Your browser doesn't support javascript.
loading
Metadata and annotations for multi-scale electrophysiological data.
Bower, Mark R; Stead, Matt; Brinkmann, Benjamin H; Dufendach, Kevin; Worrell, Gregory A.
Afiliación
  • Bower MR; Mayo Systems Electrophysiology Lab, Rochester, MN 55905, USA. bower.mark@mayo.edu
Article en En | MEDLINE | ID: mdl-19964266
The increasing use of high-frequency (kHz), long-duration (days) intracranial monitoring from multiple electrodes during pre-surgical evaluation for epilepsy produces large amounts of data that are challenging to store and maintain. Descriptive metadata and clinical annotations of these large data sets also pose challenges to simple, often manual, methods of data analysis. The problems of reliable communication of metadata and annotations between programs, the maintenance of the meanings within that information over long time periods, and the flexibility to re-sort data for analysis place differing demands on data structures and algorithms. Solutions to these individual problem domains (communication, storage and analysis) can be configured to provide easy translation and clarity across the domains. The Multi-scale Annotation Format (MAF) provides an integrated metadata and annotation environment that maximizes code reuse, minimizes error probability and encourages future changes by reducing the tendency to over-fit information technology solutions to current problems. An example of a graphical utility for generating and evaluating metadata and annotations for "big data" files is presented.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Electroencefalografía / Electrofisiología Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Annu Int Conf IEEE Eng Med Biol Soc Año: 2009 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Electroencefalografía / Electrofisiología Tipo de estudio: Guideline Límite: Humans Idioma: En Revista: Annu Int Conf IEEE Eng Med Biol Soc Año: 2009 Tipo del documento: Article País de afiliación: Estados Unidos