Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 479
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant Cell ; 36(1): 194-212, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37804098

RESUMO

In plant leaves, starch is composed of glucan polymers that accumulate in chloroplasts as the products of photosynthesis during the day; starch is mobilized at night to continuously provide sugars to sustain plant growth and development. Efficient starch degradation requires the involvement of several enzymes, including ß-amylase and glucan phosphatase. However, how these enzymes cooperate remains largely unclear. Here, we show that the glucan phosphatase LIKE SEX FOUR 1 (LSF1) interacts with plastid NAD-dependent malate dehydrogenase (MDH) to recruit ß-amylase (BAM1), thus reconstituting the BAM1-LSF1-MDH complex. The starch hydrolysis activity of BAM1 drastically increased in the presence of LSF1-MDH in vitro. We determined the structure of the BAM1-LSF1-MDH complex by a combination of cryo-electron microscopy, crosslinking mass spectrometry, and molecular docking. The starch-binding domain of the dual-specificity phosphatase and carbohydrate-binding module of LSF1 was docked in proximity to BAM1, thus facilitating BAM1 access to and hydrolysis of the polyglucans of starch, thus revealing the molecular mechanism by which the LSF1-MDH complex improves the starch degradation activity of BAM1. Moreover, LSF1 is phosphatase inactive, and the enzymatic activity of MDH was dispensable for starch degradation, suggesting nonenzymatic scaffold functions for LSF1-MDH in starch degradation. These findings provide important insights into the precise regulation of starch degradation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , beta-Amilase , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Malato Desidrogenase/metabolismo , beta-Amilase/metabolismo , Simulação de Acoplamento Molecular , Microscopia Crioeletrônica , Amido/metabolismo , Glucanos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
2.
Plant Mol Biol ; 114(3): 54, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714535

RESUMO

Sugars, synthesized by photosynthesis in source organs, are loaded and utilized as an energy source and carbon skeleton in sink organs, and also known to be important signal molecules regulating gene expression in higher plants. The expression of genes coding for sporamin and ß-amylase, the two most abundant proteins in storage roots of sweet potato, is coordinately induced by sugars. We previously reported on the identification of the carbohydrate metabolic signal-responsible element-1 (CMSRE-1) essential for the sugar-responsible expression of two genes. However, transcription factors that bind to this sequence have not been identified. In this study, we performed yeast one-hybrid screening using the sugar-responsible minimal promoter region of the ß-amylase gene as bait and a library composed only transcription factor cDNAs of Arabidopsis. Two clones, named Activator protein binding to CMSRE-1 (ACRE), encoding AP2/ERF transcription factors were isolated. ACRE showed transactivation activity of the sugar-responsible minimal promoter in a CMSRE-1-dependent manner in Arabidopsis protoplasts. Electric mobility shift assay (EMSA) using recombinant proteins and transient co-expression assay in Arabidopsis protoplasts revealed that ACRE could actually act to the CMSRE-1. Among the DEHYDRATION -RESPONSIVE ELEMENT BINDING FACTOR (DREB) subfamily, almost all homologs including ACRE, could act on the DRE, while only three ACREs could act to the CMSRE-1. Moreover, ACRE-homologs of Japanese morning glory also have the same property of DNA-binding preference and transactivation activity through the CMSRE-1. These findings suggested that ACRE plays an important role in the mechanism regulating the sugar-responsible gene expression through the CMSRE-1 conserved across plant species.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Ipomoea batatas , Proteínas de Plantas , Regiões Promotoras Genéticas , Fatores de Transcrição , beta-Amilase , Arabidopsis/genética , Arabidopsis/metabolismo , beta-Amilase/genética , beta-Amilase/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
3.
Plant Physiol ; 191(1): 591-609, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36102815

RESUMO

ß-Amylase (BAM)-mediated starch degradation is a main source of soluble sugars that help plants adapt to environmental stresses. Here, we demonstrate that dehydration-induced expression of PtrBAM3 in trifoliate orange (Poncirus trifoliata (L.) Raf.) functions positively in drought tolerance via modulation of starch catabolism. Two transcription factors, PtrABF4 (P. trifoliata abscisic acid-responsive element-binding factor 4) and PtrABR1 (P. trifoliata ABA repressor 1), were identified as upstream transcriptional activators of PtrBAM3 through yeast one-hybrid library screening and protein-DNA interaction assays. Both PtrABF4 and PtrABR1 played a positive role in plant drought tolerance by modulating soluble sugar accumulation derived from BAM3-mediated starch decomposition. In addition, PtrABF4 could directly regulate PtrABR1 expression by binding to its promoter, leading to a regulatory cascade to reinforce the activation of PtrBAM3. Moreover, PtrABF4 physically interacted with PtrABR1 to form a protein complex that further promoted the transcriptional regulation of PtrBAM3. Taken together, our finding reveals that a transcriptional cascade composed of ABF4 and ABR1 works synergistically to upregulate BAM3 expression and starch catabolism in response to drought condition. The results shed light on the understanding of the regulatory molecular mechanisms underlying BAM-mediated soluble sugar accumulation for rendering drought tolerance in plants.


Assuntos
Fatores de Transcrição , beta-Amilase , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resistência à Seca , Amilases/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Carboidratos , Secas , Açúcares , beta-Amilase/genética , Amido/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
4.
Plant Cell Rep ; 43(6): 151, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802546

RESUMO

KEY MESSAGE: The VaBAM3 cloned from Vitis amurensis can enhance the cold tolerance of overexpressed plants, but VaBAM3 knock out by CRISPR/Cas9 system weakened grape callus cold tolerance. In grape production, extreme cold conditions can seriously threaten plant survival and fruit quality. Regulation of starch content by ß-amylase (BAM, EC: 3.2.1.2) contributes to cold tolerance in plants. In this study, we cloned the VaBAM3 gene from an extremely cold-tolerant grape, Vitis amurensis, and overexpressed it in tomato and Arabidopsis plants, as well as in grape callus for functional characterization. After exposure to cold stress, leaf wilting in the VaBAM3-overexpressing tomato plants was slightly less pronounced than that in wild-type tomato plants, and these plants were characterized by a significant accumulation of autophagosomes. Additionally, the VaBAM3-overexpressing Arabidopsis plants had a higher freezing tolerance than the wild-type counterparts. Under cold stress conditions, the activities of total amylase, BAM, peroxidase, superoxide dismutase, and catalase in VaBAM3-overexpressing plants were significantly higher than those in the corresponding wild-type plants. Furthermore, sucrose, glucose, and fructose contents in these lines were similarly significantly higher, whereas starch contents were reduced in comparison to the levels in the wild-type plants. Furthermore, we detected high CBF and COR gene expression levels in cold-stressed VaBAM3-overexpressing plants. Compared with those in VaBAM3-overexpressing grape callus, the aforementioned indicators tended to change in the opposite direction in grape callus with silenced VaBAM3. Collectively, our findings indicate that heterologous overexpression of VaBAM3 enhanced cold tolerance of plants by promoting the accumulation of soluble sugars and scavenging of excessive reactive oxygen species. These findings provide a theoretical basis for the cultivation of cold-resistant grape and support creation of germplasm resources for this purpose.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio , Plântula , Vitis , Vitis/genética , Vitis/fisiologia , Vitis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Temperatura Baixa , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Açúcares/metabolismo , beta-Amilase/genética , beta-Amilase/metabolismo , Amido/metabolismo , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia
5.
BMC Genomics ; 24(1): 190, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024797

RESUMO

BACKGROUND: Starch hydrolysates are energy sources for plant growth and development, regulate osmotic pressure and transmit signals in response to both biological and abiotic stresses. The α-amylase (AMY) and the ß-amylase (BAM) are important enzymes that catalyze the hydrolysis of plant starch. Cassava (Manihot esculenta Crantz) is treated as one of the most drought-tolerant crops. However, the mechanisms of how AMY and BAM respond to drought in cassava are still unknown. RESULTS: Six MeAMY genes and ten MeBAM genes were identified and characterized in the cassava genome. Both MeAMY and MeBAM gene families contain four genes with alternative splicing. Tandem and fragment replications play important roles in the amplification of MeAMY and MeBAM genes. Both MeBAM5 and MeBAM10 have a BZR1/BES1 domain at the N-terminus, which may have transcription factor functions. The promoter regions of MeAMY and MeBAM genes contain a large number of cis-acting elements related to abiotic stress. MeAMY1, MeAMY2, MeAMY5, and MeBAM3 are proven as critical genes in response to drought stress according to their expression patterns under drought. The starch content, soluble sugar content, and amylase activity were significantly altered in cassava under different levels of drought stress. CONCLUSIONS: These results provide fundamental knowledge for not only further exploring the starch metabolism functions of cassava under drought stress but also offering new perspectives for understanding the mechanism of how cassava survives and develops under drought.


Assuntos
Manihot , beta-Amilase , Resistência à Seca , Manihot/metabolismo , beta-Amilase/genética , beta-Amilase/metabolismo , alfa-Amilases/genética , alfa-Amilases/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Physiol ; 188(1): 191-207, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34662400

RESUMO

ß-Amylases (BAMs) are key enzymes of transitory starch degradation in chloroplasts, a process that buffers the availability of photosynthetically fixed carbon over the diel cycle to maintain energy levels and plant growth at night. However, during vascular plant evolution, the BAM gene family diversified, giving rise to isoforms with different compartmentation and biological activities. Here, we characterized BETA-AMYLASE 9 (BAM9) of Arabidopsis (Arabidopsis thaliana). Among the BAMs, BAM9 is most closely related to BAM4 but is more widely conserved in plants. BAM9 and BAM4 share features including their plastidial localization and lack of measurable α-1,4-glucan hydrolyzing capacity. BAM4 is a regulator of starch degradation, and bam4 mutants display a starch-excess phenotype. Although bam9 single mutants resemble the wild-type (WT), genetic experiments reveal that the loss of BAM9 markedly enhances the starch-excess phenotypes of mutants already impaired in starch degradation. Thus, BAM9 also regulates starch breakdown, but in a different way. Interestingly, BAM9 gene expression is responsive to several environmental changes, while that of BAM4 is not. Furthermore, overexpression of BAM9 in the WT reduced leaf starch content, but overexpression in bam4 failed to complement fully that mutant's starch-excess phenotype, suggesting that BAM9 and BAM4 are not redundant. We propose that BAM9 activates starch degradation, helping to manage carbohydrate availability in response to fluctuations in environmental conditions. As such, BAM9 represents an interesting gene target to explore in crop species.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Plastídeos/metabolismo , Amido/metabolismo , beta-Amilase/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/genética , Plastídeos/genética , Amido/genética , beta-Amilase/genética
7.
Biosci Biotechnol Biochem ; 87(7): 736-741, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37142417

RESUMO

Starch is stored temporarily in the leaves during the day but degraded during the night. In this study, we investigated the relationship between diurnal changes in starch content in rice leaf blades and the mRNA levels of ß-amylase genes. In addition to the known plastid-type ß-amylases OsBAM2 and OsBAM3, OsBAM4, and OsBAM5 were also identified as plastid targeted proteins. In the leaf blades, starch contents, which reached its maximum at the end of day, showed two periods of marked decrease: from 18:00 to 21:00 and from 24:00 to 6:00. The expression of OsBAM2, OsBAM3, OsBAM4, and OsBAM5 was maintained at a low level from 18:00 to 21:00 but increased strongly after midnight. Furthermore, ß-amylase activity gradually increased after 21:00, reaching a maximum during the early morning. These results suggest that in rice leaf blades, ß-amylase plays an important role in starch degradation by being highly active from midnight to dawn.


Assuntos
Oryza , beta-Amilase , Amido/metabolismo , beta-Amilase/genética , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Metabolismo dos Carboidratos
8.
Food Microbiol ; 114: 104298, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290874

RESUMO

BACKGROUND: Hop creep continues to present an unresolved issue for the brewing industry, specifically stemming from those hops added to beer during fermentation. Hops have been found to contain four dextrin-degrading enzymes: alpha amylase, beta amylase, limit dextrinase, and an amyloglucosidase. One recent hypothesis predicts that these dextrin-degrading enzymes could originate from microbes rather than the hop plant itself. SCOPE AND APPROACH: This review begins by describing how hops are processed and used in the brewing industry. It will then discuss hop creep's origins with a new beer style, antimicrobial factors from hops and resistance mechanisms that bacteria use to counter them, and finally microbial communities that inhabit hops, focusing on whether they can produce the starch degrading enzymes which drive hop creep. After initial identification, microbes with possible links to hop creep were then run through several databases to search the genomes (if available) and for those specific enzymes. KEY FINDINGS AND CONCLUSIONS: Several bacteria and fungi contain alpha amylase as well as unspecified glycosyl hydrolases, but only one contains beta amylase. Finally, this paper closes with a short summary of how abundant these organisms typically are in other flowers.


Assuntos
Humulus , beta-Amilase , Dextrinas , alfa-Amilases , Cerveja/análise
9.
Vet Dermatol ; 34(5): 393-403, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37190989

RESUMO

BACKGROUND: Grass leaf has been suspected of causing immunoglobulin (Ig)E-mediated immediate hypersensitivity reactions in humans and dogs. However, most studies in this area are case-control studies without in vitro data showing the involvement of IgE in the reaction. Laboratory studies have demonstrated the reactivity to a 50-55 kDa protein with clinical signs immediately after contact with grass leaf material. The clinical findings of dogs with atopic-like dermatitis immediately after contact with grass leaf material suggest the involvement of grass leaves as the allergen source. OBJECTIVES: This study was designed to test the IgE-reactivity of grass leaf proteins in dogs with clinical signs and positive scratch test results against grass leaf material. MATERIALS AND METHODS: The serum of 41 patients with a history of allergy and suspected to grass leaf material was immunoblotted against grass leaf extracts from five suspected grass species. The IgE-positive blots were separated with 2D gel electrophoresis and analysed with mass spectrometry (MS). Commercially supplied proteins were used to validate immunoblot activity. RESULTS: The serum of 25 dogs diagnosed with grass dermatitis had positive IgE-specific immunoblot against one or more grass leaf extracts. The MS data indicated a reactive band at 55 kDa to be beta-amylase or RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) large subunit (RbLS). All tested dog sera showed IgE-reactivity with beta-amylase and some with RbLS. CONCLUSIONS AND CLINICAL RELEVANCE: Canines with clinical signs of grass-related dermatitis had IgE-reactivity against grass leaf proteins. Serum IgE-reactivity to beta-amylase and RuBisCO large subunit may indicate that these proteins act as allergens, possibly causing pruritus and skin lesions.


Assuntos
Dermatite , Doenças do Cão , Hipersensibilidade Imediata , Hipersensibilidade , beta-Amilase , Cães , Humanos , Animais , Alérgenos/química , Poaceae , Pólen , Imunoglobulina E , Ribulose-Bifosfato Carboxilase , Hipersensibilidade/diagnóstico , Hipersensibilidade/veterinária , Hipersensibilidade Imediata/veterinária , Extratos Vegetais , Dermatite/veterinária , Doenças do Cão/diagnóstico
10.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445694

RESUMO

ß-amylase proteins (BAM) are important to many aspects of physiological process such as starch degradation. However, little information was available about the BAM genes in Annona atemoya, an important tropical fruit. Seven BAM genes containing the conservative domain of glycoside hydrolase family 14 (PF01373) were identified with Annona atemoya genome, and these BAM genes can be divided into four groups. Subcellular localization analysis revealed that AaBAM3 and AaBAM9 were located in the chloroplast, and AaBAM1.2 was located in the cell membrane and the chloroplast. The AaBAMs belonging to Subfamily I contribute to starch degradation have the higher expression than those belonging to Subfamily II. The analysis of the expression showed that AaBAM3 may function in the whole fruit ripening process, and AaBAM1.2 may be important to starch degradation in other organs. Temperature and ethylene affect the expression of major AaBAM genes in Subfamily I during fruit ripening. These expressions and subcellular localization results indicating ß-amylase play an important role in starch degradation.


Assuntos
Annona , beta-Amilase , Annona/genética , Annona/metabolismo , Frutas/genética , Frutas/metabolismo , beta-Amilase/genética , beta-Amilase/metabolismo , Amido/genética , Amido/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903434

RESUMO

In this study, sweet potato ß-amylase (SPA) was modified by methoxy polyethylene glycol maleimide (molecular weight 5000, Mal-mPEG5000) to obtain the Mal-mPEG5000-SPA modified ß-amylase and the interaction mechanism between SPA and Mal-mPEG5000 was investigated. the changes in the functional groups of different amide bands and modifications in the secondary structure of enzyme protein were analyzed using infrared spectroscopy and circular dichroism spectroscopy. The addition of Mal-mPEG5000 transformed the random curl in the SPA secondary structure into a helix structure, forming a folded structure. The Mal-mPEG5000 improved the thermal stability of SPA and protected the structure of the protein from breaking by the surrounding. The thermodynamic analysis further implied that the intermolecular forces between SPA and Mal-mPEG5000 were hydrophobic interactions and hydrogen bonds due to the positive values of ΔHθ and ΔSθ. Furthermore, the calorie titration data showed that the binding stoichiometry for the complexation of Mal-mPEG5000 to SPA was 1.26, and the binding constant was 1.256 × 107 mol/L. The binding reaction resulted from negative enthalpy, indicating that the interaction of SPA and Mal-mPEG5000 was induced by the van der Waals force and hydrogen bonding. The UV results showed the formation of non-luminescent material during the interaction, the Fluorescence results confirmed that the mechanism between SPA and Mal-mPEG5000 was static quenching. According to the fluorescence quenching measurement, the binding constant (KA) values were 4.65 × 104 L·mol-1 (298K), 5.56 × 104 L·mol-1 (308K), and 6.91 × 104 L·mol-1 (318K), respectively.


Assuntos
Ipomoea batatas , beta-Amilase , Dicroísmo Circular , Termodinâmica , Polietilenoglicóis , Maleimidas , Ligação Proteica , Espectrometria de Fluorescência/métodos , Sítios de Ligação , Simulação de Acoplamento Molecular
12.
J Struct Biol ; 214(3): 107885, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35961473

RESUMO

Plant ß-amylase (BAM) proteins play an essential role in growth, development, stress response, and hormone regulation. Despite their typical (ß/α)8 barrel structure as active catalysts in starch breakdown, catalytically inactive BAMs are implicated in diverse yet elusive functions in plants. The noncatalytic BAM7/8 contain N-terminal BZR1 domains and were shown to be involved in the regulation of brassinosteroid signaling and possibly serve as sensors of yet an uncharacterized metabolic signal. While the structures of several catalytically active BAMs have been reported, structural characterization of the catalytically inactive BZR1-type BAMs remain unknown. Here, we determine the crystal structure of ß-amylase domain of Zea mays BAM8/BES1/BZR1-5 and provide comprehensive insights into its noncatalytic adaptation. Using structural-guided comparison combined with biochemical analysis and molecular dynamics simulations, we revealed conformational changes in multiple distinct highly conserved regions resulting in rearrangement of the binding pocket. Altogether, this study adds a new layer of understanding to starch breakdown mechanism and elucidates the acquired adjustments of noncatalytic BZR1-type BAMs as putative regulatory domains and/or metabolic sensors in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , beta-Amilase , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Plantas/metabolismo , Plantas , Amido/metabolismo , Zea mays/metabolismo , beta-Amilase/química , beta-Amilase/metabolismo
13.
BMC Genomics ; 23(1): 438, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698031

RESUMO

BACKGROUND: Elevated temperature and drought stress have substantial impacts on fruit quality, especially in terms of sugar metabolism and content. ß-Amylase (BAM) plays a critical role in regulating jujube fruit sugar levels and abiotic stress response. Nevertheless, little is known about the regulatory functions of the BAM genes in jujube fruit. RESULTS: Nine jujube BAM genes were identified, clustered into four groups, and characterized to elucidate their structure, function, and distribution. Multiple sequence alignment and gene structure analysis showed that all ZjBAM genes contain Glu-186 and Glu-380 residues and are highly conserved. Phylogenetic and synteny analysis further indicated that the ZjBAM gene family is evolutionarily conserved and formed collinear pairs with the BAM genes of peach, apple, poplar, Arabidopsis thaliana, and cucumber. A single tandem gene pair was found within the ZjBAM gene family and is indicative of putative gene duplication events. We also explored the physicochemical properties, conserved motifs, and chromosomal and subcellular localization of ZjBAM genes as well as the interaction networks and 3D structures of ZjBAM proteins. A promoter cis-acting element analysis suggested that ZjBAM promoters comprise elements related to growth, development, phytohormones, and stress response. Furthermore, a metabolic pathways annotation analysis showed that ZjBAMs are significantly upregulated in the starch and sucrose metabolism, thereby controlling starch-maltose interconversion and hydrolyzing starch to maltose. Transcriptome and qRT-PCR analyses revealed that ZjBAMs respond positively to elevated temperature and drought stress. Specifically, ZjBAM1, ZjBAM2, ZjBAM5, and ZjBAM6 are significantly upregulated in response to severe drought. Bimolecular fluorescence complementation analysis demonstrated ZjBAM1-ZjAMY3, ZjBAM8-ZjDPE1, and ZjBAM7-ZjDPE1 protein interactions that were mainly present in the plasma membrane and nucleus. CONCLUSION: The jujube BAM gene family exhibits high evolutionary conservation. The various expression patterns of ZjBAM gene family members indicate that they play key roles in jujube growth, development, and abiotic stress response. Additionally, ZjBAMs interact with α-amylase and glucanotransferase. Collectively, the present study provides novel insights into the structure, evolution, and functions of the jujube BAM gene family, thus laying a foundation for further exploration of ZjBAM functional mechanisms in response to elevated temperature and drought stress, while opening up avenues for the development of economic forests in arid areas.


Assuntos
Ziziphus , beta-Amilase , Frutas/genética , Regulação da Expressão Gênica de Plantas , Maltose/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Amido/metabolismo , Estresse Fisiológico/genética , Açúcares/metabolismo , Ziziphus/genética , beta-Amilase/genética , beta-Amilase/metabolismo
14.
Plant Cell ; 31(9): 2169-2186, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266901

RESUMO

In Arabidopsis (Arabidopsis thaliana) leaves, starch is synthesized during the day and degraded at night to fuel growth and metabolism. Starch is degraded primarily by ß-amylases, liberating maltose, but this activity is preceded by glucan phosphorylation and is accompanied by dephosphorylation. A glucan phosphatase family member, LIKE SEX4 1 (LSF1), binds starch and is required for normal starch degradation, but its exact role is unclear. Here, we show that LSF1 does not dephosphorylate glucans. The recombinant dual specificity phosphatase (DSP) domain of LSF1 had no detectable phosphatase activity. Furthermore, a variant of LSF1 mutated in the catalytic cysteine of the DSP domain complemented the starch-excess phenotype of the lsf1 mutant. By contrast, a variant of LSF1 with mutations in the carbohydrate binding module did not complement lsf1 Thus, glucan binding, but not phosphatase activity, is required for the function of LSF1 in starch degradation. LSF1 interacts with the ß-amylases BAM1 and BAM3, and the BAM1-LSF1 complex shows amylolytic but not glucan phosphatase activity. Nighttime maltose levels are reduced in lsf1, and genetic analysis indicated that the starch-excess phenotype of lsf1 is dependent on bam1 and bam3 We propose that LSF1 binds ß-amylases at the starch granule surface, thereby promoting starch degradation.


Assuntos
Arabidopsis/metabolismo , Metabolismo dos Carboidratos/fisiologia , Fosfatases de Especificidade Dupla/metabolismo , Amido/metabolismo , beta-Amilase/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo dos Carboidratos/genética , Proteínas de Transporte , Clonagem Molecular , Fosfatases de Especificidade Dupla/genética , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Fosforilação , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/metabolismo , beta-Amilase/genética
15.
Physiol Plant ; 174(6): e13836, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36453084

RESUMO

The bean fruit pericarp accumulates a significant amount of starch, which starts to be degraded 20 days after anthesis (DAA) when seed growth becomes exponential. This period is also characterized by the progressive senescence of the fruit pericarp. However, the chloroplasts maintained their integrity, indicating that starch degradation is a compartmentalized process. The process coincided with a transient increase in maltose and sucrose levels, suggesting that ß-amylase is responsible for starch degradation. Starch degradation in the bean fruit pericarp is also characterized by a large increase in starch phosphorylation, as well as in the activities of cytosolic disproportionating enzyme 2 (DPE2, EC 2.4.1.25) and glucan phosphorylase (PHO2, EC 2.4.1.1). This suggests that the rate of starch degradation in the bean fruit pericarp 20 DAA is dependent on the transformation of starch to a better substrate for ß-amylase and the increase in the rate of cytosolic metabolism of maltose.


Assuntos
Arabidopsis , beta-Amilase , Maltose/metabolismo , Frutas/metabolismo , beta-Amilase/metabolismo , Arabidopsis/metabolismo , Amido/metabolismo
16.
Genomics ; 113(5): 3310-3324, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273497

RESUMO

The present study aimed to establish an early model of the malting barley transcriptome, which describes the expression of genes and their ontologies, identify the period during malting with the largest dynamic shift in gene expression for future investigation, and to determine the expression patterns of all starch degrading enzyme genes relevant to the malting and brewing industry. Large dynamic increases in gene expression occurred early in malting with differential expressed genes enriched for cell wall and starch hydrolases amongst many malting related categories. Twenty-five of forty starch degrading enzyme genes were differentially expressed in the malting barley transcriptome including eleven α-amylase genes, six ß-amylase genes, three α-glucosidase genes, and all five starch debranching enzyme genes. Four new or novel α-amylase genes, one ß-amylase gene (Bmy3), three α-glucosidase genes, and two isoamylase genes had appreciable expression that requires further exploration into their potential relevance to the malting and brewing industry.


Assuntos
Hordeum , beta-Amilase , Hordeum/genética , Hordeum/metabolismo , Amido/metabolismo , Transcriptoma , beta-Amilase/genética
17.
Bioprocess Biosyst Eng ; 45(5): 969-979, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35312865

RESUMO

Curdlan is an edible microbial polysaccharide and can be used in food, biomedical and biomaterial fields. To reduce the cost of curdlan production, this study investigated the suitability of cassava starch hydrolysates as carbon source for curdlan production. Cassava starch was hydrolyzed into maltose syrup using ß-amylase and pullulanase at various enzyme dosages, temperature, time and addition order of two enzymes. The maltose yield of 53.17% was achieved at starch loading 30% by simultaneous addition ß-amylase 210 U/g starch and pullulanase 3 U/g starch at 60 °C for 9 h. Cassava starch hydrolysates were used as carbon source for curdlan production by Agrobacterium sp. DH-2. The curdlan production reached 28.4 g/L with the yield of 0.79 g/g consumed sugar and molecular weight of 1.26 × 106 Da at 96 h with cassava starch hydrolysate at 90 g/L initial sugar concentration. Curdlan produced from cassava starch hydrolysates was characterized using FT-IR spectra and thermo gravimetric analysis. This work indicated that cassava starch was a potential renewable feedstock for curdlan production.


Assuntos
Manihot , beta-Amilase , Agrobacterium , Carbono , Maltose , Espectroscopia de Infravermelho com Transformada de Fourier , Amido , beta-Glucanas
18.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361778

RESUMO

Ethylene (ETH), as a key plant hormone, plays critical roles in various processes of plant growth and development. ETH has been reported to induce adventitious rooting. Moreover, our previous studies have shown that exogenous ETH may induce plant adventitious root development in cucumber (Cucumis sativus L.). However, the key genes involved in this process are still unclear. To explore the key genes in ETH-induced adventitious root development, we employed a transcriptome technique and revealed 1415 differentially expressed genes (DEGs), with 687 DEGs up-regulated and 728 DEGs down-regulated. Using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we further identified critical pathways that were involved in ETH-induced adventitious root development, including carbon metabolism (starch and sucrose metabolism, glycolysis/gluconeogenesis, citrate cycle (TCA cycle), oxidative phosphorylation, fatty acid biosynthesis, and fatty acid degradation), secondary metabolism (phenylalanine metabolism and flavonoid biosynthesis) and plant hormone signal transduction. In carbon metabolism, ETH reduced the content of sucrose, glucose, starch, the activity of sucrose synthase (SS), sucrose-phosphate synthase (SPS) and hexokinase (HK), and the expressions of CsHK2, pyruvate kinase2 (CsPK2), and CsCYP86A1, whereas it enhanced the expressions of ß-amylase 1 (CsBAM1) and ß-amylase 3 (CsBAM3). In secondary metabolism, the transcript levels of phenylalanine ammonia-lyase (CsPAL) and flavonoid 3'-monooxygenase (CsF3'M) were negatively regulated, and that of primary-amine oxidase (CsPAO) was positively regulated by ETH. Additionally, the indole-3-acetic acid (IAA) content and the expressions of auxin and ETH signaling transduction-related genes (auxin transporter-like protein 5 (CsLAX5), CsGH3.17, CsSUAR50, and CsERS) were suppressed, whereas the abscisic acid (ABA) content and the expressions of ABA and BR signaling transduction-related genes (CsPYL1, CsPYL5, CsPYL8, BRI1-associated kinase 1 (CsBAK1), and CsXTH3) were promoted by ETH. Furthermore, the mRNA levels of these genes were confirmed by real-time PCR (RT-qPCR). These results indicate that genes related to carbon metabolism, secondary metabolite biosynthesis, and plant hormone signaling transduction are involved in ETH-induced adventitious root development. This work identified the key pathways and genes in ETH-induced adventitious rooting in cucumber, which may provide new insights into ETH-induced adventitious root development and will be useful for investigating the molecular roles of key genes in this process in further studies.


Assuntos
Cucumis sativus , beta-Amilase , Cucumis sativus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , beta-Amilase/genética , beta-Amilase/metabolismo , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Etilenos/metabolismo , Ácido Abscísico/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Carbono/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas
19.
BMC Plant Biol ; 21(1): 156, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771117

RESUMO

BACKGROUND: Low temperature (LT) is one of the main limiting factors that affect growth and development in grape. Increasing soluble sugar and scavenging reactive oxygen species (ROS) play critical roles in grapevine resistance to cold stress. However, the mechanism of ß-amylase (BAM) involved in the regulation of sugar levels and antioxidant enzyme activities in response to cold stress is unclear. RESULTS: In this study, six BAM genes were identified and clustered into four groups. Multiple sequence alignment and gene structure analysis showed that VvBAM6 lacked the Glu380 residue and contained only an exon. The transcript abundance of VvBAM1 and VvBAM3 significantly increased as temperature decreased. After LT stress, VvBAM1 was highly expressed in the leaves, petioles, stems, and roots of overexpressing tomato lines. The total amylase and BAM activities increased by 6.5- and 6.01-fold in transgenic plants compared with those in wild-type tomato plants (WT) subjected to LT, respectively. The glucose and sucrose contents in transgenic plants were significantly higher than those in WT plants, whereas the starch contents in the former decreased by 1.5-fold compared with those in the latter under LT stress. The analysis of transcriptome sequencing data revealed that 541 genes were upregulated, and 663 genes were downregulated in transgenic plants. One sugar transporter protein gene (SlSTP10), two peroxidase (POD)-related genes (SlPER7 and SlPER5), and one catalase (CAT)-related gene (SlCAT1) were upregulated by 8.6-, 3.6-, 3.0-, and 2.3-fold in transgenic plants after LT stress, respectively. CONCLUSIONS: Our results suggest that VvBAM1 overexpression promotes ROS scavenging and improves cold tolerance ability by modulating starch hydrolysis to affect soluble sugar levels in tomato plants.


Assuntos
Aclimatação/genética , Genes de Plantas , Solanum lycopersicum/genética , Açúcares/metabolismo , Vitis/genética , beta-Amilase/genética , Antioxidantes/metabolismo , Expressão Ectópica do Gene , Evolução Molecular , Genoma de Planta , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Floema/metabolismo , Plantas Geneticamente Modificadas , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Vitis/enzimologia , beta-Amilase/metabolismo
20.
New Phytol ; 229(3): 1398-1414, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32880972

RESUMO

Carbon reserve use is a major drought response in trees, enabling tree survival in conditions prohibiting photosynthesis. However, regulation of starch metabolism under drought at the whole-tree scale is still poorly understood. To this end, we combined measurements of nonstructural carbohydrates (NSCs), tree physiology and gene expression. The experiment was conducted outside on olive trees in pots under 90 d of seasonal spring to summer warming. Half of the trees were also subjected to limited water conditions for 28 d. Photosynthesis decreased in dehydrating trees from 19 to 0.5 µmol m-2  s-1 during the drought period. Starch degradation and mannitol production were a major drought response, with mannitol increasing to 71% and 41% out of total NSCs in shoots and roots, respectively. We identified the gene family members potentially relevant either to long-term or stress-induced carbon storage. Partitioning of expression patterns among ß amylase and starch synthase family members was observed, with three ß amylases possibly facilitating the rapid starch degradation under heat and drought. Our results suggest a group of stress-related, starch metabolism genes, correlated with NSC fluctuations during drought and recovery. The daily starch metabolism gene expression was different from the stress-mode starch metabolism pattern, where some genes are uniquely expressed during the stress-mode response.


Assuntos
Olea , beta-Amilase , Secas , Temperatura Alta , Amido , Árvores , Madeira , beta-Amilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA