Your browser doesn't support javascript.
loading
MT-HESS: an efficient Bayesian approach for simultaneous association detection in OMICS datasets, with application to eQTL mapping in multiple tissues.
Lewin, Alex; Saadi, Habib; Peters, James E; Moreno-Moral, Aida; Lee, James C; Smith, Kenneth G C; Petretto, Enrico; Bottolo, Leonardo; Richardson, Sylvia.
Afiliación
  • Lewin A; Department of Mathematics, Brunel University London.
  • Saadi H; Department of Epidemiology and Biostatistics, Imperial College London, London.
  • Peters JE; Cambridge Institute for Medical Research, University of Cambridge, Cambridge, MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge.
  • Moreno-Moral A; MRC Clinical Sciences Centre, Imperial College London, London, UK.
  • Lee JC; Cambridge Institute for Medical Research, University of Cambridge, Cambridge.
  • Smith KG; Cambridge Institute for Medical Research, University of Cambridge, Cambridge.
  • Petretto E; MRC Clinical Sciences Centre, Imperial College London, London, UK, Duke-NUS Graduate Medical School, Singapore, Singapore.
  • Bottolo L; Department of Mathematics, Imperial College London, London, UK and Department of Medical Genetics, University of Cambridge.
  • Richardson S; MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge.
Bioinformatics ; 32(4): 523-32, 2016 Feb 15.
Article en En | MEDLINE | ID: mdl-26504141
MOTIVATION: Analysing the joint association between a large set of responses and predictors is a fundamental statistical task in integrative genomics, exemplified by numerous expression Quantitative Trait Loci (eQTL) studies. Of particular interest are the so-called ': hotspots ': , important genetic variants that regulate the expression of many genes. Recently, attention has focussed on whether eQTLs are common to several tissues, cell-types or, more generally, conditions or whether they are specific to a particular condition. RESULTS: We have implemented MT-HESS, a Bayesian hierarchical model that analyses the association between a large set of predictors, e.g. SNPs, and many responses, e.g. gene expression, in multiple tissues, cells or conditions. Our Bayesian sparse regression algorithm goes beyond ': one-at-a-time ': association tests between SNPs and responses and uses a fully multivariate model search across all linear combinations of SNPs, coupled with a model of the correlation between condition/tissue-specific responses. In addition, we use a hierarchical structure to leverage shared information across different genes, thus improving the detection of hotspots. We show the increase of power resulting from our new approach in an extensive simulation study. Our analysis of two case studies highlights new hotspots that would remain undetected by standard approaches and shows how greater prediction power can be achieved when several tissues are jointly considered. AVAILABILITY AND IMPLEMENTATION: C[Formula: see text] source code and documentation including compilation instructions are available under GNU licence at http://www.mrc-bsu.cam.ac.uk/software/.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Programas Informáticos / Enfermedades Inflamatorias del Intestino / Regulación de la Expresión Génica / Teorema de Bayes / Sitios de Carácter Cuantitativo / Redes Reguladoras de Genes / Inflamación Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Programas Informáticos / Enfermedades Inflamatorias del Intestino / Regulación de la Expresión Génica / Teorema de Bayes / Sitios de Carácter Cuantitativo / Redes Reguladoras de Genes / Inflamación Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2016 Tipo del documento: Article