Your browser doesn't support javascript.
loading
Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications.
DeLeon-Rodriguez, Natasha; Lathem, Terry L; Rodriguez-R, Luis M; Barazesh, James M; Anderson, Bruce E; Beyersdorf, Andreas J; Ziemba, Luke D; Bergin, Michael; Nenes, Athanasios; Konstantinidis, Konstantinos T.
Afiliación
  • DeLeon-Rodriguez N; School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Proc Natl Acad Sci U S A ; 110(7): 2575-80, 2013 Feb 12.
Article en En | MEDLINE | ID: mdl-23359712
ABSTRACT
The composition and prevalence of microorganisms in the middle-to-upper troposphere (8-15 km altitude) and their role in aerosol-cloud-precipitation interactions represent important, unresolved questions for biological and atmospheric science. In particular, airborne microorganisms above the oceans remain essentially uncharacterized, as most work to date is restricted to samples taken near the Earth's surface. Here we report on the microbiome of low- and high-altitude air masses sampled onboard the National Aeronautics and Space Administration DC-8 platform during the 2010 Genesis and Rapid Intensification Processes campaign in the Caribbean Sea. The samples were collected in cloudy and cloud-free air masses before, during, and after two major tropical hurricanes, Earl and Karl. Quantitative PCR and microscopy revealed that viable bacterial cells represented on average around 20% of the total particles in the 0.25- to 1-µm diameter range and were at least an order of magnitude more abundant than fungal cells, suggesting that bacteria represent an important and underestimated fraction of micrometer-sized atmospheric aerosols. The samples from the two hurricanes were characterized by significantly different bacterial communities, revealing that hurricanes aerosolize a large amount of new cells. Nonetheless, 17 bacterial taxa, including taxa that are known to use C1-C4 carbon compounds present in the atmosphere, were found in all samples, indicating that these organisms possess traits that allow survival in the troposphere. The findings presented here suggest that the microbiome is a dynamic and underappreciated aspect of the upper troposphere with potentially important impacts on the hydrological cycle, clouds, and climate.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Atmósfera / Biodiversidad / Microbiología del Aire / Metagenoma / Tormentas Ciclónicas Tipo de estudio: Prevalence_studies / Risk_factors_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2013 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Atmósfera / Biodiversidad / Microbiología del Aire / Metagenoma / Tormentas Ciclónicas Tipo de estudio: Prevalence_studies / Risk_factors_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2013 Tipo del documento: Article País de afiliación: Estados Unidos