact somatic embryos was obtained and applied to genetic transformation. To enhance our understanding of regulatory mechanisms during maize somatic embryogenesis, we used RNA-based sequencing (RNA-seq) to characterize the transcriptome of immature embryo (IE), embryogenic callus (EC) and somatic embryo (SE) from maize inbred line Y423. The number of differentially expressed genes (DEGs) in three pairwise comparisons (IE-vs-EC, IE-vs-SE and EC-vs-SE) was 5767, 7084 and 1065, respectively. The expression patterns of DEGs were separated into eight major clusters. Somatic embryogenesis associated genes were mainly grouped into cluster A or B with an expression trend toward up-regulation during dedifferentiation. GO annotation and KEGG pathway analysis revealed that DEGs were implicated in plant hormone signal transduction, stress response and metabolic process. Among the differentially expressed transcription factors, the most frequently represented families were associated with the common stress response or related to cell differentiation, embryogenic patterning and embryonic maturation processes. Genes include hormone response/transduction and stress response, as well as several transcription factors were discussed in this study, which may be potential candidates for further analyses regarding their roles in somatic embryogenesis. Furthermore, the temporal expression patterns of candidate genes were analyzed to reveal their roles in somatic embryogenesis. This transcriptomic data provide insights into future functional studies, which will facilitate further dissections of the molecular mechanisms that control maize somatic embryogenesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Zea mays/metabolismo , Perfilação da Expressão Gênica , Biblioteca Gênica , Família Multigênica , Técnicas de Embriogênese Somática de Plantas , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Sementes/metabolismo , Fatores de Transcrição/genética , Zea mays/embriologia , Zea mays/genética
8.
Plant Cell Physiol ; 61(2): 276-282, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593237

RESUMO

For carotenogenesis, two biosynthetic pathways from phytoene to lycopene are known. Most bacteria and fungi require only phytoene desaturase (PDS, CrtI), whereas land plants require four enzymes: PDS (CrtP), ζ-carotene desaturase (ZDS, CrtQ), ζ-carotene isomerase (Z-ISO) and cis-carotene isomerase (CrtISO, CrtH). The gene encoding Z-ISO has been functionally identified in only two species, Arabidopsis thaliana and Zea mays, and has been little studied in other organisms. In this study, we found that the deduced amino acid sequences of Arthrospira Z-ISO and Euglena Z-ISO have 58% and 62% identity, respectively, with functional Z-ISO from Arabidopsis. We studied the function of Z-ISO genes from the cyanobacterium Arthrospira platensis and eukaryotic microalga Euglena gracilis. The Z-ISO genes of Arthrospira and Euglena were transformed into Escherichia coli strains that produced mainly 9,15,9'-tri-cis-ζ-carotene in darkness. In the resulting E. coli transformants cultured under darkness, 9,9'-di-cis-ζ-carotene was accumulated predominantly as Z-ISO in Arabidopsis. This indicates that the Z-ISO genes were involved in the isomerization of 9,15,9'-tri-cis-ζ-carotene to 9,9'-di-cis-ζ-carotene in darkness. This is the first functional analysis of Z-ISO as a ζ-carotene isomerase in cyanobacteria and eukaryotic microalgae. Green sulfur bacteria and Chloracidobacterium also use CrtP, CrtQ and CrtH for lycopene synthesis as cyanobacteria, but their genomes did not comprise Z-ISO genes. Consequently, Z-ISO is needed in oxygenic phototrophs, whereas it is not found in anoxygenic species.


Assuntos
Carotenoides/metabolismo , Euglena/metabolismo , Oxigênio/metabolismo , Spirulina/metabolismo , cis-trans-Isomerases/metabolismo , Acidobacteria/enzimologia , Acidobacteria/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis , Bactérias/enzimologia , Bactérias/genética , Vias Biossintéticas/genética , Clonagem Molecular , Escherichia coli/genética , Euglena/enzimologia , Euglena/genética , Filogenia , Análise de Sequência de Proteína , Spirulina/enzimologia , Spirulina/genética , Zea mays/embriologia , Zea mays/genética , cis-trans-Isomerases/classificação , cis-trans-Isomerases/genética , zeta Caroteno/metabolismo
9.
Development ; 144(1): 163-172, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913638

RESUMO

Successful male gametogenesis involves orchestration of sequential gene regulation for somatic differentiation in pre-meiotic anthers. We report here the cloning of Male Sterile23 (Ms23), encoding an anther-specific predicted basic helix-loop-helix (bHLH) transcription factor required for tapetal differentiation; transcripts localize initially to the precursor secondary parietal cells then predominantly to daughter tapetal cells. In knockout ms23-ref mutant anthers, five instead of the normal four wall layers are observed. Microarray transcript profiling demonstrates a more severe developmental disruption in ms23-ref than in ms32 anthers, which possess a different bHLH defect. RNA-seq and proteomics data together with yeast two-hybrid assays suggest that MS23 along with MS32, bHLH122 and bHLH51 act sequentially as either homo- or heterodimers to choreograph tapetal development. Among them, MS23 is the earliest-acting factor, upstream of bHLH51 and bHLH122, controlling tapetal specification and maturation. By contrast, MS32 is constitutive and independently regulated and is required later than MS23 in tapetal differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Flores/embriologia , Zea mays , Diferenciação Celular/genética , Gametogênese Vegetal/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Meiose/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Zea mays/embriologia , Zea mays/genética
10.
BMC Plant Biol ; 20(1): 188, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349671

RESUMO

BACKGROUND: The study of cold tolerance in maize seeds and seedlings through physiological quality assessments, as well as the genetic control associated with this trait, allows an early characterization of genotypes. Here we studied the genetic control for cold tolerance during the germination process in maize seeds and genes influenced by this stress. RESULTS: Six maize lines were used, three classified as tolerant and three as susceptible to low germination temperature. A field was developed to produce the hybrid seeds, in a partial diallel scheme including the reciprocal crosses. For the expression analysis, seeds from two contrasting lines were used, as well as their hybrid combination and their reciprocal crosses, on dried and moistened seeds at 10 °C for 4 and 7 days. It was evaluated the catalase (CAT) and esterase (EST) enzymes, heat-resistant proteins and the genes Putative stearoyl-ACP desaturase (SAD), Ascorbate Peroxidase (APX), Superoxide Dismutase (SOD) and Mitogen Activated Protein Kinase (ZmMPK5). The estimated values ​​for heterosis, general and specific combining abilities and reciprocal maternal and non-maternal effects were carried out and it showed that there is heterosis for germination at low temperatures, also the non-additive genes were more important and there was a reciprocal effect. CONCLUSIONS: There is a greater expression of the CAT and EST enzymes in moistened seeds at seven days and there is less expression of heat-resistant proteins and the SAD gene at seven days of moistening. Also, there are variations in the expression of the APX, SOD and ZmMPK5 genes in dried and moistened seeds, as well as among the genotypes studied.


Assuntos
Regulação da Expressão Gênica de Plantas , Germinação/genética , Termotolerância/genética , Zea mays/genética , Água , Zea mays/embriologia , Zea mays/enzimologia
11.
J Integr Plant Biol ; 62(6): 777-792, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31332949

RESUMO

In land plants, cytidine-to-uridine (C-to-U) editing of organellar transcripts is an important post-transcriptional process, which is considered to remediate DNA genetic mutations to restore the coding of functional proteins. Pentatricopeptide repeat (PPR) proteins have key roles in C-to-U editing. Owing to its large number, however, the biological functions of many PPR proteins remain to be identified. Through characterizing a small kernel4 (smk4) mutant, here we report the function of Smk4 and its role in maize growth and development. Null mutation of Smk4 slows plant growth and development, causing small plants, delayed flowering time, and small kernels. Cloning revealed that Smk4 encodes a new E-subclass PPR protein, and localization indicated that SMK4 is exclusively localized in mitochondria. Loss of Smk4 function abolishes C-to-U editing at position 1489 of the cytochrome c oxidase1 (cox1) transcript, causing an amino acid change from serine to proline at 497 in Cox1. Cox1 is a core component of mitochondrial complex IV. Indeed, complex IV activity is reduced in the smk4, along with drastically elevated expression of alternative oxidases (AOX). These results indicate that SMK4 functions in the C-to-U editing of cox1-1489, and this editing is crucial for mitochondrial complex IV activity, plant growth, and kernel development in maize.


Assuntos
Mitocôndrias/metabolismo , Edição de RNA , Sementes/embriologia , Sementes/genética , Zea mays/embriologia , Zea mays/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Respiração Celular , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Aminoácidos
12.
BMC Genomics ; 20(1): 159, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30813896

RESUMO

BACKGROUND: Maize is one of the primary crops of genetic manipulation, which provides an excellent means of promoting stress resistance and increasing yield. However, the differences in induction and regeneration capacity of embryonic callus (EC) among various genotypes result in genotypic dependence in genetic transformation. RESULTS: In this study, embryonic calli of two maize inbred lines with strong redifferentiation capacity and two lines with weak redifferentiation capability were separately subjected to transcriptome sequencing analysis during the early redifferentiation stages (stage I, 1-3 d; stage II, 4-6 d; stage III, 7-9 d) along with their corresponding controls. A total of ~ 654.72 million cDNA clean reads were yielded, and 62.64%~ 69.21% clean reads were mapped to the reference genome for each library. In comparison with the control, the numbers of differentially expressed genes (DEGs) for the four inbred lines identified in the three stages ranged from 1694 to 7193. By analyzing the common and specific DEGs of the four materials, we found that there were 321 upregulated genes and 386 downregulated genes identified in the high-regeneration lines (141 and DH40), whereas 611 upregulated genes and 500 downregulated genes were specifically expressed in the low-regeneration lines (ZYDH381-1 and DH3732). Analysis of the DEG expression patterns indicated a sharp change at stage I in both the high- and low-regeneration lines, which suggested that stage I constitutes a crucial period for EC regeneration. Notably, the specific common DEGs of 141 and DH40 were mainly associated with photosynthesis, porphyrin and chlorophyll metabolism, ribosomes, and plant hormone signal transduction. In contrast, the DEGs in ZYDH381-1 and DH3732 were mainly related to taurine and hypotaurine metabolism, nitrogen metabolism, fatty acid elongation, starch and sucrose metabolism, phenylpropanoid biosynthesis, and plant circadian rhythm. More importantly, WOX genes, which have an ancestral role in embryo development in seed plants and promote the regeneration of transformed calli, were specifically upregulated in the two high-regeneration lines. CONCLUSIONS: Our research contributes to the elucidation of molecular regulation during early redifferentiation in the maize embryonic callus.


Assuntos
Zea mays/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Regeneração/genética , Análise de Sequência de RNA , Zea mays/embriologia , Zea mays/metabolismo , Zea mays/fisiologia
13.
Int J Mol Sci ; 20(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641963

RESUMO

Several approaches have recently been adopted to improve Agrobacterium-mediated transformation of maize; however, about eight months of in vitro culture are still required to isolate transgenic plants. Furthermore, genetic transformation of maize depends on immature embryos, which greatly increases costs. Here, we report a method that ensures the competency of an embryogenic callus secondary culture under laboratory conditions for Agrobacterium-mediated transformation. Moreover, pretreatment of the cell wall with a mixed lytic enzyme solution prior to Agrobacterium infection, significantly improved transformation efficiency and stability. Average stable transformation efficiency was approximately 30.39%, with peaks of 94.46%. Expression and phenotypic analysis of the Rsc reporter gene were tested in the T0 generation of transgenic plants. Using this system, we successfully regenerated transgenic maize plantlets within three months of the emergence of the embryogenic callus. Additionally, we reduced somaclonal variation accompanying prolonged culture of maize cells in the dedifferentiated state, thus facilitating the molecular breeding of maize.


Assuntos
Agrobacterium tumefaciens/fisiologia , Sementes/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos/métodos , Zea mays/embriologia , Embaralhamento de DNA , Genes Reporter , Fenótipo , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/microbiologia , Sementes/genética , Sementes/microbiologia , Transformação Bacteriana , Zea mays/genética , Zea mays/microbiologia
14.
J Integr Plant Biol ; 61(6): 749-764, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30387549

RESUMO

DNA methylation plays a crucial role in suppressing mobilization of transposable elements and regulation of gene expression. A number of studies have indicated that DNA methylation pathways and patterns exhibit distinct properties in different species, including Arabidopsis, rice, and maize. Here, we characterized the function of DDM1 in regulating genome-wide DNA methylation in maize. Two homologs of ZmDDM1 are abundantly expressed in the embryo and their simultaneous disruption caused embryo lethality with abnormalities in cell proliferation from the early stage of kernel development. We establish that ZmDDM1 is critical for DNA methylation, at CHG sites, and to a lesser extent at CG sites, in heterochromatic regions, and unexpectedly, it is required for the formation of m CHH islands. In addition, ZmDDM1 is indispensable for the presence of 24-nt siRNA, suggesting its involvement in the RdDM pathway. Our results provide novel insight into the role of ZmDDM1 in regulating the formation of m CHH islands, via the RdDM pathway maize, suggesting that, in comparison to Arabidopsis, maize may have adopted distinct mechanisms for regulating m CHH.


Assuntos
Metilação de DNA/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Genes de Plantas , Mutação com Perda de Função/genética , Fenótipo , Proteínas de Plantas/genética , RNA Interferente Pequeno/metabolismo , Sementes/embriologia , Sementes/genética , Zea mays/embriologia
15.
J Integr Plant Biol ; 61(6): 728-748, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30839161

RESUMO

RNA-binding proteins (RBPs) play an important role in post-transcriptional gene regulation. However, the functions of RBPs in plants remain poorly understood. Maize kernel mutant dek42 has small defective kernels and lethal seedlings. Dek42 was cloned by Mutator tag isolation and further confirmed by an independent mutant allele and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 materials. Dek42 encodes an RRM_RBM48 type RNA-binding protein that localizes to the nucleus. Dek42 is constitutively expressed in various maize tissues. The dek42 mutation caused a significant reduction in the accumulation of DEK42 protein in mutant kernels. RNA-seq analysis showed that the dek42 mutation significantly disturbed the expression of thousands of genes during maize kernel development. Sequence analysis also showed that the dek42 mutation significantly changed alternative splicing in expressed genes, which were especially enriched for the U12-type intron-retained type. Yeast two-hybrid screening identified SF3a1 as a DEK42-interacting protein. DEK42 also interacts with the spliceosome component U1-70K. These results suggested that DEK42 participates in the regulation of pre-messenger RNA splicing through its interaction with other spliceosome components. This study showed the function of a newly identified RBP and provided insights into alternative splicing regulation during maize kernel development.


Assuntos
Proteínas de Plantas/metabolismo , Precursores de RNA/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sementes/embriologia , Sementes/genética , Zea mays/embriologia , Zea mays/genética , Alelos , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fenótipo , Filogenia , Spliceossomos/metabolismo , Transcriptoma/genética
16.
J Integr Plant Biol ; 61(6): 706-727, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30506638

RESUMO

Uncovering the genetic basis of seed development will provide useful tools for improving both crop yield and nutritional value. However, the genetic regulatory networks of maize (Zea mays) seed development remain largely unknown. The maize opaque endosperm and small germ 1 (os1) mutant has opaque endosperm and a small embryo. Here, we cloned OS1 and show that it encodes a putative transcription factor containing an RWP-RK domain. Transcriptional analysis indicated that OS1 expression is elevated in early endosperm development, especially in the basal endosperm transfer layer (BETL), conducting zone (CZ), and central starch endosperm (CSE) cells. RNA sequencing (RNA-Seq) analysis of the os1 mutant revealed sharp downregulation of certain genes in specific cell types, including ZmMRP-1 and Meg1 in BETL cells and a majority of zein- and starch-related genes in CSE cells. Using a haploid induction system, we show that wild-type endosperm could rescue the smaller size of os1 embryo, which suggests that nutrients are allocated by the wild-type endosperm. Therefore, our data imply that the network regulated by OS1 accomplishes a key step in nutrient allocation between endosperm and embryo within maize seeds. Identification of this network will help uncover the mechanisms regulating the nutritional balance between endosperm and embryo.


Assuntos
Endosperma/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/embriologia , Alelos , Endosperma/ultraestrutura , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Transformação Genética , Zea mays/genética , Zea mays/ultraestrutura , Zeína/metabolismo , Zeína/ultraestrutura
17.
Plant Physiol ; 174(2): 1127-1138, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28408540

RESUMO

Vitamin B6, an essential cofactor for a range of biochemical reactions and a potent antioxidant, plays important roles in plant growth, development, and stress tolerance. Vitamin B6 deficiency causes embryo lethality in Arabidopsis (Arabidopsis thaliana), but the specific role of vitamin B6 biosynthesis in endosperm development has not been fully addressed, especially in monocot crops, where endosperm constitutes the major portion of the grain. Through molecular characterization of a small kernel2 (smk2) mutant in maize, we reveal that vitamin B6 has differential effects on embryogenesis and endosperm development in maize. The B6 vitamer pyridoxal 5'-phosphate (PLP) is drastically reduced in both the smk2 embryo and the endosperm. However, whereas embryogenesis of the smk2 mutant is arrested at the transition stage, endosperm formation is nearly normal. Cloning reveals that Smk2 encodes the glutaminase subunit of the PLP synthase complex involved in vitamin B6 biosynthesis de novo. Smk2 partially complements the Arabidopsis vitamin B6-deficient mutant pdx2.1 and Saccharomyces cerevisiae pyridoxine auxotrophic mutant MML21. Smk2 is constitutively expressed in the maize plant, including developing embryos. Analysis of B6 vitamers indicates that the endosperm accumulates a large amount of pyridoxamine 5'-phosphate (PMP). These results indicate that vitamin B6 is essential to embryogenesis but has a reduced role in endosperm development in maize. The vitamin B6 required for seed development is synthesized in the seed, and the endosperm accumulates PMP probably as a storage form of vitamin B6.


Assuntos
Glutaminase/metabolismo , Mutação/genética , Sementes/embriologia , Vitamina B 6/biossíntese , Zea mays/embriologia , Zea mays/enzimologia , Sequência de Aminoácidos , Arabidopsis/genética , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Citosol/metabolismo , Endosperma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Glutaminase/química , Fenótipo , Plantas Geneticamente Modificadas , Subunidades Proteicas/metabolismo , Piridoxina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sementes/genética , Zea mays/genética
18.
Plant Cell ; 27(3): 513-31, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25783031

RESUMO

Endosperm is an absorptive structure that supports embryo development or seedling germination in angiosperms. The endosperm of cereals is a main source of food, feed, and industrial raw materials worldwide. However, the genetic networks that regulate endosperm cell differentiation remain largely unclear. As a first step toward characterizing these networks, we profiled the mRNAs in five major cell types of the differentiating endosperm and in the embryo and four maternal compartments of the maize (Zea mays) kernel. Comparisons of these mRNA populations revealed the diverged gene expression programs between filial and maternal compartments and an unexpected close correlation between embryo and the aleurone layer of endosperm. Gene coexpression network analysis identified coexpression modules associated with single or multiple kernel compartments including modules for the endosperm cell types, some of which showed enrichment of previously identified temporally activated and/or imprinted genes. Detailed analyses of a coexpression module highly correlated with the basal endosperm transfer layer (BETL) identified a regulatory module activated by MRP-1, a regulator of BETL differentiation and function. These results provide a high-resolution atlas of gene activity in the compartments of the maize kernel and help to uncover the regulatory modules associated with the differentiation of the major endosperm cell types.


Assuntos
Compartimento Celular , Diferenciação Celular/genética , Endosperma/citologia , Redes Reguladoras de Genes , Microdissecção e Captura a Laser/métodos , Análise de Sequência de RNA/métodos , Zea mays/embriologia , Sequência de Bases , Endosperma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Impressão Genômica , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Polinização , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido , Zea mays/genética
19.
Pestic Biochem Physiol ; 144: 79-82, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29463412

RESUMO

Omethoate (OM) is a highly toxic organophophate insecticide, which is resistant to biodegradation in the environment and is widely used for pest control in agriculture. The effect of OM on maize seed germination was evaluated under salt stress. Salt (800mM) greatly reduced germination of maize seed and this could be reversed by OM. Additionally, H2O2 treatment further improved the effect of OM on seed germination. Higher H2O2 content was measured in OM treated seed compared to those with salt stress alone. Dimethylthiourea (DTMU), a specific scavenger of reactive oxygen species (ROS), inhibited the effect of OM on seed germination, as did IMZ (imidazole), an inhibitor of NADPH oxidase. Abscisic acid (ABA) inhibited the effect of OM on seed germination, whereas fluridone, a specific inhibitor of ABA biosynthesis, enhanced the effect of OM. Taken together, these findings suggest a role of ROS and ABA in the promotion of maize seed germination by OM under salt stress.


Assuntos
Dimetoato/análogos & derivados , Germinação/efeitos dos fármacos , Inseticidas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia , Zea mays/embriologia , Ácido Abscísico/antagonistas & inibidores , Ácido Abscísico/metabolismo , Dimetoato/farmacologia , Peróxido de Hidrogênio/metabolismo , Piridonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
20.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545080

RESUMO

Somatic embryos (SE) have potential to rapidly form a whole plant. Generally, SE is thought to be derived from embryogenic calli (EC). However, in maize, not only embryogenic calli (EC, can generate SE) but also nonembryogenic calli (NEC, can't generate SE) can be induced from immature embryos. In order to understand the differences between EC and NEC and the mechanism of EC, which can easily form SE in maize, differential abundance protein species (DAPS) of EC and NEC from the maize inbred line Y423 were identified by using the isobaric tags for relative and absolute quantification (iTRAQ) proteomic technology. We identified 632 DAPS in EC compared with NEC. The results of bioinformatics analysis showed that EC development might be related to accumulation of pyruvate caused by the DAPS detected in some pathways, such as starch and sucrose metabolism, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, fatty acid metabolism and phenylpropanoid biosynthesis. Based on the differentially accumulated proteins in EC and NEC, a series of DAPS related with pyruvate biosynthesis and suppression of acetyl-CoA might be responsible for the differences between EC and NEC cells. Furthermore, we speculate that the decreased abundance of enzymes/proteins involved in phenylpropanoid biosynthesis pathway in the EC cells results in reducing of lignin substances, which might affect the maize callus morphology.


Assuntos
Endogamia , Marcação por Isótopo/métodos , Proteômica/métodos , Zea mays/embriologia , Zea mays/metabolismo , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/citologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA