Your browser doesn't support javascript.
loading
Chemical Entity Recognition and Resolution to ChEBI.
Grego, Tiago; Pesquita, Catia; Bastos, Hugo P; Couto, Francisco M.
Afiliación
  • Grego T; Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
  • Pesquita C; Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
  • Bastos HP; Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
  • Couto FM; Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
ISRN Bioinform ; 2012: 619427, 2012.
Article en En | MEDLINE | ID: mdl-25937941
Chemical entities are ubiquitous through the biomedical literature and the development of text-mining systems that can efficiently identify those entities are required. Due to the lack of available corpora and data resources, the community has focused its efforts in the development of gene and protein named entity recognition systems, but with the release of ChEBI and the availability of an annotated corpus, this task can be addressed. We developed a machine-learning-based method for chemical entity recognition and a lexical-similarity-based method for chemical entity resolution and compared them with Whatizit, a popular-dictionary-based method. Our methods outperformed the dictionary-based method in all tasks, yielding an improvement in F-measure of 20% for the entity recognition task, 2-5% for the entity-resolution task, and 15% for combined entity recognition and resolution tasks.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ISRN Bioinform Año: 2012 Tipo del documento: Article País de afiliación: Portugal

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ISRN Bioinform Año: 2012 Tipo del documento: Article País de afiliación: Portugal