Your browser doesn't support javascript.
loading
Predictive vegetation modeling for conservation: impact of error propagation from digital elevation data.
Van Niel, Kimberly P; Austin, Mike P.
Afiliación
  • Van Niel KP; School of Earth and Geographical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia. Kimberly.VanNiel@uwa.edu.au
Ecol Appl ; 17(1): 266-80, 2007 Jan.
Article en En | MEDLINE | ID: mdl-17479850
The effect of digital elevation model (DEM) error on environmental variables, and subsequently on predictive habitat models, has not been explored. Based on an error analysis of a DEM, multiple error realizations of the DEM were created and used to develop both direct and indirect environmental variables for input to predictive habitat models. The study explores the effects of DEM error and the resultant uncertainty of results on typical steps in the modeling procedure for prediction of vegetation species presence/absence. Results indicate that all of these steps and results, including the statistical significance of environmental variables, shapes of species response curves in generalized additive models (GAMs), stepwise model selection, coefficients and standard errors for generalized linear models (GLMs), prediction accuracy (Cohen's kappa and AUC), and spatial extent of predictions, were greatly affected by this type of error. Error in the DEM can affect the reliability of interpretations of model results and level of accuracy in predictions, as well as the spatial extent of the predictions. We suggest that the sensitivity of DEM-derived environmental variables to error in the DEM should be considered before including them in the modeling processes.
Asunto(s)
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Plantas / Conservación de los Recursos Naturales / Modelos Teóricos Tipo de estudio: Prognostic_studies / Risk_factors_studies País/Región como asunto: Oceania Idioma: En Revista: Ecol Appl Año: 2007 Tipo del documento: Article País de afiliación: Australia
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Plantas / Conservación de los Recursos Naturales / Modelos Teóricos Tipo de estudio: Prognostic_studies / Risk_factors_studies País/Región como asunto: Oceania Idioma: En Revista: Ecol Appl Año: 2007 Tipo del documento: Article País de afiliación: Australia