Photodissociation dynamics of methoxybenzoic acid at 193 nm.
J Chem Phys
; 137(19): 194309, 2012 Nov 21.
Article
en En
| MEDLINE
| ID: mdl-23181308
The theoretical prediction and experimental confirmation of the 1πσ* repulsive excited state along O-H bond of phenol have large impact on the interpretation of phenol and tyrosine photochemistry. In this work, we investigated the photodissociation dynamics of 2-, 3-, and 4-methoxybenzoic acid (MOBA) in a molecular beam at 193 nm using multimass ion imaging techniques. In addition, the ground state and the excited state potential energy surfaces of MOBA were investigated using ab initio calculations, and branching ratios were predicted by Rice-Ramsperger-Kassel-Marcus theory. The results show that (1) the excited state potential of 1πσ* along O-CH(3) bond remains similar to that of phenol and anisole, (2) CH(3) elimination is the major channel for three MOBA isomers, and (3) photofragment translational energy distributions show bimodal distributions, representing the dissociation on the ground state and repulsive excited state, respectively. Comparison to the study of hydroxbenzoic acid [Y. L. Yang, Y. A. Dyakov, Y. T. Lee, C. K. Ni, Y. L. Sun, and W. P. Hu, J. Chem. Phys. 134, 034314 (2011)] shows that only the intramolecular hydrogen bonding has significant effects on the excited state dynamics of phenol chromophores.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
J Chem Phys
Año:
2012
Tipo del documento:
Article
País de afiliación:
Taiwán