Your browser doesn't support javascript.
loading
Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing.
Bagnaninchi, Pierre O; Drummond, Nicola.
Afiliación
  • Bagnaninchi PO; Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom. pierre.bagnaninchi@ed.ac.uk
Proc Natl Acad Sci U S A ; 108(16): 6462-7, 2011 Apr 19.
Article en En | MEDLINE | ID: mdl-21464296
ABSTRACT
Real-time monitoring of stem cells (SCs) differentiation will be critical to scale-up SC technologies, while label-free techniques will be desirable to quality-control SCs without precluding their therapeutic potential. We cultured adipose-derived stem cells (ADSCs) on top of multielectrode arrays and measured variations in the complex impedance Z* throughout induction of ADSCs toward osteoblasts and adipocytes. Z* was measured up to 17 d, every 180 s, over a 62.5-64 kHz frequency range with an ECIS Z instrument. We found that osteogenesis and adipogenesis were characterized by distinct Z* time-courses. Significant differences were found (P = 0.007) as soon as 12 h post induction. An increase in the barrier resistance (Rb) up to 1.7 ohm·cm(2) was associated with early osteo-induction, whereas Rb peaked at 0.63 ohm·cm(2) for adipo-induced cells before falling to zero at t = 129 h. Dissimilarities in Z* throughout early induction (<24 h) were essentially attributed to variations in the cell-substrate parameter α. Four days after induction, cell membrane capacitance (Cm) of osteo-induced cells (Cm = 1.72 ± 0.10 µF/cm(2)) was significantly different from that of adipo-induced cells (Cm = 2.25 ± 0.27 µF/cm(2)), indicating that Cm could be used as an early marker of differentiation. Finally, we demonstrated long-term monitoring and measured a shift in the complex plane in the middle frequency range (1 kHz to 8 kHz) between early (t = 100 h) and late induction (t = 380 h). This study demonstrated that the osteoblast and adipocyte lineages have distinct dielectric properties and that such differences can be used to perform real-time label-free quantitative monitoring of adult stem cell differentiation with impedance sensing.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Osteogénesis / Células Madre / Diferenciación Celular / Tejido Adiposo Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2011 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Osteogénesis / Células Madre / Diferenciación Celular / Tejido Adiposo Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2011 Tipo del documento: Article País de afiliación: Reino Unido