Your browser doesn't support javascript.
loading
Source partitioning using stable isotopes: coping with too much variation.
Parnell, Andrew C; Inger, Richard; Bearhop, Stuart; Jackson, Andrew L.
Afiliación
  • Parnell AC; School of Mathematical Sciences, University College Dublin, Dublin, Ireland.
PLoS One ; 5(3): e9672, 2010 Mar 12.
Article en En | MEDLINE | ID: mdl-20300637
BACKGROUND: Stable isotope analysis is increasingly being utilised across broad areas of ecology and biology. Key to much of this work is the use of mixing models to estimate the proportion of sources contributing to a mixture such as in diet estimation. METHODOLOGY: By accurately reflecting natural variation and uncertainty to generate robust probability estimates of source proportions, the application of Bayesian methods to stable isotope mixing models promises to enable researchers to address an array of new questions, and approach current questions with greater insight and honesty. CONCLUSIONS: We outline a framework that builds on recently published Bayesian isotopic mixing models and present a new open source R package, SIAR. The formulation in R will allow for continued and rapid development of this core model into an all-encompassing single analysis suite for stable isotope research.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Isótopos Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2010 Tipo del documento: Article País de afiliación: Irlanda

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Isótopos Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2010 Tipo del documento: Article País de afiliación: Irlanda