Your browser doesn't support javascript.
loading
Computational representation of developmental genetic regulatory networks.
Longabaugh, William J R; Davidson, Eric H; Bolouri, Hamid.
Afiliación
  • Longabaugh WJ; Institute for Systems Biology, Seattle, WA 98103-8904, USA. wlongabaugh@systembiology.org
Dev Biol ; 283(1): 1-16, 2005 Jul 01.
Article en En | MEDLINE | ID: mdl-15907831
Developmental genetic regulatory networks (GRNs) have unique architectural characteristics. They are typically large-scale, multi-layered, and organized in a nested, modular hierarchy of regulatory network kernels, function-specific building blocks, and structural gene batteries. They are also inherently multicellular and involve changing topological relationships among a growing number of cells. Reconstruction of developmental GRNs requires unique computational tools that support the above representational requirements. In addition, we argue that DNA-centered network modeling, separate descriptions of network organization and network behavior, and support for network documentation and annotation are essential requirements for computational modeling of developmental GRNs. Based on these observations, we have developed a freely available, platform-independent, open source software package (BioTapestry) which supports both the process of model construction and also model visualization, analysis, documentation, and dissemination. We provide an overview of the main features of BioTapestry. The BioTapestry software and additional documents are available from http://www.biotapestry.org. We recommend BioTapestry as the substrate for further co-development for and by the developmental biology community.
Asunto(s)
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación por Computador / Modelos Genéticos Tipo de estudio: Prognostic_studies Idioma: En Revista: Dev Biol Año: 2005 Tipo del documento: Article País de afiliación: Estados Unidos
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación por Computador / Modelos Genéticos Tipo de estudio: Prognostic_studies Idioma: En Revista: Dev Biol Año: 2005 Tipo del documento: Article País de afiliación: Estados Unidos