Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891781

RESUMO

Carotenoid cleavage oxygenases can cleave carotenoids into a range of biologically important products. Carotenoid isomerooxygenase (NinaB) and ß, ß-carotene 15, 15'-monooxygenase (BCO1) are two important oxygenases. In order to understand the roles that both oxygenases exert in crustaceans, we first investigated NinaB-like (EsNinaBl) and BCO1-like (EsBCO1l) within the genome of Chinese mitten crab (Eriocheir sinensis). Their functions were then deciphered through an analysis of their expression patterns, an in vitro ß-carotene degradation assay, and RNA interference. The results showed that both EsNinaBl and EsBCO1l contain an RPE65 domain and exhibit high levels of expression in the hepatopancreas. During the molting stage, EsNinaBl exhibited significant upregulation in stage C, whereas EsBCO1l showed significantly higher expression levels at stage AB. Moreover, dietary supplementation with ß-carotene resulted in a notable increase in the expression of EsNinaBl and EsBCO1l in the hepatopancreas. Further functional assays showed that the EsNinaBl expressed in E. coli underwent significant changes in its color, from orange to light; in addition, its ß-carotene cleavage was higher than that of EsBCO1l. After the knockdown of EsNinaBl or EsBCO1l in juvenile E. sinensis, the expression levels of both genes were significantly decreased in the hepatopancreas, accompanied by a notable increase in the redness (a*) values. Furthermore, a significant increase in the ß-carotene content was observed in the hepatopancreas when EsNinaBl-mRNA was suppressed, which suggests that EsNinaBl plays an important role in carotenoid cleavage, specifically ß-carotene. In conclusion, our findings suggest that EsNinaBl and EsBCO1l may exhibit functional co-expression and play a crucial role in carotenoid cleavage in crabs.


Assuntos
Braquiúros , Hepatopâncreas , beta Caroteno , beta-Caroteno 15,15'-Mono-Oxigenase , Animais , beta Caroteno/metabolismo , Braquiúros/metabolismo , Braquiúros/genética , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/genética , Hepatopâncreas/metabolismo , Muda/genética , Oxigenases/metabolismo , Oxigenases/genética , Filogenia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo
2.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771049

RESUMO

High dietary intake of ß-cryptoxanthin (BCX, an oxygenated provitamin A carotenoid) is associated with a lower risk of lung disease in smokers. BCX can be cleaved by ß-carotene-15,15'-oxygenase (BCO1) and ß-carotene-9',10'-oxygenase (BCO2) to produce retinol and apo-10'-carotenoids. We investigated whether BCX has protective effects against cigarette smoke (CS)-induced lung injury, dependent or independent of BCO1/BCO2 and their metabolites. Both BCO1-/-/BCO2-/- double knockout mice (DKO) and wild type (WT) littermates were supplemented with BCX 14 days and then exposed to CS for an additional 14 days. CS exposure significantly induced macrophage and neutrophil infiltration in the lung tissues of mice, regardless of genotypes, compared to the non-exposed littermates. BCX treatment significantly inhibited CS-induced inflammatory cell infiltration, hyperplasia in the bronchial epithelium, and enlarged alveolar airspaces in both WT and DKO mice, regardless of sex. The protective effects of BCX were associated with lower expression of IL-6, TNF-α, and matrix metalloproteinases-2 and -9. BCX treatment led to a significant increase in hepatic BCX levels in DKO mice, but not in WT mice, which had significant increase in hepatic retinol concentration. No apo-10'-carotenoids were detected in any of the groups. In vitro BCX, at comparable doses of 3-OH-ß-apo-10'-carotenal, was effective at inhibiting the lipopolysaccharide-induced inflammatory response in a human bronchial epithelial cell line. These data indicate that BCX can serve as an effective protective agent against CS-induced lung lesions in the absence of carotenoid cleavage enzymes.


Assuntos
Dioxigenases , Produtos do Tabaco , Camundongos , Animais , Humanos , beta Caroteno/metabolismo , beta-Criptoxantina/farmacologia , Vitamina A , Dioxigenases/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/genética , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Carotenoides/farmacologia , Carotenoides/metabolismo , Oxigenases , Pulmão/metabolismo , Camundongos Knockout
3.
Molecules ; 27(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36431912

RESUMO

Carotenoids are isoprenoid pigments, and sources of vitamin A in humans. The first metabolic pathway for their synthesis is mediated by the enzymes ß,ß-carotene-15,15'-dioxygenase (BCO1) and ß,ß-carotene-9',10'-dioxygenase (BCO2), which cleave carotenoids into smaller compounds, called apocarotenoids. The objective of this study is to gain insight into the interaction of BCO1 and BCO2 with carotenoids, adding structural diversity and importance in the agro-food and/or health sectors. Homology modeling of BCO1 and BCO2, and the molecular dynamics of complexes with all carotenoids were performed. Interaction energy and structures were analyzed. For both enzymes, the general structure is conserved with a seven beta-sheet structure, and the ß-carotene is positioned at an optimal distance from the catalytic center. Fe2+ forms in an octahedral coordination sphere with four perfectly conserved histidine residues. BCO1 finds stability in a structure in which the ß-carotene is positioned ready for enzymatic catalysis at the 15-15' bond, and BCO2 in positioning the bond to be cleaved (C9-C10) close to the active site. In BCO1 the carotenoids interact with only seven residues with aromatic rings, while the interaction of BCO2 is much more varied in terms of the type of interaction, with more residues of different chemical natures.


Assuntos
Dioxigenases , beta-Caroteno 15,15'-Mono-Oxigenase , Humanos , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , beta Caroteno/metabolismo , Simulação por Computador , Dioxigenases/metabolismo , Carotenoides/metabolismo
4.
J Lipid Res ; 61(11): 1491-1503, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32963037

RESUMO

Atherosclerosis is characterized by the pathological accumulation of cholesterol-laden macrophages in the arterial wall. Atherosclerosis is also the main underlying cause of CVDs, and its development is largely driven by elevated plasma cholesterol. Strong epidemiological data find an inverse association between plasma ß-carotene with atherosclerosis, and we recently showed that ß-carotene oxygenase 1 (BCO1) activity, responsible for ß-carotene cleavage to vitamin A, is associated with reduced plasma cholesterol in humans and mice. In this study, we explore whether intact ß-carotene or vitamin A affects atherosclerosis progression in the atheroprone LDLR-deficient mice. Compared with control-fed Ldlr-/- mice, ß-carotene-supplemented mice showed reduced atherosclerotic lesion size at the level of the aortic root and reduced plasma cholesterol levels. These changes were absent in Ldlr-/- /Bco1-/- mice despite accumulating ß-carotene in plasma and atherosclerotic lesions. We discarded the implication of myeloid BCO1 in the development of atherosclerosis by performing bone marrow transplant experiments. Lipid production assays found that retinoic acid, the active form of vitamin A, reduced the secretion of newly synthetized triglyceride and cholesteryl ester in cell culture and mice. Overall, our findings provide insights into the role of BCO1 activity and vitamin A in atherosclerosis progression through the regulation of hepatic lipid metabolism.


Assuntos
Aterosclerose/metabolismo , Lipídeos/química , Fígado/química , Vitamina A/metabolismo , beta Caroteno/metabolismo , Animais , Aterosclerose/patologia , Células Cultivadas , Feminino , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/deficiência , Receptores de LDL/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/deficiência , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo
5.
J Nutr ; 150(8): 2023-2030, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32433733

RESUMO

BACKGROUND: Plasma cholesterol is one of the strongest risk factors associated with the development of atherosclerotic cardiovascular disease (ASCVD) and myocardial infarction. Human studies suggest that elevated plasma ß-carotene is associated with reductions in circulating cholesterol and the risk of myocardial infarction. The molecular mechanisms underlying these observations are unknown. OBJECTIVE: The objective of this study was to determine the impact of dietary ß-carotene and the activity of ß-carotene oxygenase 1 (BCO1), which is the enzyme responsible for the conversion of ß-carotene to vitamin A, on circulating cholesterol concentration. METHODS: In our preclinical study, we compared the effects of a 10-d intervention with a diet containing 50 mg/kg of ß-carotene on plasma cholesterol in 5-wk-old male and female C57 Black 6 wild-type and congenic BCO1-deficient mice. In our clinical study, we aimed to determine whether 5 common small nucleotide polymorphisms located in the BCO1 locus affected serum cholesterol concentrations in a population of young Mexican adults from the Universities of San Luis Potosí and Illinois: A Multidisciplinary Investigation on Genetics, Obesity, and Social-Environment (UP AMIGOS) cohort. RESULTS: Upon ß-carotene feeding, Bco1-/- mice accumulated >20-fold greater plasma ß-carotene and had ∼30 mg/dL increased circulating total cholesterol (P < 0.01) and non-HDL cholesterol (P < 0.01) than wild-type congenic mice. Our results in the UP AMIGOS cohort show that the rs6564851 allele of BCO1, which has been linked to BCO1 enzymatic activity, was associated with a reduction in 10 mg/dL total cholesterol concentrations (P = 0.009) when adjusted for vitamin A and carotenoid intakes. Non-HDL-cholesterol concentration was also reduced by 10 mg/dL when the data were adjusted for vitamin A and total carotenoid intakes (P = 0.002), or vitamin A and ß-carotene intakes (P = 0.002). CONCLUSIONS: Overall, our results in mice and young adults show that BCO1 activity impacts circulating cholesterol concentration, linking vitamin A formation with the risk of developing ASCVD.


Assuntos
Colesterol/sangue , Dioxigenases/metabolismo , beta Caroteno/administração & dosagem , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Adolescente , Animais , Colesterol/metabolismo , Dioxigenases/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , beta Caroteno/farmacologia , beta-Caroteno 15,15'-Mono-Oxigenase/genética
6.
Proc Natl Acad Sci U S A ; 114(43): 11530-11535, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073082

RESUMO

The intestinal epithelium is a major site for the conversion of dietary ß-carotene to retinaldehyde by the enzyme BCO1. The majority of retinaldehyde is further metabolized to retinol (vitamin A), esterified and packaged into triacylglycerol-rich chylomicrons for bodily distribution. Some serve on-site for the synthesis of retinoic acid, a hormone-like compound, which exerts pleiotropic and dominant effects on gastrointestinal immunity. We report here that the intestine-specific homeobox protein ISX is critical to control the metabolic flow of ß-carotene through this important branching point of vitamin A metabolism. This transcription factor represses Bco1 gene expression in response to retinoic acid signaling. In ISX-deficient mice, uncontrolled Bco1 gene expression led to increased retinoid production in the intestine. Systemically, this production resulted in highly elevated hepatic retinoid stores. In the intestine, it increased the expression of retinoic acid-inducible target genes such as Aldh1a2, Dhrs3, and Ccr9 The ß-carotene-inducible disruption of retinoid homeostasis affected gut-homing and differentiation of lymphocytes and displayed morphologically in large lymphoid follicles along the intestine. Furthermore, it was associated with an infiltration of the pancreas by gut-derived lymphocytes that manifested as a pancreatic insulitis with ß-islet cell destruction and systemic glucose intolerance. Thus, our study identifies an important molecular interlink between diet and immunity and indicates that vitamin A homeostasis must be tightly controlled by ISX to maintain immunity and tolerance at the intestinal barrier.


Assuntos
Dieta , Intestinos/imunologia , Fatores de Transcrição/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Ração Animal/análise , Animais , Glicemia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Glucose/metabolismo , Homeostase , Camundongos , Receptores CCR/genética , Receptores CCR/metabolismo , Retinal Desidrogenase , Retinoides/biossíntese , Linfócitos T/fisiologia , Fatores de Transcrição/genética , beta-Caroteno 15,15'-Mono-Oxigenase/genética , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo
7.
J Nutr ; 149(3): 381-397, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30801647

RESUMO

BACKGROUND: Human plasma and tissue lycopene concentrations are heterogeneous even when consuming controlled amounts of tomato or lycopene. OBJECTIVES: Our objective is to determine whether single nucleotide polymorphisms (SNPs) in or near known or putative carotenoid metabolism genes [ß-carotene 15,15' monooxygenase 1 (BCO1), scavenger receptor class B type 1 (SCARB1), ATP-binding cassette transporter subfamily A member 1 (ABCA1), microsomal triglyceride transfer protein (MTTP), apolipoprotein B-48, elongation of very long chain fatty acids protein 2 (ELOVL2), and ATP-binding cassette subfamily B member 1 (ABCB1), and an intergenic superoxide dismutase 2, mitochondrial-associated SNP] are predictive of plasma lycopene responses to steady state tomato juice consumption. METHODS: Secondary linear regression analyses of data from a dose-escalation study of prostate cancer patients [n = 47; mean ± SEM age: 60 ± 1 y; BMI (in kg/m2): 32 ± 1] consuming 0, 1, or 2 cans of tomato-soy juice/d (163 mL/can; 20.6 mg lycopene 1.2 mg ß-carotene/can) for 24 ± 0.7 d before prostatectomy were conducted to explore 11 SNP genotype effects on the change in plasma lycopene and plasma and prostate tissue concentrations of lycopene, ß-carotene, phytoene, and phytofluene. RESULTS: Two BCO1 SNP genotypes were significant predictors of the change in plasma lycopene, with SNP effects differing in magnitude and direction, depending on the level of juice intake (rs12934922 × diet group P = 0.02; rs6564851 × diet group P = 0.046). Further analyses suggested that plasma ß-carotene changes were predicted by BCO1 rs12934922 (P < 0.01), prostate lycopene by trending interaction and main effects of BCO1 SNPs (rs12934922 × diet group P = 0.09; rs12934922 P = 0.02; rs6564851 P = 0.053), and prostate ß-carotene by BCO1 SNP interaction and main effects (rs12934922 × diet group P = 0.01; rs12934922 P < 0.01; rs7501331 P = 0.02). CONCLUSIONS: In conclusion, SNPs in BCO1 and other genes may modulate human plasma and prostate tissue responses to dietary lycopene intake and warrant validation in larger, human controlled feeding intervention and cohort studies. Genetic variants related to carotenoid metabolism may partially explain heterogeneous human blood and tissue responses and may be critical covariates for population studies and clinical trials. This trial was registered at clinicaltrials.gov as NCT01009736.


Assuntos
Licopeno/sangue , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/dietoterapia , Proteínas de Soja , beta-Caroteno 15,15'-Mono-Oxigenase/genética , Bebidas/análise , Carotenoides/sangue , Genótipo , Humanos , Desequilíbrio de Ligação , Licopeno/metabolismo , Solanum lycopersicum/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/enzimologia , beta Caroteno/sangue , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo
8.
Arch Biochem Biophys ; 654: 1-9, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006135

RESUMO

ß-Carotene-15, 15'-oxygenase (BCO1) and ß-carotene-9', 10'-oxygenase (BCO2) are essential enzymes in carotenoid metabolism. While BCO1/BCO2 polymorphisms have been associated with alterations to human and animal carotenoid levels, experimental studies have suggested that BCO1 and BCO2 may have specific physiological functions beyond the cleavage of carotenoids. In the present study, we investigated the effect of ablation of both BCO1/BCO2 in the development of non-alcoholic fatty liver disease (NAFLD) and its underlying molecular mechanism(s). BCO1/BCO2 double knock out (DKO) mice developed hepatic steatosis (8/8) and had significantly higher levels of hepatic and plasma triglyceride and total cholesterol compared to WT (0/8). Hepatic changes in the BCO1/BCO2 DKO mice were associated with significant: 1) increases in lipogenesis markers, and decreases in fatty acid ß-oxidation markers; 2) upregulation of cholesterol metabolism markers; 3) alterations to microRNAs related to TG accumulation and cholesterol metabolism; 4) increases in an hepatic oxidative stress marker (HO-1) but decreases in anti-oxidant enzymes; and 5) decreases in farnesoid X receptor (FXR), small heterodimer partner (SHP), and sirtuin 1 (SIRT1). The present study provided novel experimental evidence that BCO1 and BCO2 could play a significant role in maintaining normal hepatic lipid and cholesterol homeostasis, potentially through the regulation of the FXR/miR-34a/SIRT1 pathway.


Assuntos
Carotenoides/metabolismo , Dioxigenases/metabolismo , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Sirtuína 1/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Animais , Biomarcadores/metabolismo , Colesterol/metabolismo , Dioxigenases/genética , Hidrólise , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único , Triglicerídeos/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/genética
9.
Exp Cell Res ; 358(2): 140-146, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28625776

RESUMO

The enzyme ß-carotene oxygenase 1 (BCO1) catalyzes the breakdown of provitamin A, including beta-carotene (BC), into retinal, prior to its oxidation into retinoic acid (RA). Allelic variation at the BCO1 locus results in differential expression of its mRNA and affects carotenoid metabolism specifically in chicken Pectoralis major muscle. In this context, the aim of this study was to evaluate the potential myogenic effect of BC and the underlying mechanisms in chicken myoblasts. BCO1 mRNA was detected in myoblasts derived from chicken satellite cells. Treating these myoblasts with BC led to a significant decrease in BrdU incorporation. This anti-proliferative effect was confirmed by a cell cycle study using flow cytometry. BC also significantly increased the differentiation index, suggesting a positive effect on the commitment of avian myoblasts to myogenic differentiation. Addition of DEAB, a specific inhibitor of RALDH activity, significantly reduced BC anti-proliferative and pro-differentiating effects, suggesting that BC exerted its biological effect on chicken myoblasts through activation of the RA pathway. We also observed that in myoblast showing decreased BCO1 expression consecutive to a natural mutation or to a siRNA treatment, the response to BC was inhibited. Nevertheless, BCO1 siRNA transfection increased expression of BCO2 which inhibited cell proliferation in control and BC treated cells.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Mioblastos/metabolismo , Retina/metabolismo , Tretinoína/metabolismo , beta Caroteno/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Animais , Proliferação de Células/fisiologia , Galinhas , Metabolismo dos Lipídeos , Mioblastos/citologia , Oxirredução
10.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373117

RESUMO

Cholestasis is defined as a reduction of bile secretion caused by a dysfunction of bile formation. Insufficient bile secretion into the intestine undermines the formation of micelles, which may result in the reduced absorption of lipids and fat-soluble vitamins. Here, we investigated the retinol homeostasis and the alterations of retinol metabolism-related genes, including ß-carotene 15,15' monooxygenase (BCMO), lecithin:retinol acyltransferase (LRAT), aldehyde dehydrogenase (ALDH), cytochrome P450 26A1 (CYP26A1), and retinoic acid receptors (RAR) ß, in a α-naphthyl isothiocyanate (ANIT)-induced cholestasis rat model. Moreover, we examined the expression of the farnesoid X receptor (FXR) target genes. Our results showed that plasma retinol levels were decreased in ANIT rats compared to control rats. On the contrary, hepatic retinol levels were not different between the two groups. The expression of FXR target genes in the liver and intestine of cholestasis model rats was repressed. The BCMO expression was decreased in the liver and increased in the intestine of ANIT rats compared to control rats. Finally, the hepatic expression of LRAT, RARß, and ALDH1A1 in cholestatic rats was decreased compared to the control rats, while the CYP26A1 expression of the liver was not altered. The increased expression of intestinal BCMO in cholestasis model rats might compensate for decreased circulatory retinol levels. The BCMO expression might be regulated in a tissue-specific manner to maintain the homeostasis of retinol.


Assuntos
1-Naftilisotiocianato , Colestase/induzido quimicamente , Colestase/metabolismo , Regulação da Expressão Gênica , Vitamina A/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Animais , Colestase/genética , Colestase/patologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Vitamina A/genética , beta-Caroteno 15,15'-Mono-Oxigenase/genética , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo
11.
J Biol Chem ; 291(35): 18525-35, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402843

RESUMO

ß-Carotene is an important source of vitamin A for the mammalian embryo, which depends on its adequate supply to achieve proper organogenesis. In mammalian tissues, ß-carotene 15,15'-oxygenase (BCO1) converts ß-carotene to retinaldehyde, which is then oxidized to retinoic acid, the biologically active form of vitamin A that acts as a transcription factor ligand to regulate gene expression. ß-Carotene can also be cleaved by ß-carotene 9',10'-oxygenase (BCO2) to form ß-apo-10'-carotenal, a precursor of retinoic acid and a transcriptional regulator per se The mammalian embryo obtains ß-carotene from the maternal circulation. However, the molecular mechanisms that enable its transfer across the maternal-fetal barrier are not understood. Given that ß-carotene is transported in the adult bloodstream by lipoproteins and that the placenta acquires, assembles, and secretes lipoproteins, we hypothesized that the aforementioned process requires placental lipoprotein biosynthesis. Here we show that ß-carotene availability regulates transcription and activity of placental microsomal triglyceride transfer protein as well as expression of placental apolipoprotein B, two key players in lipoprotein biosynthesis. We also show that ß-apo-10'-carotenal mediates the transcriptional regulation of microsomal triglyceride transfer protein via hepatic nuclear factor 4α and chicken ovalbumin upstream promoter transcription factor I/II. Our data provide the first in vivo evidence of the transcriptional regulatory activity of ß-apocarotenoids and identify microsomal triglyceride transfer protein and its transcription factors as the targets of their action. This study demonstrates that ß-carotene induces a feed-forward mechanism in the placenta to enhance the assimilation of ß-carotene for proper embryogenesis.


Assuntos
Proteínas de Transporte/biossíntese , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas da Gravidez/biossíntese , Gravidez/metabolismo , beta Caroteno/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Proteínas de Transporte/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Feminino , Camundongos , Camundongos Knockout , Gravidez/genética , Proteínas da Gravidez/genética , beta-Caroteno 15,15'-Mono-Oxigenase/genética , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo
12.
Am J Physiol Regul Integr Comp Physiol ; 311(6): R1135-R1148, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27629887

RESUMO

ß-Carotene-15,15'-dioxygenase (BCO1) cleaves dietary carotenoids at the central 15,15' double bond, most notably acting on ß-carotene to yield retinal. However, Bco1 disruption also impacts diverse physiological end points independent of dietary carotenoid feeding, including expression of genes controlling androgen metabolism. Using the Bco1-/- mouse model, we sought to probe the effects of Bco1 disruption on testicular steroidogenesis, prostatic androgen signaling, and prostatic proliferation. Male wild-type (WT) and Bco1-/- mice were raised on carotenoid-free AIN-93G diets before euthanasia between 10 and 14 wk of age. Weights of the prostate and seminal vesicles were significantly lower in Bco1-/- than in WT mice (-18% and -29%, respectively). Serum testosterone levels in Bco1-/- mice were significantly reduced by 73%. Bco1 disruption significantly reduced Leydig cell number and decreased testicular mRNA expression of Hsd17b3, suggesting inhibition of testicular testosterone synthesis. Immunofluorescent staining of the androgen receptor (AR) in the dorsolateral prostate lobes of Bco1-/- mice revealed a decrease in AR nuclear localization. Analysis of prostatic morphology suggested decreases in gland size and secretion. These findings were supported by reduced expression of the proliferation marker Ki-67 in Bco1-/- prostates. Expression analysis of 200 prostate cancer- and androgen-related genes suggested that Bco1 loss significantly disrupted prostatic androgen receptor signaling, cell cycle progression, and proliferation. This is the first demonstration that Bco1 disruption lowers murine circulating testosterone levels and thereby reduces prostatic androgen receptor signaling and prostatic cellular proliferation, further supporting the role of this protein in processes more diverse than carotenoid cleavage.


Assuntos
Próstata/citologia , Próstata/metabolismo , Receptores Androgênicos/metabolismo , Testosterona/sangue , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Animais , Proliferação de Células/fisiologia , Regulação para Baixo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão/fisiologia , Transdução de Sinais/fisiologia , beta-Caroteno 15,15'-Mono-Oxigenase/genética
13.
Biochim Biophys Acta ; 1841(1): 34-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23988655

RESUMO

We provide novel insights into the function(s) of ß-carotene-15,15'-oxygenase (CMOI) during embryogenesis. By performing in vivo and in vitro experiments, we showed that CMOI influences not only lecithin:retinol acyltransferase but also acyl CoA:retinol acyltransferase reaction in the developing tissues at mid-gestation. In addition, LC/MS lipidomics analysis of the CMOI-/- embryos showed reduced levels of four phosphatidylcholine and three phosphatidylethanolamine acyl chain species, and of eight triacylglycerol species with four or more unsaturations and fifty-two or more carbons in the acyl chains. Cholesteryl esters of arachidonate, palmitate, linoleate, and DHA were also reduced to less than 30% of control. Analysis of the fatty acyl CoA species ruled out a loss in fatty acyl CoA synthetase capability. Comparison of acyl species suggested significantly decreased 18:2, 18:3, 20:1, 20:4, or 22:6 acyl chains within the above lipids in CMOI-null embryos. Furthermore, LCAT, ACAT1 and DGAT2 mRNA levels were also downregulated in CMOI-/- embryos. These data strongly support the notion that, in addition to cleaving ß-carotene to generate retinoids, CMOI serves an additional function(s) in retinoid and lipid metabolism and point to its role in the formation of specific lipids, possibly for use in nervous system tissue.


Assuntos
Colesterol/metabolismo , Diglicerídeos/metabolismo , Embrião de Mamíferos/enzimologia , Metabolismo dos Lipídeos/fisiologia , Vitamina A/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Acetil-CoA C-Acetiltransferase/biossíntese , Acetil-CoA C-Acetiltransferase/genética , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Animais , Colesterol/genética , Diacilglicerol O-Aciltransferase/biossíntese , Diacilglicerol O-Aciltransferase/genética , Diglicerídeos/genética , Regulação para Baixo/fisiologia , Esterificação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Tecido Nervoso/embriologia , Tecido Nervoso/enzimologia , Vitamina A/genética , beta-Caroteno 15,15'-Mono-Oxigenase/genética
14.
Arch Biochem Biophys ; 572: 19-27, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25575786

RESUMO

The intestine and liver are crucial organs for vitamin A uptake and storage. Liver accounts for 70% of total body retinoid stores. Vitamin A deficiency (VAD) is a major micronutrient deficiency around the world. The provitamin A carotenoid, ß-carotene, is a significant source of vitamin A in the diet. ß-Carotene 15,15' oxygenase-1 (BCO1) and ß-carotene 9',10' oxygenase-2 (BCO2) are the two known carotenoid cleavage enzymes in humans. BCO1 and BCO2 are highly expressed in liver and intestine. Hepatocytes and hepatic stellate cells are two main cell types involved in the hepatic metabolism of retinoids. Stellate-like cells in the intestine also show ability to store vitamin A. Liver is also known to accumulate carotenoids, however, their uptake, retention and metabolism in specific liver and intestinal cell types is still unknown. Hence, we studied the cellular and subcellular expression and localization of BCO1 and BCO2 proteins in rat liver and intestine. We demonstrate that both BCO1 and BCO2 proteins are localized in hepatocytes and mucosal epithelium. We also show that BCO1 is also highly expressed in hepatic stellate cells (HSC) and portal endothelial cells in liver. At the subcellular level in liver, BCO1 is found in cytosol, while BCO2 is found in mitochondria. In intestine, immunohistochemistry showed strong BCO1 immunoreactivity in the duodenum, particularly in Brunner's glands. Both BCO1 and BCO2 showed diffuse presence along epithelia with strong immunoreactivity in endothelial cells and in certain epithelial cells which warrant further investigation as possible intestinal retinoid storage cells.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Intestinos/enzimologia , Fígado/enzimologia , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Células Epiteliais/enzimologia , Intestinos/citologia , Espaço Intracelular/metabolismo , Fígado/citologia , Transporte Proteico , Ratos
15.
Arch Biochem Biophys ; 572: 11-18, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25602705

RESUMO

In mammals, ß-carotene-15,15'-oxygenase (BCO1) is the main enzyme that cleaves ß-carotene, the most abundant vitamin A precursor, to generate retinoids (vitamin A derivatives), both in adult and developing tissues. We previously reported that, in addition to this function, BCO1 can also influence the synthesis of retinyl esters, the storage form of retinoids, in the mouse embryo at mid-gestation. Indeed, lack of embryonic BCO1 impaired both lecithin-dependent and acyl CoA-dependent retinol esterification, mediated by lecithin:retinol acyltransferase (LRAT) and acyl CoA:retinol acyltransferase (ARAT), respectively. Furthermore, embryonic BCO1 also influenced the ester pools of cholesterol and diacylglycerol. In this report, we gained novel insights into this alternative function of BCO1 by investigating whether BCO1 influenced embryonic retinoid and lipid metabolism in a tissue-dependent manner. To this end, livers and brains from wild-type and BCO1-/- embryos at mid-gestation were analyzed for retinoid and lipid content, as well as gene expression levels. We also asked whether or not the role of BCO1 as a regulator of lecithin- and acyl CoA-dependent retinol esterification was exclusively restricted to the developing tissues. Thus, a survey of retinol and retinyl ester levels in adult tissues of wild-type, BCO1-/-, LRAT-/- and LRAT-/-BCO1-/- mice was performed. We showed that the absence of BCO1 affects embryonic retinoid and lipid homeostasis in a tissue-specific manner and that retinyl ester formation is also influenced by BCO1 in a few adult tissues (pancreas, lung, heart and adipose) in a sex-dependent manner.


Assuntos
Metabolismo dos Lipídeos , Retinoides/metabolismo , Caracteres Sexuais , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Dioxigenases/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genótipo , Homeostase , Fígado/embriologia , Fígado/metabolismo , Masculino , Camundongos , Especificidade de Órgãos , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/deficiência , beta-Caroteno 15,15'-Mono-Oxigenase/genética
16.
FASEB J ; 28(10): 4457-69, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25002123

RESUMO

The critical role of retinoids (vitamin A and its derivatives) for vision, reproduction, and survival has been well established. Vitamin A is produced from dietary carotenoids such as ß-carotene by centric cleavage via the enzyme BCO1. The biochemical and molecular identification of a second structurally related ß-carotene metabolizing enzyme, BCO2, has led to a prolonged debate about its relevance in vitamin A biology. While BCO1 cleaves provitamin A carotenoids, BCO2 is more promiscuous and also metabolizes nonprovitamin A carotenoids such as zeaxanthin into long-chain apo-carotenoids. Herein we demonstrate, in cell lines, that human BCO2 is associated with the inner mitochondrial membrane. Different human BCO2 isoforms possess cleavable N-terminal leader sequences critical for mitochondrial import. Subfractionation of murine hepatic mitochondria confirmed the localization of BCO2 to the inner mitochondrial membrane. Studies in BCO2-knockout mice revealed that zeaxanthin accumulates in the inner mitochondrial membrane; in contrast, ß-carotene is retained predominantly in the cytoplasm. Thus, we provide evidence for a compartmentalization of carotenoid metabolism that prevents competition between BCO1 and BCO2 for the provitamin and the production of noncanonical ß-carotene metabolites.


Assuntos
Citoplasma/metabolismo , Membranas Mitocondriais/metabolismo , Zeaxantinas/metabolismo , beta Caroteno/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , Animais , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/metabolismo , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , beta-Caroteno 15,15'-Mono-Oxigenase/genética
17.
Pediatr Surg Int ; 31(1): 37-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25344780

RESUMO

BACKGROUND: Retinoids are essential for fetal and lung development. Beta-carotene(BC) is the main dietary retinoid source and beta-carotene-15,15'-oxygenase-1 and 2 (Bcmo1,2) is the primary enzyme generating retinoid from BC in adult mammalian tissues. Placenta has a major role in the retinol homeostasis in fetal life: Since there is no fetal retinol synthesis, maternal retinol has to cross the placenta. It has been recently shown that BC can be converted to retinol by Bcmo1,2 in placenta for retinol transfer and moreover, BC can cross the placenta intact. The placental Bcmo1,2 expression is tightly controlled by placental retinol level. In severe retinol deficiency it has been shown that placental Bcmo1,2 expression are increased for generating retinol from dietary maternal BC even when the main retinol transfer is blocked. In recent years, low pulmonary retinol levels and disrupted retinoid signaling pathway have been implicated in the pathogenesis of pulmonary hypoplasia and congenital diaphragmatic hernia (CDH) in the nitrofen model of CDH. Recently, it has been demonstrated that the main retinol transfer in the placenta is blocked in the nitrofen model of CDH causing increased placental and decreased serum retinol level. The aim of our study was to determine maternal and fetal ß-carotene levels and to investigate the hypothesis that placental expression of BCMO1 and BCMO2 is altered in nitrofen-exposed rat fetuses with CDH. METHODS: Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Maternal and fetal serum, placenta, liver and left lungs were harvested on D21 and divided into two groups: control (n = 8) and nitrofen with CDH (n = 8). Immunochistochemistry was performed to evaluate trophoblasts by cytokeratin expression and placental Bcmo1,2 expression. Expression levels of Bcmo1,2 genes in fetal lungs and liver were determined using RT-PCR and immunohistochemistry. BC level was measured using HPLC. RESULTS: Markedly increased decidual Bcmo1,2 immunoreactivity was observed in CDH group compared to controls. There was no difference neither in the trophoblastic Bcmo1,2 immunoreactivity nor in the pulmonary and liver Bcmo1,2 expression compared to controls. There was no significant difference in maternal serum BC levels between control and CDH mothers (2.14 ± 0.55 vs 2.56 ± 1.6 µM/g, p = 0.8). BC was not detectable neither in the fetal serum nor liver or lungs. CONCLUSIONS: Our data show that nitrofen increases maternal but not fetal Bcmo1,2 expression in the placenta in nitrofen-induced CDH group. The markedly increased decidual Bcmo1,2 expression suggests that nitrofen may trigger local, decidual retinol synthesis in the nitrofen model of CDH.


Assuntos
Hérnias Diafragmáticas Congênitas/enzimologia , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Feminino , Feto/metabolismo , Técnicas Imunoenzimáticas , Troca Materno-Fetal , Éteres Fenílicos , Gravidez , RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
18.
J Sci Food Agric ; 95(9): 1786-94, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25270992

RESUMO

Beta-cryptoxanthin is a common carotenoid that is found in fruit, and in human blood and tissues. Foods that are rich in beta-cryptoxanthin include tangerines, persimmons and oranges. Beta-cryptoxanthin has several functions that are important for human health, including roles in antioxidant defense and cell-to-cell communication. Most importantly, beta-cryptoxanthin is a precursor of vitamin A, which is an essential nutrient needed for eyesight, growth, development and immune response. We evaluate the evidence for beta-cryptoxanthin as a vitamin A-forming carotenoid in this paper. Observational, in vitro, animal model and human studies suggest that beta-cryptoxanthin has greater bioavailability from its common food sources than do alpha- and beta-carotene from theirs. Although beta-cryptoxanthin appears to be a poorer substrate for beta-carotene 15,15' oxygenase than is beta-carotene, animal model and human studies suggest that the comparatively high bioavailability of beta-cryptoxanthin from foods makes beta-cryptoxanthin-rich foods equivalent to beta-carotene-rich foods as sources of vitamin A. These results mean that beta-cryptoxanthin-rich foods are probably better sources of vitamin A, and more important for human health in general, than previously assumed.


Assuntos
Antioxidantes/metabolismo , Criptoxantinas/metabolismo , Frutas/química , Absorção Intestinal , Modelos Biológicos , Vitamina A/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Animais , Antioxidantes/análise , Carotenoides/análise , Carotenoides/metabolismo , Citrus/química , Criptoxantinas/análise , Diospyros/química , Humanos , Hidrólise , Valor Nutritivo , Especificidade por Substrato , Vitamina A/análise , beta Caroteno/análise , beta Caroteno/metabolismo
19.
J Biol Chem ; 288(47): 34081-34096, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24106281

RESUMO

Mammalian genomes encode two provitamin A-converting enzymes as follows: the ß-carotene-15,15'-oxygenase (BCO1) and the ß-carotene-9',10'-oxygenase (BCO2). Symmetric cleavage by BCO1 yields retinoids (ß-15'-apocarotenoids, C20), whereas eccentric cleavage by BCO2 produces long-chain (>C20) apocarotenoids. Here, we used genetic and biochemical approaches to clarify the contribution of these enzymes to provitamin A metabolism. We subjected wild type, Bco1(-/-), Bco2(-/-), and Bco1(-/-)Bco2(-/-) double knock-out mice to a controlled diet providing ß-carotene as the sole source for apocarotenoid production. This study revealed that BCO1 is critical for retinoid homeostasis. Genetic disruption of BCO1 resulted in ß-carotene accumulation and vitamin A deficiency accompanied by a BCO2-dependent production of minor amounts of ß-apo-10'-carotenol (APO10ol). We found that APO10ol can be esterified and transported by the same proteins as vitamin A but with a lower affinity and slower reaction kinetics. In wild type mice, APO10ol was converted to retinoids by BCO1. We also show that a stepwise cleavage by BCO2 and BCO1 with APO10ol as an intermediate could provide a mechanism to tailor asymmetric carotenoids such as ß-cryptoxanthin for vitamin A production. In conclusion, our study provides evidence that mammals employ both carotenoid oxygenases to synthesize retinoids from provitamin A carotenoids.


Assuntos
Carotenoides/metabolismo , Dioxigenases/metabolismo , Vitamina A/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Animais , Carotenoides/genética , Criptoxantinas , Dioxigenases/genética , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , Vitamina A/genética , Deficiência de Vitamina A/enzimologia , Deficiência de Vitamina A/genética , Xantofilas/genética , Xantofilas/metabolismo , beta Caroteno/genética , beta Caroteno/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/genética
20.
J Biol Chem ; 288(52): 37094-103, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24187135

RESUMO

Humans cannot synthesize vitamin A and thus must obtain it from their diet. ß-Carotene 15,15'-oxygenase (BCO1) catalyzes the oxidative cleavage of provitamin A carotenoids at the central 15-15' double bond to yield retinal (vitamin A). In this work, we quantitatively describe the substrate specificity of purified recombinant human BCO1 in terms of catalytic efficiency values (kcat/Km). The full-length open reading frame of human BCO1 was cloned into the pET-28b expression vector with a C-terminal polyhistidine tag, and the protein was expressed in the Escherichia coli strain BL21-Gold(DE3). The enzyme was purified using cobalt ion affinity chromatography. The purified enzyme preparation catalyzed the oxidative cleavage of ß-carotene with a Vmax = 197.2 nmol retinal/mg BCO1 × h, Km = 17.2 µM and catalytic efficiency kcat/Km = 6098 M(-1) min(-1). The enzyme also catalyzed the oxidative cleavage of α-carotene, ß-cryptoxanthin, and ß-apo-8'-carotenal to yield retinal. The catalytic efficiency values of these substrates are lower than that of ß-carotene. Surprisingly, BCO1 catalyzed the oxidative cleavage of lycopene to yield acycloretinal with a catalytic efficiency similar to that of ß-carotene. The shorter ß-apocarotenals (ß-apo-10'-carotenal, ß-apo-12'-carotenal, ß-apo-14'-carotenal) do not show Michaelis-Menten behavior under the conditions tested. We did not detect any activity with lutein, zeaxanthin, and 9-cis-ß-carotene. Our results show that BCO1 favors full-length provitamin A carotenoids as substrates, with the notable exception of lycopene. Lycopene has previously been reported to be unreactive with BCO1, and our findings warrant a fresh look at acycloretinal and its alcohol and acid forms as metabolites of lycopene in future studies.


Assuntos
Carotenoides/química , beta-Caroteno 15,15'-Mono-Oxigenase/química , Carotenoides/metabolismo , Catálise , Humanos , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , beta-Caroteno 15,15'-Mono-Oxigenase/genética , beta-Caroteno 15,15'-Mono-Oxigenase/isolamento & purificação , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA