Enhanced up-conversion and temperature-sensing behaviour of Er(3+) and Yb(3+) co-doped Y2Ti2O7 by incorporation of Li(+) ions.
Phys Chem Chem Phys
; 16(41): 22665-76, 2014 Nov 07.
Article
en En
| MEDLINE
| ID: mdl-25231483
Y2Ti2O7:Er(3+)/Yb(3+) (EYYTO) phosphors co-doped with Li(+) ions were synthesized by a conventional solid-state ceramic method. X-ray diffraction studies show that all the Li(+) co-doped EYYTO samples are highly crystalline in nature with pyrochlore face centred cubic structure. X-ray photon spectroscopy studies reveal that the incorporation of Li(+) ions creates the defects and/or vacancies associated with the sample surface. The effect of Li(+) ions on the photoluminescence up-conversion intensity of EYYTO was studied in detail. The up-conversion study under â¼976 nm excitation for different concentrations of Li(+) ions showed that the green and red band intensities were significantly enhanced. The 2 at% Li(+) ion co-doped EYYTO samples showed nearly 15- and 8-fold enhancements in green and red band up-converted intensities compared to Li(+) ion free EYYTO. The process involved in the up-conversion emission was evaluated in detail by pump power dependence, the energy level diagram, and decay analysis. The incorporation of Li(+) ions modified the crystal field around the Er(3+) ions, thus improving the up-conversion intensity. To investigate the sensing application of the synthesized phosphor materials, temperature-sensing performance was evaluated using the fluorescence intensity ratio technique. Appreciable temperature sensitivity was obtained using the synthesized phosphor material, indicating its applicability as a high-temperature-sensing probe. The maximum sensitivity was found to be 0.0067 K(-1) at 363 K.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Titanio
/
Iterbio
/
Erbio
/
Litio
Idioma:
En
Revista:
Phys Chem Chem Phys
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2014
Tipo del documento:
Article